Reduced Delay BCD Adder

Alp Arslan Bayrakc¢i and Ahmet Akkasg
Computer Engineering Department
Kog¢ University
34450 Sartyer, Istanbul, Turkey

abayrakci@ku.edu.tr

Abstract

Financial and commercial applications use decimal data
and spend most of their time in decimal arithmetic. Soft-
ware implementation of decimal arithmetic is typically at
least 100 times slower than binary arithmetic implemented
in hardware. Therefore, hardware support for decimal
arithmetic is required. In this paper, a reduced delay bi-
nary coded decimal (BCD) adder is proposed. The pro-
posed adder improves the delay of BCD addition by increas-
ing parallelism. On the critical-path of the proposed BCD
adder, there are two 4-bit binary adders, a carry network,
one AND gate, and one OR gate. To make area and delay
comparison, the proposed adder and previously proposed
five decimal adders are implemented in VHDL and synthe-
sized using 0.18 micron TSMC ASIC library. Synthesis re-
sults obtained for 64-bit addition (16 decimal digits) show
that the proposed BCD adder has the shortest delay (1.40
ns). Furthermore, it requires less area than previously pro-
posed three decimal adders.

1. Introduction

Human beings have preferred decimal as their number
base for all calculations done by hand, since the time when
the man learned to count on his ten fingers. This fact has
never changed, although binary has been selected as the de-
fault base for almost all computers due to the storage and
the speed efficiency of binary hardware [1]. The success
of binary numbers was introduced in 1946, by the report of
John von Neumann and his colleagues at the Institute for
Advanced Study [2]. Afterwards, the designers have pre-
ferred binary computers due to the speed and the simplicity
of binary arithmetic, but nowadays, there is an increasing
demand for the decimal arithmetic hardware support in fi-
nancial and commercial applications. This is due to three
reasons, as stated in the paper of Cowlishaw [4]:

First, most fractional decimal numbers, such as 0.1, can-

1-4244-1027-4/07/$25.00 ©2007 IEEE

ahakkas @ku.edu.tr

not be exactly represented in binary format and therefore,
their approximate representations are used in binary arith-
metic operations. This is not tolerable for most financial
and commercial applications, which require exact represen-
tation of decimal numbers.

Second, the commercial databases contain more decimal
data than binary data. Therefore, when the binary hardware
is used, the decimal data is converted from decimal to bi-
nary and after it is processed, the binary data is converted
back to decimal in order to store the result in decimal for-
mat. However, the conversion between decimal and binary
formats causes too much delay [1].

Today the financial applications use decimal software
running on top of the underlying binary hardware in order
to produce exact decimal results, but the drawback of using
decimal software is its speed. Software implementation of
decimal arithmetic is about 100 to 1000 times slower than
the binary implementation in hardware [4, 5]. When deci-
mal operations are supported by software, the decimal pro-
cessing overhead can even reach up to 90% for some appli-
cations like telephone billing [3]. This is the third reason
for the requirement of the decimal arithmetic hardware in
financial and commercial applications.

In all arithmetic units, whether binary or decimal, an
adder is used. Therefore, it is not surprising that various
addition techniques have been invented up to now, even for
the decimal addition, which is much less popular than the
binary addition. This paper does not only introduce a re-
duced delay BCD adder, but it also investigates the delay
and the design properties of previously proposed five deci-
mal adders.

The remainder of this paper is organized as follows: Sec-
tion 2 gives brief background for decimal adders available
in the literature. In Section 3, the reduced delay BCD adder
is presented. Section 4 discusses the design details of adders
presented in Section 2 and gives the synthesis results. Last
section presents our conclusions.

266

2. Previous Work

In this section, an overview is given for five decimal
adders that have already been designed. These previously
proposed popular BCD adders are implemented in VHDL
and synthesized in order to make a comparison with the re-
duced delay BCD adder. The synthesis results and the de-
sign details of the adders are presented in Section 4.

The first adder, investigated in this paper, is the conven-
tional decimal adder [8] and it is shown in Figure 1. For
each decimal digit, it has two 4-bit binary adders and carry
detection logic between the adders. The first level adders
produce the binary addition results. If the result is greater
than 9, a carry output is produced and the result of first level
4-bit adder is corrected by adding 6. Furthermore, the carry
output is used as a carry input for the next digit. The main
disadvantage of the conventional decimal adder is its low
speed because all the first level 4-bit adders must wait for a
number of 4-bit additions to get the right carry input.

