
Computer Networks 79 (2015) 323–344
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet
Joint overlay routing and relay assignment for green networks q
http://dx.doi.org/10.1016/j.comnet.2015.01.005
1389-1286/� 2015 Elsevier B.V. All rights reserved.

q This work is supported by the Scientific and Technological Research
Council of Turkey (TUBITAK) under Grant No. 113E567.
⇑ Corresponding author.

E-mail addresses: fatma.ekici@tubitak.gov.tr (F. Ekici), didem.gozu-
pek@gtu.edu.tr (D. Gözüpek).
Fatma Ekici a, Didem Gözüpek b,⇑
a Scientific and Technological Research Council of Turkey (TUBITAK), Gebze, Kocaeli, Turkey
b Department of Computer Engineering, Gebze Technical University, Kocaeli, Turkey

a r t i c l e i n f o a b s t r a c t
Article history:
Received 14 May 2014
Received in revised form 24 November 2014
Accepted 10 January 2015
Available online 28 January 2015

Keywords:
Green networks
Routing
Optimization
Integer programming
Approximation algorithms
Heuristic algorithms
Power consumption of information and communication technologies (ICT) has increasingly
become an important issue in the last years. Both energy costs and environmental concerns
call for energy aware ‘‘green’’ networking solutions in wired networks. Overlay routing is
an attractive method to enhance the performance and reliability of routing mechanisms
without the need to change the standards of the current underlying routing. In this work,
we focus on overlay routing in wired networks from an energy efficiency perspective. We
formulate an optimization problem called JORRA (Joint Overlay Routing and Relay Assign-
ment), which jointly determines the overlay routing paths and relay nodes. We consider
issues such as the relay costs, whether the network elements can be put into sleep mode
or not as well as the energy efficiency and reliability tradeoff for source and destination
pairs in the network. We formulate JORRA as an integer linear program and prove that it
is APX-Hard in addition to being NP-Hard even in its special cases. We then show that
another special case of JORRA admits a 2-approximation algorithm. Moreover, we propose
two polynomial time heuristic algorithms and demonstrate through performance evalua-
tion that our heuristics are suitable for practical implementation.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Environmental concerns have increased in recent years
mainly due to the increase in greenhouse gas emissions. To
this end, the usage of renewable energy sources (such as
solar panels and wind turbines) as opposed to traditional
ones (such as coal and fuel) has gained importance [1].
These environmental concerns also have a technological
aspect. For instance, wired networks have traditionally
been designed without considering energy efficiency.
However, there is a continuous increase in their energy
consumption and therefore, energy efficiency has an
increasing importance in wired networks. Already in
2007 information and communications technologies (ICT)
industry accounted for 2% of the global CO2 emissions,
same amount as global air travel [2]. Studies show that
transmitting data through Internet takes more energy (in
bits per Joule) than transmitting data through wireless net-
works [3]. This increasing energy consumption not only
has an environmental cost but also a financial burden in
terms of electricity costs and cooling equipments. For
instance, powering wired networks in USA costs approxi-
mately 0.5–2.4 billion dollars per year [4].

Providing alternate paths for a set of source and desti-
nation pairs in a communication network achieves reliabil-
ity and robustness against path failures. Overlay routing
has been proposed in recent years as an effective method
to achieve path diversity [5]. The alternate path that is dif-
ferent from the default (underlay) path is called an overlay
path. To coordinate the communication over the alternate
path, some nodes on the alternate path need to be

http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2015.01.005&domain=pdf
http://dx.doi.org/10.1016/j.comnet.2015.01.005
mailto:fatma.ekici@tubitak.gov.tr
mailto:didem.gozupek@gtu.edu.tr
mailto:didem.gozupek@gtu.edu.tr
http://dx.doi.org/10.1016/j.comnet.2015.01.005
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

324 F. Ekici, D. Gözüpek / Computer Networks 79 (2015) 323–344
equipped with extra functionality. These nodes are called
overlay nodes, relay nodes or infrastructure nodes. Some
works in the literature such as [6] propose a routing strat-
egy that finds a path passing through the intermediate
(relay) nodes assuming that the intermediate nodes are
predetermined. Some other works such as [5] study the
reverse problem and focus on the relay placement problem
where an overlay path is a path that consists of two short-
est paths, one from the source to the relay node and
another from the relay node to the destination. The work
in [7] follows a similar strategy except that the cost of
the relay nodes is also taken into account. In other words,
the set of overlay paths is given as input to their optimiza-
tion problem. To the best of our knowledge, ours is the first
study that jointly determines the alternate paths and the
relay nodes by also taking the relay costs into account.