The second adder is proposed in Hwang’s patent [6].
This adder is designed to support both binary and decimal
additions. A binary carry look-ahead adder (CLA) is used
to add two input operands, which are either binary or dec-
imal numbers. The result of the binary CLA is the correct
result for binary inputs, but it needs to be corrected for dec-
imal inputs. Therefore, in the decimal case, the binary CLA
addition result and some of the carries (C[4],C[8],C[12],...)
are used to compute the corrected result. In the correction
step, digit generate and digit propagate signals are com-
puted for each decimal digit (4-bit binary addition result).
The digit generate signal becomes one if the 4-bit result is
in the range of [10,15] and the digit propagate signal be-
comes one if the 4-bit result is 9. A carry look-ahead net-
work takes these digit generate and digit propagate signals
and produces outputs which are ORed with the carries com-
ing from the binary CLA. The output of OR gate is used to
determine whether 6 will be added for correction. Further-
more, the carry output of each decimal digit is also used to
determine if an additional 1 will be added for correction.

The third adder is based on the paper of Shirazi et al.,
which uses the redundant binary coded decimal (RBCD)
numbers [10]. The addition operation consists of three
steps. First, inputs in BCD format are converted to RBCD
format. In the second step, RBCD adder is used to com-
pute the result. Finally, the result in the RBCD format is
converted back to BCD format. The delay for the first two
steps is constant and independent of the input size. On the
other hand, converting RBCD result back to BCD requires
carry propagation and it causes a delay correlated with the
length of input operands. Therefore, RBCD adder is useful
especially when constant-time addition operations are used
many times, as Shirazi states in his paper [10].

The fourth adder, investigated in this paper, is proposed

by Schmookler et al. [9]. It is the only decimal adder which
finds the decimal carries before performing any addition.
The idea is similar to the concept used in binary CLAs. For
each decimal digit, two signals named as K and L are com-
puted using input operands. K shows that the sum of two
corresponding BCD digits will be greater than or equal to
10, and L shows that the sum will be greater than or equal
to 8. The paper of Schmookler suggests that these signals
can be used to find both the carries and the decimal addition
result without using any correction step.

The fifth decimal adder is used in a 64-bit decimal
floating-point adder proposed by Thompson et al. [11]. This
adder consists of a pre-correction unit, which adds 6 to
each digit, a Kogge-Stone binary adder, which adds two
pre-corrected operands, and a post correction unit, which
corrects the result by subtracting 6 (adding 1010) if it is
required. Additions in the pre-correction and in the post-
correction units are performed parallel for all digits. The
post-correction unit is also responsible for the detection of
correction (adding 1010).

3. Reduced Delay BCD Adder

The conventional BCD adder [8] is very simple, but also
very slow due to the carry ripple effect. If the BCD addition
is analyzed carefully, we see that there are three cases:

Case 1: The sum of two BCD digits is smaller than 9.
In this case, it is certain that there is no carry output even if
there is a carry input. Furthermore, the result for this digit
does not require a correction.

Case 2: The sum of two BCD digits is greater than 9. In
this case, a correction is required. Moreover, a carry output
is produced regardless of the carry input.

Case 3: The sum of two BCD digits is exactly 9. In
this case, the input carry determines whether a correction is
required and whether a carry output is produced.

For the first two cases, the incoming carry has no effect
on determining the carry output; therefore, the carry out-
put can be determined without knowing the existence of the
carry input. On the other hand, if the addition result is 9
(Case 3), then the input carry determines the existence of the
carry output, which may ripple even up to the most signifi-
cant digit. Therefore, Case 2 and Case 3 can be represented
by a digit generate (DG) and a digit propagate (DP) sig-
nals, respectively. This representation is similar to the digit
generate and the digit propagate representations in Hwang’s
patent [6].