It is estimated that switches, hubs, and routers consume
6 TW h per year in the US and costs about $500 million per
year [8]. Some recent studies show that traffic load of the
routers has little effect on their energy consumption. The
main cause of energy consumption is the switched-on net-
work elements such as routers and interfaces. Network ele-
ments are usually powered on 24/7 in the idle mode,
during which they consume a large amount of energy.
Therefore, researchers have proposed to put the devices
into low-energy sleep states [3]. However, not all network-
ing equipment can be put into sleep mode due to hardware
limitations or topological constraints. For instance, authors
in [3] state that the Internet hardware in 2003 does not
have sleeping capability. Moreover, some equipments such
as gateways may take a long time to switch to the active
mode from the sleep mode and therefore putting these
devices into sleep mode may not be preferred [9]. Most
studies on energy-aware wired networks [4,10,11] focus
on cases where all equipments can potentially be put into
sleep mode. However, modern energy-aware devices that
have sleep functionalities will have to coexist with devices
that do not have these capabilities since it is not feasible to
quickly upgrade all of the Internet hardware at least for a
considerable amount of time. In this paper, while deter-
mining the alternate paths, we suggest favoring the paths
that pass through the nodes that cannot be put into sleep
mode. These devices will have to be in the active state in
any case; therefore, having the alternate paths utilize these
nodes instead of other nodes that can be put into sleep
mode help decrease the overall energy consumption in
the network. Note here that we do not force the alternate
paths to pass through the nodes that cannot be put into
sleep mode; if it is more advantageous in terms of other
criteria such as reliability, then the routing solution offered
by our model may not pass through the nodes that cannot
be put into sleep mode. Our model basically takes into
account the potential savings from energy consumption
that passing through these nodes can offer. To the best of
our knowledge, this paper is the first study that takes the
different sleeping capabilities of the networking equip-
ment into account.

On the one hand, making the alternate and default
paths as disjoint as possible is important in order to
increase reliability and robustness. On the other hand,
putting the nodes and links that are not on a default or
alternate path into sleep mode helps decrease the energy
consumption. Therefore, increasing the overlapping edges
between default and alternate paths help decrease the
energy consumption in the network. Furthermore, each
source and destination pair may have a different reliability
and fault tolerance requirement depending on the applica-
tions they execute; i.e., some pairs may tolerate more over-
lap with the default path and other alternate paths,
whereas some other pairs may tolerate very few or no
overlap. In this paper, we address the reliability and energy
efficiency tradeoff by also considering the heterogeneous
fault tolerance requirements of different source and desti-
nation pairs. To the best of our knowledge, previous works
on energy-aware routing in wired networks [10–13] do not
address these heterogeneous requirements.

The rest of this paper is organized as follows: Section 2
discusses related work and summarizes our contributions.
Section 3 provides our problem formulation, whereas Sec-
tion 4 presents our NP-hardness and inapproximability
results as well as approximation algorithms for some spe-
cial cases of our formulated problem. Section 5 introduces
our proposed heuristic algorithm. Section 6 presents simu-
lation results and Section 7 concludes the paper.

2. Related work and summary of contributions

2.1. Related work

The usage of path diversity to provide fault tolerance
and load balancing is initially introduced in [14] as disper-
sity routing. Studies in [15] show that in 30–80% of the
cases, an alternate path with significantly superior quality
exists on the Internet. Another study [16] shows that more
than 20% of Internet path failures are not recovered within
10 min. Advantages of alternate paths are investigated also
by [17–19].

One way of achieving path diversity is overlay routing,
which refers to the usage of alternate paths called overlay
paths in addition to the default path between source and
destination pairs. Overlay path passes through a strategi-
cally placed node called relay node, overlay node or infra-
structure node. Relay nodes are equipped with extra
functionality to coordinate the communication across the
overlay path.

The work in [5] focuses on the problem of placing the
relay nodes such that every pair has an overlay path that
is as disjoint as possible from the default path and at the
same time passes through a relay node. When it is not pos-
sible to achieve complete disjointness, a penalty metric is
used for partially disjoint paths. The case where an overlay
path consists of two shortest paths, one from the source
node to the relay node and the other from the relay node
to the destination node, is considered. In particular,
authors focus on the problem of finding the positions of
relays in the network such that every pair finds an overlay
path that is maximally disjoint from the default path when
the number of relay nodes is given.

The work in [6] proposes a routing strategy that routes
traffic to the destination after ensuring that it passes
through a pre-determined intermediate node. Their
scheme is oblivious of and robust to any changes in the

F. Ekici, D. Gözüpek / Computer Networks 79 (2015) 323–344 325
traffic distribution. The focus is on coping with traffic
uncertainty; issues such as overlaps between different
paths are not addressed.

The deployment and management of overlay nodes
over the physical infrastructure has a non-negligible cost
since the overlay nodes have to be equipped with extra
functionality. The work in [7] is the first work in the liter-
ature that takes into account the cost associated with
deploying these relay nodes. Given a set of overlay and
underlay paths, they focus on the problem of finding a
set of overlay nodes with minimum total cost such that
the required routing properties are satisfied. In this paper,
unlike the works in [5–7], we focus on an optimization
problem that jointly finds overlay paths and relay nodes.
To the best of our knowledge, this paper is the first one
in the literature that focuses on such a joint optimization.
Moreover, as in [7], we also take into account the costs
associated with deploying the relay nodes.

Green networking is a recent paradigm that aims to
address the increasing energy consumption of ICT sector
[3,2,20]. Due to environmental and financial reasons, green
networking concept presents an energy efficiency perspec-
tive on traditional networking paradigms. To the best of
our knowledge, overlay routing concept has not previously
been studied from a green networking perspective. Hence,
to our knowledge, this paper is the first study in the liter-
ature that focuses on overlay routing for green networks.

Up until the emergence of the green networking para-
digm, keeping network elements in always-on state even
when they are inactive has been the main trend. Research
in green networks shows that the main cause of energy
consumption in wired networks is these switched-on and
idle network elements. Therefore, researchers propose to
put the unused network elements into sleep mode in order
to save power [3,10,12,21,22]. Studies in green networks
assume that all networking devices can be put into sleep
mode. Nevertheless, some networking equipments, espe-
cially old equipments, do not have this functionality [3]
because of hardware limitations, etc. To the best of our
knowledge, this paper is the first study in the literature
that takes into account the fact that some networking
devices cannot be put into sleep mode.

Green overlay routing not only requires an energy effi-
cient routing scheme but also a reliable communication
over the overlay network. There are several studies on
energy efficient routing but ours is the first study on
energy efficient overlay routing. In essence, this paper pre-
sents a routing algorithm that combines both energy effi-
ciency and resilience of the network. There are many
studies in the literature about energy efficient routing. In
[12], energy efficiency is presented as the minimization
of the number of edges in a multicommodity integral flow
problem. For this purpose the number of active links in the
network is minimized. Since multi-commodity integral
flow problem is NP-complete, two heuristics are suggested.
The first one removes the less loaded edges and checks if
there is still a feasible solution without that edge and con-
tinues until there is no feasible solution. Second heuristic
differs from the first one by making the edge selection ran-
domly. A similar, but distributed approach is presented in
[23], where idle or underutilized links are switched off if
this action does not affect the network functionality. The
process of switching on/off the links is fully decentralized;
i.e., it takes local decisions at random intervals and hence
enables a more robust solution with respect to centralized
approaches. Another work related to energy efficient rout-
ing uses a Steiner tree based algorithm [24], where authors
show that the method drastically increases the number of
sleeping nodes and links in a network. Their algorithm
generates a Steiner tree connecting the source and destina-
tion nodes. In addition, their method calculates bypass
routes that replace long inefficient hop-count routes to
decrease the traffic congestion on the Steiner tree.

Energy saving on a network can also be obtained by
partial shut down of certain network elements according
to their loads and traffic patterns. This approach is advo-
cated in [25], where the energy consumption of network
elements that is independent of traffic load is questioned.
It is suggested that the energy consumption should be pro-
portional to the current traffic load on that network ele-
ment. This approach requires traffic engineering, which is
not always possible since it is expensive for some systems
to represent different network states in time domain due
to critical data that should not be lost in the network.

Energy efficient network design is also important like
energy aware routing. In [26], these two problems are
addressed jointly and expressed as a mixed nonlinear inte-
ger program. Energy aware routing is expressed as a non-
linear multicommodity flow problem, where links and
nodes are powered off in order to reduce the overall net-
work power consumption. In [11], energy consumption
models for nodes and different types of links are con-
structed like in a real world system. A mixed integer pro-
gram is designed by taking the traffic matrix and link
capacities of a real world system. The work compares the
energy saving model to the worst case scenario where no
nodes or links can be shut down.

In addition to overlay routing, placing the relay nodes
over the overlay network requires a strategic method. In
many of the previous works [5,7,27], overlay node selec-
tion is done before determining the overlay paths. In
[27], random placement, node degree-based and traffic-
aware greedy heuristic algorithms are presented. Finally,
it is concluded from the experiments that a hybrid
approach combining greedy and random approaches pro-
vides the best tradeoff between computational efficiency
and accuracy. In contrast to previous studies, we do not
make the relay node selection at first stage. Instead, we
make a joint optimization of path selection and relay node
selection.

2.2. Summary of contributions

Our contributions can be summarized as follows:

1. To the best of our knowledge, this paper is the first
work that focuses on joint optimization of alternate
path finding and relay node selection.

2. To the best of our knowledge, this paper is the first
work that takes into account and utilizes the fact that
some networking devices may not have sleeping
capability.

326 F. Ekici, D. Gözüpek / Computer Networks 79 (2015) 323–344
3. To the best of our knowledge, this paper is the first one
in the literature that addresses the reliability and
energy efficiency tradeoff in green networks by taking
into consideration the heterogeneous fault tolerance
requirements of different communication pairs.