Figure 2 shows how the DG and DP signals of a digit are
computed in our design. After having all the DG and DP
signals, the output carry for each digit can be found easily
by Equation 1. Due to the nature of this equation, we can
form DP by ANDing only Sum[0] and Sum[3] instead of
using all bits of Sum[3:0]. The DG and DP signals can be

267

s [i)
4-bit binary 4-bit binary 4-bit binary
adder adder adder N
S3 52 S1 S0 S3 S2 S1 S0 S3 S2 S1 S0 | Carry In
Carry Out
il
‘Oﬁ*—rﬁ’
4-bit binary 4-bit binary 4-bit binary
adder adder adder
S3 82 81 S0 S3 §2 S1 S0 $3 82 S1 S0
Figure 1. Conventional BCD Adder
Possible Cases
The value added Input Carry Output Carry
for correction | from prev. digit | to next digit
4 4
0 0 0
A2 A1 6 0 1
1 1 0
—Co 4-bit binary CLA Adder 7 1 1

Sum[3:0]

\

Digit Generate Digit Propagate

Figure 2. Adder + Analyzer Unit

utilized similar to the generate and propagate signals used
in a binary CLA circuit. Therefore, all schemes developed
for a binary CLA can be used in order to speed up carry
computation.

OutputCarry = DG + DP - InputCarry (1)

The combination of the first level 4-bit adders and the
Carry Network is shown in Figure 3. The carry value
for each digit is computed inside the Carry Network using
Equation 1. The Carry Network can be any type of parallel
prefix network or two level carry look-ahead logic can be
used instead. The carries computed by Carry Network are

Table 1. The Selection of the Value to be
Added for Correction

used in the correction step. Figure 4 shows the complete
BCD adder including the 4-bit adders used for correction.

Correction is done by adding 0, 1, 6, or 7 to the binary
sum coming from the first level adder. For each digit, the
existence of the output carry and the input carry determine
the value to be added for correction. Table 1 shows the cor-
rection value to be added for all cases. The correction step
must fulfil two requirements. First, the carry, coming from
the previous digit, should increment the binary sum of the
related digit by 1. Second, the output carry of the related
digit should determine whether the binary sum will be cor-
rected by adding 6 or not. The correction by adding 6 is re-
quired only when there is a decimal carry-out coming from
the carry network. Figure 4 shows how the correction step
fulfils these requirements. As a result of such a design, the
carries are utilized only in the correction step.

There are three differences between our design and the
design presented in Hwang’s patent. First, a full binary
CLA is used in Hwang’s patent for the binary addition of
two input operands in order to support both decimal and
binary additions. Whereas, in order to speed up the opera-
tion, 4-bit independent binary adders are used in our design,
supporting only the decimal addition. By this way, the first

268

N2[63:60] N1[63:60]

4 4

A2 A1

Adder + Analyzer

DG DP Binary sum

N2[7:4] NA[7:4] N2[3:0] N1[3:0]
4 4 4 4
A2 A1 A2 A1
Adder + Analyzer Adder + Analyzer
DG DP Binary sum DG DP Binary sum

Binary sum[63:60]

4

Binary sum[7:4] Binary sum[3:0]

Carry Network

16

Carry[15:0]

Figure 3. Adder + Analyzer + Carry Network

level binary summations are computed in constant time, in-
dependent from the length of the input operands.

Second, the digit generate signal used in our design is
slightly different than the digit generate signal used in the
patent. The digit generate signal used in the patent becomes
one for a result that is in the range of [10,15]. However, the
digit generate signal used in our design becomes one for a
result that is greater than or equal to 10 (of course the ac-
tive range becomes [10,18], as the sum of two BCD digits
cannot be greater than 18). This is achieved by ORing the
carry output of 4-bit binary adder and the outputs of two
AND gates as shown in Figure 2. This also eliminates the
use of an additional OR gate, which is used just before the
correction step in Hwang’s patent. In our design, first level
4-bit addition results are computed without utilizing carry
inputs coming from the previous 4-bit adders. On the other
hand, Hwang uses these carries in the full binary addition
of two operands. Furthermore, these carries are also used
one more time before the correction and it causes an addi-
tional OR gate delay as shown in Figure 5. This does not
only bring one more gate delay, but it is also wasteful, as
these carries are taken into account twice; in the full binary
addition and before the correction step.