4. To the best of our knowledge, this paper is the first
work that focuses on overlay routing within the green
networking paradigm.

5. Since we do not make any assumption on network
topologies, our approach in this paper is applicable for
networks with general topologies.

3. Problem formulation

We model the network as an undirected graph
G ¼ ðV ; EÞ, where V and E represent the nodes and links,
respectively, of the network. We are given a set of source
and destination pairs Q ¼ fðs1; d1Þ; ðs2; d2Þ; . . . ; ðsp; dpÞ; . . . ;

ðsP; dPÞ}, where Q # V � V and P is the total number of
source and destination pairs. Here source and destination
pairs are ordered because there is an implicit directionality
in the decision variables defined in Table 2. This implica-
tion will be further elaborated on in the paper. We are also
given a set of underlay paths, Pu, that altogether connects
each source node to the corresponding destination node.
Underlay paths are default paths that are derived from
the underlying routing scheme. Furthermore, the following
cost functions are also provided as input to our problem
formulation:

� A weight function W1 : V �
S

ifsi; dig ! R that indicate
the cost associated with relay selection. Note that the
set of source and destination nodes is excluded from
the domain of W1 because source and destination nodes
cannot be selected as relay nodes (as also stated in [7]).
� A weight function W2 : V ! R that indicate the cost

associated with the energy consumption of the nodes.
� A weight function W3 : E! R that indicate the cost

associated with the energy consumption of the links.

Table 1 outlines the input variables fed to our optimiza-
tion problem. In essence, the variable tij is a function of the
input variable ti. In other words, the values for tij are actu-
ally enforced by the values for ti; i.e., tij variables are not
Table 1
Table for input variables.

Input variable Explanation

Wi
1

= The cost incurred if node i

Wi
2

= The energy consumption of

Wij
3

= The energy consumption of

gij
¼ 1; if graph G contains t

0; otherwise

�
ti ¼ 1; if vertex i cannot be

0; otherwise

�
tij ¼ 1; if the edge that conn

0; otherwise

�
uij ¼ 1; if the edge that conn

0; otherwise

�
kp 2 Z = Maximum number of links
r 2 Z = Upper bound (threshold va
actually input variables. However, for better clarity, we
state tij as input variable in Table 1. The fact that both ends
of a link can be put into sleep mode implies that the link
can be put into sleep mode; i.e., tij 6 ti þ tj since having
ti ¼ tj ¼ 0 enforces that tij ¼ 0. Moreover, the fact that
any one end of a link cannot be put into sleep mode implies
that the link cannot be put into sleep mode; i.e., ti 6 tij and
tj 6 tij since having either ti ¼ 1 or tj ¼ 1 enforces that
tij ¼ 1. To summarize, the relationship between ti and tij

can be expressed as follows: ti 6 tij 6 ti þ tj and tj 6 tij.
Table 2 outlines the decision variables used by our inte-

ger linear programming formulation. The variable x̂ij equals
1 if either xij ¼ 1 or xji ¼ 1. Besides, x̂ij ¼ 0 if both xij ¼ 0
and xji ¼ 0. In other words, x̂ij ¼ 1 if the edge between node
i and j is used in either direction, whereas there is an impli-
cit directionality from i to j in variable xij. To put it in
another way, x̂ij ¼ x̂ji; however, it is not necessarily true
that xij ¼ xji. Similar situation holds for the decision vari-
ables x̂ijp; xijp and xjip.

Each link belonging to any of the overlay paths consume

energy that is equal to Wij
3; hence, total energy consump-

tion of the links that are part of the resulting overlay rout-

ing paths is equal to
PjV j

i¼1

PjV j
j¼iW

ij
3x̂ij. Besides, among the

links that are not part of any overlay path, the ones that
cannot be put into sleep mode have an additional energy

consumption, which is equal to
PjV j

i¼1

PjV j
j¼itijW

ij
3ð1� x̂ijÞ. A

similar situation exists for the nodes of the network: Each
node belonging to any of the overlay paths consume

energy that is equal to Wi
2; hence, total energy consump-

tion of the nodes that are part of the resulting overlay rout-

ing paths is equal to
PjV j

i¼1Wi
2ni. Likewise, among the nodes

that are not part of any overlay path, the ones that cannot
be put into sleep mode have an additional energy con-

sumption, which is equal to
PjV j

i¼1tiW
i
2ð1� niÞ.