The last difference between the two design is related to
the computation of the decimal digit carries. In Hwang’s
patent, a conventional CLA network is used. In our design,
a parallel prefix network [7] is used to reduce the delay of
decimal addition.

When the proposed adder shown in Figure 4 is consid-
ered, the key point of our design is the parallelism. Not
only the first level adders perform their additions in parallel,

but also the correction step is performed using independent
4-bit binary adders. As a result, all parts of the reduced de-
lay BCD adder, except for the Carry Network, perform their
operations in constant time, independent from the length of
the input operands. Yet, there are different schemes like
Kogge-Stone parallel prefix network, used in this paper, in
order to decrease the delay of the Carry Network.

4. Synthesis Results

All adders referred in this paper are designed to support
64-bit decimal addition with BCD operands. They are syn-
thesized using the TSMC 0.18 micron library. In order to
make a fair comparison, three of these adders are slightly
modified and details of modifications are given below. The
conventional adder, RBCD adder proposed by Shirazi et al.,
and the reduced delay BCD adder presented in this paper
are implemented exactly how they are presented.

The adder presented in Hwang’s patent is modified to
support only decimal addition. Therefore, "nine’s comple-
menter” block, which is used only in decimal subtraction,
and the multiplexer, which is used to select either the bi-
nary or the decimal result, are removed. Furthermore, a
64-bit binary CLA is used instead of the binary ALU. All
these modifications speed up the operation. The modified
version of Hwang’s adder is shown in Figure 5.

The other modified adder is the adder of Schmookler et
al. [9]. This adder finds all carries before performing any
addition. The boolean equations from 2a to 10 presented
in [9] are used exactly, but the organization of the circuit
is different than the devised circuit. Instead of using byte

269

N2[63:0] N1[63:0]

64 64
< Cin
Adder + Analyzer + Carry Network
Binary Binary Binary
Carry[15] sum[63:60] L Carry[1] sum[7:4] Carry[0] sum[3:0]
<Cout . o o
OJ, 4y OJ, 4y Oi 4y
4-bit binary adder 4-bit binary adder 4-bit binary adder
corrected result[63:60] corrected result[7:4] corrected result[3:0]
Figure 4. Full Circuit
N2[63:0] N1[63:0] generate and byte propagate signals presented in [9], digit
propagate (P) and digit generate (G) signals are computed
64 64 by Equation 2 and 3, where Ni(0) represents the least signif-

icant bit of the related digit of the 7*" operand. The meaning
of K and L signals are already given in Section 2.

P =L-(N1(0) + N2(0)))

Carry-in 64 bit Binary Adder

C[16:1] Y[63:60] Y[7:4] Y[3:0]

“ d 4 G =K+ (L-N1(0) - N2(0)) 3)

.. Schmookler proposes a byte-wise circuit scheme with 6
DG DP DG DP| DG DP levels using the byte generate and byte propagate signals.
v v v N However, in our implementation, digit generate and digit
o o Look-Ahead Carry Generator propagate signals are the inputs of a two level CLA net-
C[16] C[15] C[1] work.
The third modified adder is the adder used in the 64-bit
decimal floating-point adder [11]. The boolean functions of
. Y[3:0] the pre-correction and post-correction units are used with-
out any modifications except that the boolean functions,
4 used for other purposes than the decimal addition, are re-
moved from the design. Another minor modification in this
Decimal Correction (composed of 4-bit adders) adder is the replacement of the 76-bit Kogge-Stone binary
RI63:0] adder with a 64-bit Kogge-Stone binary adder to support
{ only 64-bit decimal addition.
64

All adders referred in this paper are implemented in
VHDL according to the details given above and in Sec-
tion 2. They are synthesized using Mentor Graphics’
Leonardo Spectrum synthesis tool and the TSMC 0.18 mi-
cron CMOS standard cell library. The synthesis results are

Figure 5. Hwang’s Modified Adder presented in Table 2.