As a result, the objective function of our integer linear
programming (ILP) formulation for JORRA is as follows:

min
XjV j
i¼1

XjV j
j¼i

Wij
3x̂ij þ

XjV j
i¼1

XjV j
j¼i

tijW
ij
3ð1� x̂ijÞ þ

XjV j
i¼1

Wi
2ni

þ
XjV j
i¼1

tiW
i
2ð1� niÞ

!
ð1Þ
is selected as a relay

node i

the link that connects node i and j

he edge that connects vertices i and j

put into sleep mode

ects vertices i and j cannot be put into sleep mode

ects vertices i and j is on an underlay path

that path p is allowed to share with other (overlay or underlay) paths
lue) for the total relay cost

Table 2
Table for decision variables.

Decision variable Explanation

xij ¼ 1; if the edge that connects vertices i and j is selected in the overlay routing paths
0; otherwise

�
x̂ij ¼ 1; if either xij ¼ 1 or xji ¼ 1

0; otherwise

�
xijp ¼ 1; if the overlay path of pair p goes from node i to j using the edge between them

0; otherwise

�
x̂ijp ¼ 1; if either xijp ¼ 1 or xjip ¼ 1

0; otherwise

�
ni ¼ 1; if node i is selected in the overlay routing paths

0; otherwise

�
yijp ¼ 1; if the overlay path of pair p shares the edge between node i and j with another overlay or underlay path

0; otherwise

�
sijp ¼ 1; if uij ¼ 1 or the overlay path of some pair p0 – p uses the edge between node i and j

0; otherwise

�
zi ¼ 1; if vertex i is selected as a relay node

0; otherwise

�
mip ¼ 1; if vertex i is not a source=destination node and is on the overlay path of pair p

0; otherwise

�
wip ¼ 1; if vertex i is on the overlay path of pair p and is selected as a relay node

0; otherwise

�

F. Ekici, D. Gözüpek / Computer Networks 79 (2015) 323–344 327
Resulting overlay links can only be among the links that
exist in the network. We can model this natural require-
ment with the following constraint:

xij 6 gij; 8i; j ð2Þ

The following constraints model the relationships
among the decision variables x̂ij; xij, and xji:

xij 6 x̂ij 6 xij þ xji; 8i; j ð3Þ
x̂ij P xji; 8i; j ð4Þ

A node is part of the overlay routing paths if any of its
incident edges is selected as part of the overlay paths.
Besides, if none of the incident edges of a node is selected,
then the node is not part of the overlay routing paths. This
relationship of the variables x̂ij with the variable ni can be
represented with the following set of constraints:

x̂ij 6 ni 6
XjV j
j¼1

x̂ij; 8i; j ð5Þ

Relationship between the variables xij and xijp also needs
to be modeled. If xij ¼ 0, then xijp variables have to be equal
to zero for all pairs p. In addition, if xijp ¼ 0 for all pairs p,
then xij has to be equal to zero. We model these require-
ments with the following constraints:

xijp 6 xij 6
XP

p¼1

xijp; 8i; j;p ð6Þ

For a particular pair p, the pertinent xijp variables need
to form a path from the source node sp to the destination
node dp of the pair p. The following constraints achieve this
goal:

XjV j
j¼1

xijp �
XjV j
j¼1

xjip ¼
1; if i ¼ sp

�1; if i ¼ dp

0; otherwise

8><
>: ð7Þ

Recall that the variable x̂ijp ¼ 1 if either xijp ¼ 1 or
xjip ¼ 1. Besides, x̂ijp ¼ 0 if both xijp ¼ 0 and xjip ¼ 0. In other
words, x̂ijp ¼ 1 if the edge between node i and j is used in
either direction, whereas there is an implicit directionality
from i to j in the variable xijp. To put it in another way,
x̂ijp ¼ x̂jip; however, it is not necessarily true that xijp ¼ xjip.
This relationship can be modeled by the following
constraints:

x̂ijp P xjip; 8i; j;p ð8Þ
xijp 6 x̂ijp 6 xijp þ xjip; 8i; j;p ð9Þ

The definition of the variable sijp states that sijp ¼ 1 if
uij ¼ 1. Moreover, sijp ¼ 1 if x̂ijp0 ¼ 1 for some p0 – p. In all
other cases, sijp ¼ 0; in other words, if all of uij and x̂ijp0 vari-
ables equal zero, then sijp ¼ 0. To put it in another way,
sijp ¼ 1 if the link between node i and node j is used by
some underlay path or another overlay path different from
path p. We can model these requirements by the following
constraints:

uij 6 sijp; 8i; j;p ð10Þ

x̂ijp0 6 sijp 6 uij þ
XjPj

p0¼1;p0–p

x̂ijp0 ; 8i; j;p – p0 ð11Þ

The definitions of the variables yijp; x̂ijp and sijp imply
that yijp ¼ x̂ijp � sijp. In other words, yijp ¼ 1 if the link
between node i and node j is used by the path connecting
pair p and it is shared with some underlay or another over-
lay path. We model this product of the decision variables
by the following constraints:
yijp 6 x̂ijp; 8i; j; p ð12Þ
x̂ijp þ sijp � 1 6 yijp 6 sijp; 8i; j;p ð13Þ

Maximum number of links that path p is allowed to
share with other overlay/underlay paths is kp. This require-
ment can be modeled with the following constraint:

XjV j
i¼1

XjV j
j¼i

yijp 6 kp; 8p ð14Þ

The definition of mip states that mip ¼ 1 if vertex i is on
the overlay path of pair p, and mip ¼ 0 otherwise. The fol-
lowing constraint achieves this condition:

328 F. Ekici, D. Gözüpek / Computer Networks 79 (2015) 323–344
x̂ijp 6 mip 6
XjV j
j¼1

x̂ijp; 8i; j;p ð15Þ

Note that a node that is not on any overlay path cannot
be selected as a relay node. This requirement can be mod-

eled as follows: zi 6
PjV j

j¼1x̂ij. Furthermore, note that the
definitions of the decision variables wip;mip and zi imply
that wip ¼ mip � zi. We can model all of these requirements
by the following set of constraints:

wip 6 zi 6
XjV j
j¼1

x̂ij; 8i;p ð16Þ

zi þmip � 1 6 wip 6 mip; 8i;p ð17Þ
The following constraint ensures that there is at least

one relay node on each overlay path so that the communi-
cation over each overlay path can be coordinated:

XjV j
i¼1;iRQ

wip P 1; 8p ð18Þ

Total cost of deploying relay nodes should not exceed a
predetermined value denoted by the input variable r. The
following constraint serves this purpose:

XjV j
i¼1;iRfs;djðs;dÞ2Qg

Wi
1zi 6 r ð19Þ

Finally, the constraint that all decision variables need to be
binary decision variables can be stated as follows:

xij; x̂ij; xijp; x̂ijp;ni; yijp; sijp; zi;mip;wip 2 f0;1g ð20Þ
4. Computational complexity

4.1. Preliminaries

Approximation algorithms: Let P be a minimization
problem and q P 1. A (feasible) solution s of an instance
I of P is a q-approximation if its objective function value
OPðsÞ is at least a factor q of the optimal objective function
value O�PðIÞ of I, i.e., OPðsÞ 6 qO�PðIÞ. An algorithm ALG is
said to be a q-approximation algorithm for a minimization
problem P if ALG returns a q-approximation for every
instance I of P supplied to it. A problem P is said to be
q-approximable if there is a polynomial-time q-approxima-
tion algorithm for it. P is said to be q-inapproximable if
there is no polynomial-time q-approximation algorithm
for it unless P ¼ NP. If there exists a constant q such that
there is a q-approximation algorithm for a problem P, then
P is said to be in APX. If there exists a constant q0 such that
P is q0-inapproximable, then P is said to be in APX-Hard. If
a problem is both in APX and APX-Hard, then the problem
is said to be APX-Complete.

Suppose that we have two optimization problems P and
P0 such that instances of one problem can be mapped onto
instances of the other in a way that nearly-optimal solu-
tions to instances of the latter problem can be transformed
back to yield nearly-optimal solutions to the former. This
way, if we have an approximation algorithm for problem
P0, and an efficient approximation-preserving reduction
from problem P to problem P0, by composition we obtain
an approximation for problem P. More formally, an approx-
imation ratio preserving (polynomial time) reduction from a
minimization problem P to a minimization problem P0 is
a pair of algorithms ðf ; gÞ such that (a) f transforms every
instance I of P to an instance I0 ¼ f ðIÞ of P0, and (b) g trans-
forms every q-approximation s0 of I0 ¼ f ðIÞ to a q-approxi-
mation gðs0Þ of I. We denote this fact by P �APX P0. P and
P0 are said to be equivalent under approximation preserv-
ing reductions if P �APX P0 and P0 �APX P. If P �APX P0, then
if there exists a q-approximation algorithm for P0, we can
then get a q-approximation algorithm for P. Likewise, if
P cannot have a q-approximation algorithm unless
P ¼ NP, then P0 is also q-inapproximable.

Steiner tree problem: Given an undirected graph
G ¼ ðV ; EÞ with nonnegative edge costs and whose vertices
are partitioned into two sets, required and Steiner, STEINER

TREE problem is to find a minimum cost tree in G that con-
tains all the required vertices and any subset of the Steiner
vertices [28].