270

Adder Delay (ns) | Area (gates)
1. Conventional BCD Adder 11.03 955
2. Hwang’s adder 341 1762
3. RBCD Adder 4.74 3784
4. The CLA version of Schmookler’s adder 1.54 1336
5. The adder of Thompson et al. 1.69 2369
6. Reduced Delay BCD Adder 1.40 1422

Table 2. Area and Delay Estimates for Decimal Adders

According to Table 2, the conventional decimal adder is
very slow because of the carry propagation. The RBCD
adder has significantly better delay than the conventional
adder, but it requires a time consuming operation to convert
RBCD number to BCD. The delay of modified version of
the adder presented in Hwang’s patent is better than the de-
lay of RBCD adder, but it still requires two time consuming
operations. The first operation is to perform 64-bit binary
addition of two operands and the second operation is to de-
tect carries for each digit position using carry look-ahead
network. The other three adders perform decimal addition
very efficiently. Among these adders, the proposed reduced
delay BCD adder has the shortest delay.

When the area of the adders is under consideration, the
worst one is RBCD adder whereas the best of these six
adders is conventional adder. However, the delay of the con-
ventional adder is much higher than the other adders. The
second best adder, in terms of area, is the CLA version of
Schmookler’s adder. Reduced delay BCD adder also has a
smaller area compared to the other adders except the con-
ventional BCD adder. Its area is very close to Schmookler’s
adder and it has shorter delay than Schmookler’s adder.

Reduced delay BCD adder can be modified in order to
also support subtraction operation if the 10’s complement
arithmetic is supported by the architecture. The idea is as
follows: If the operation is subtraction, the first operand
should be added to the 9’s complement of the second
operand and the carry-in of the adder should be set to 1.
Taking 9’s complement is an easy and fast task as explained
in the paper of Schmookler [9]. It should also be noted that
the adder used in [11] can support both addition and sub-
traction operations even for the sign magnitude representa-
tion.

5. Conclusion

This paper presents a reduced delay BCD adder to per-
form decimal addition. The new proposed adder has the
shortest delay among the decimal adders examined in this
paper. It also requires less hardware than the previously
proposed three decimal adders. The new decimal adder
improves the delay of BCD addition by increasing paral-

lelism. If we ignore one AND gate and one OR gate delay,
the critical-path of the proposed BCD adder consists of the
delay of two 4-bit binary adders and a carry network.

References

[1] W. Buchholz. Fingers or Fists? (The Choice of Decimal
or Binary Representation). Communications of the ACM,
2(12):3-11, December 1959.

[2] A.H. Burks, H. H. Goldstine, and J. von Neumann. Prelim-
inary Discussion of The Logical Design of An Electronic
Computing Instrument. Technical report, Institute for Ad-
vanced Study, June 1946.

[3] M. F. Cowlishaw. The ’telco’ benchmark. May 2002. URL:
http://www2.hursley.ibm.com/decimal.

[4] M. F. Cowlishaw. Decimal Floating-Point: Algorism for
Computers. In Proceedings of 16th IEEE Symposium on
Computer Arithmetic, pages 104—111, June 2003.

[51 M. A. Erle, M. J. Schulte, and J. M. Linebarger. Potential
speedup using decimal floating-point hardware. In Confer-
ence Record of the Thirty-Sixth Asilomar Conference on Sig-
nals, Systems and Computers, volume 2, pages 1073-1077,
November 2002.

[6] 1. S. Hwang. High Speed Binary and Decimal Arithmetic
Unit. United States Patent, (4,866,656), September 1989.

[7] P. M. Kogge and H. S. Stone. A Parallel Algorithm for The
Efficient Solution of a General Class of Recurrence Equa-
tions. IEEE Trans. on Computers, C-22(8), Aug. 1973.

[8] M. M. Mano. Digital Design, pages 129-131. Prentice Hall,
third edition, 2002.

[9] M. S. Schmookler and A. W. Weinberger. High Speed Deci-
mal Addition. IEEE Transactions on Computers, C-20:862—
867, Aug. 1971.

[10] B. Shirazi, D. Y. Y. Young, and C. N. Zhang. RBCD: Re-
dundant Binary Coded Decimal Adder. In /[EE Proceedings,
Part E, No. 2, volume 136, pages 156—160, March 1989.

[11] J. D. Thompson, N. Karra, and M. J. SchulteB. A 64-Bit
Decimal Floating-Point Adder. In Proceedings of the IEEE
Computer Society Annual Symposium on VLSI, pages 297—
298, February 2004.

271