Steiner forest/minimum point-to-point connection
problem: Given an undirected graph G ¼ ðV ; EÞ, a nonneg-
ative cost function on edges and a collection of disjoint
subsets of V referred to as a set of source and destination
pairs, i.e., Q ¼ fðs1; d1Þ; ðs2; d2Þ; . . . ; ðsp; dpÞ; . . . ; ðsP; dPÞg
where Q # V � V and P is the total number of source and
destination pairs, STEINER FOREST problem is to find a mini-
mum cost subgraph in which each pair of vertices belong-
ing to the same set ðsp; dpÞ is connected. We can restate the
problem in the following way: Define a connectivity
requirement function r that maps unordered pairs of verti-
ces to f0;1g as follows:

rðu;vÞ ¼
1; if u and v belong to the same set fsp; dpg;
0; otherwise

�
ð21Þ

STEINER FOREST problem is to find a minimum cost sub-
graph F that contains a u� v path for each pair ðu;vÞ with
rðu;vÞ ¼ 1. In general, the solution will be a forest. STEINER

FOREST problem appears in the literature also under the
name of MINIMUM POINT TO POINT CONNECTION problem [29].

Minimum cost edge-disjoint paths problem: Given an
undirected graph G ¼ ðV ; EÞ, a nonnegative cost function on
edges and Q as defined previously, MINIMUM COST EDGE DISJOINT

PATHS problem is to find a minimum cost subgraph in which
each pair of vertices belonging to the same set ðsp; dpÞ is con-
nected and the paths connecting the source and destination
pairs have no common edges. In other words, MINIMUM COST

EDGE DISJOINT PATHS problem is to find a Steiner forest with
the property that each path is mutually edge-disjoint.

4.2. Complexity of JORRA problem

Theorem 1. STEINER TREE �APX JORRA.
Proof. We can show that STEINER TREE problem is a special

case of JORRA problem as follows: Let Wi
2 ¼ ti ¼

uij ¼ 0 8i; j; i.e., energy consumption of the nodes equals
zero, all nodes can be put into sleep mode, and there are
no underlay paths. Furthermore, let kp ¼ r ¼ M 8p, where

F. Ekici, D. Gözüpek / Computer Networks 79 (2015) 323–344 329
M is a very large number. Moreover, let sp ¼ sp0 and
dp – dp0 8p; p0 2 f1;2; . . . ; Pg; i.e., a single node is the source
node for all pairs, whereas all destination nodes are distinct.
In this special case, second, third and fourth terms of the
objective function in (1) equal zero, constraints (10)–(14),
which are related to the sharing of edges among the overlay
paths, as well as constraints (15)–(19), which are related to
relay costs, are redundant and hence can be removed from
the formulation. This special case corresponds to the STEINER

TREE problem, where the vertices corresponding to the
source node and destination nodes are the required vertices
and all other vertices are Steiner vertices. h
Corollary 1. There exists a 1þ ðln 3Þ=2-approximation algo-
rithm for the special case of the JORRA problem, where

Wi
2 ¼ ti ¼ uij ¼ 0 8i; j; kp ¼ r ¼ M 8p, where M is a very large

number, and sp ¼ sp0 and dp – dp0 8p; p0 2 f1;2; . . . ; Pg.
Proof. This special case corresponds to the STEINER TREE

problem, for which there is a 1þ ðln 3Þ=2-approximation
algorithm [30]. h
Corollary 2. JORRA problem is NP-Hard in the strong sense

even when Wi
2 ¼ ti ¼ uij ¼ 0 8i; j; kp ¼ r ¼ M 8p, where M

is a very large number, the underlying network is a complete

graph with Wij
3 2 f1;2g 8i; j, and sp ¼ sp0 and dp – dp0 8p; p0

2 f1;2; . . . ; Pg.
Proof. The special case of STEINER TREE problem where the
underlying graph is complete and all edge weights are either
1 or 2 is referred to in the literature as STEINERð1;2Þ. Due to
Theorem 1 and the fact that STEINERð1;2Þ �APX

Steiner Tree;STEINERð1;2Þ �APX JORRA. Since STEINERð1;2Þ
is NP-Hard in the strong sense [31], Corollary 2 holds. h
Corollary 3. JORRA problem is APX-Hard even when

Wi
2 ¼ ti ¼ uij ¼ 0 8i; j; kp ¼ r ¼ M 8p, where M is a very large

number, the underlying network is a complete graph with

Wij
3 2 f1;2g 8i; j; sp ¼ sp0 , and dp – dp0 8p; p0 2 f1;2; . . . ; Pg.
Proof. As proved in Theorem 1 and Corollary 2, this special
case corresponds to the STEINERð1;2Þ problem, which is
APX-Hard [31]. h
Corollary 4. There exists a 1.28-approximation algorithm for
the special case of JORRA problem where

Wi
2 ¼ ti ¼ uij ¼ 0 8i; j; kp ¼ r ¼ M 8p, where M is a very large

number, the underlying network is a complete graph with

Wij
3 2 f1;2g 8i; j; sp ¼ sp0 , and dp – dp0 8p; p0 2 f1;2; . . . ; Pg.
Proof. This special case corresponds to the STEINERð1;2Þ
problem, for which there exists a 1.28-approximation algo-
rithm [31]. h
Corollary 5. The special case of the JORRA problem where

Wi
2 ¼ ti ¼ uij ¼ 0 8i; j; kp ¼ r ¼ M 8p, where M is a very large
number, the underlying network is a complete graph with

Wij
3 2 f1;2g 8i; j; sp ¼ sp0 , and dp – dp0 8p; p0 2 f1;2; . . . ; Pg

is APX-complete. h
Proof. This result follows from Corollaries 3 and 4, which
state that this special case is APX-Hard and in APX, respec-
tively. h
Theorem 2. STEINER FOREST �APX JORRA.
Proof. We can show that STEINER FOREST problem is a special

case of JORRA problem as follows: Let Wi
2 ¼ ti ¼

uij ¼ 0 8i; j; i.e., energy consumption of the nodes equals
zero, all nodes can be put into sleep mode, and there are
no underlay paths. Furthermore, let kp ¼ r ¼ M 8p, where
M is a very large number. This special case corresponds
to the STEINER FOREST problem, which also appears as MINIMUM

POINT TO POINT CONNECTION problem in the literature, and
hence Theorem 2 follows. h
Corollary 6. There exists a 2� ð1=PÞ-approximation algo-
rithm for the special case of the JORRA problem, where

Wi
2 ¼ ti ¼ uij ¼ 0 8i; j; kp ¼ r ¼ M 8p, where M is a very large

number.
Proof. As proved in Theorem 2, this special case corre-
sponds to the STEINER FOREST problem, for which there exists
a 2� ð1=PÞ-approximation algorithm [32]. h
Theorem 3. MINIMUM COST EDGE DISJOINT PATHS �APX JORRA.
Proof. We can show that MINIMUM COST EDGE DISJOINT PATHS

problem is a special case of JORRA problem as follows: Let

Wi
2 ¼ ti ¼ uij ¼ 0 8i; j; i.e., energy consumption of the nodes

equals zero, all nodes can be put into sleep mode, and there
are no underlay paths. Furthermore, let r ¼ M, where M is a
very large number, and kp ¼ 0 8p. In other words, overlay
paths are not allowed to share any edge with other overlay
paths; i.e., they need to be edge-disjoint. This special case
corresponds to the MINIMUM COST EDGE DISJOINT PATHS problem
and hence the theorem follows. h
Corollary 7. JORRA problem is NP-Hard even when

Wi
2 ¼ ti ¼ uij ¼ 0 8i; j; r ¼ M, where M is a very large num-

ber, kp ¼ 0 8p and P ¼ 2.
Proof. As a consequence of Theorem 3, this special case
corresponds to the MINIMUM COST EDGE DISJOINT PATHS problem
with two pairs, i.e. P ¼ 2. The work in [33] states that MINI-

MUM COST EDGE DISJOINT PATHS problem is NP-Hard even when
P ¼ 2; hence, the corollary follows. h
Corollary 8. JORRA problem is NP-Hard even when

Wi
2 ¼ ti ¼ uij ¼ 0 8i; j; r ¼ M, where M is a very large num-

ber, kp ¼ 0 8p and the underlying network is a grid graph.

330 F. Ekici, D. Gözüpek / Computer Networks 79 (2015) 323–344
Proof. As a consequence of Theorem 3, this special case
corresponds to the MINIMUM COST EDGE DISJOINT PATHS problem
in a grid graph. The work in [34] states that MINIMUM COST

EDGE DISJOINT PATHS problem is NP-Hard even when the
underlying graph is a grid graph; hence, the corollary
follows. h
5. Heuristic algorithms

Our analytical findings in Section 4 prove that JORRA is a
computationally very difficult problem. Therefore, design-
ing efficient heuristic algorithms for JORRA is vital. To this
end, we propose in this section two polynomial-time heu-
ristic algorithms for JORRA.

Both heuristics consist of three consecutive phases:
path selection, path correction and relay node selection.
In path selection phase, we construct overlay paths as an
initial temporary solution. In path correction phase, we
check these overlay paths, which were constructed in the
path selection phase, for (in)feasibility. If any of these over-
lay paths causes a constraint violation, we discard this path
and find an alternative path. In path correction phase, we
use Yen’s k-shortest path algorithm [35] to find alternative
paths. In relay node selection phase, we select relay nodes
among the nodes constituting the overlay paths.

5.1. MINIMUM COST OVERLAY PATH ALGORITHM (MCOPA)

MCOPA is a greedy algorithm where most of the work is
done in path correction phase. We first start by construct-
ing a forest where all source and destination pairs are con-
nected. Afterward, we choose the minimum energy paths,
i.e., paths that have minimum total energy consumption
of nodes and links for that particular source and destina-
tion pair, on the constructed forest as temporary overlay
paths; this way, an initial solution, which completes the
path selection phase, is obtained. This initial solution
already satisfies the constraints specified in (2)–(13) since
the selected temporary paths are on the input graph and
they ensure the connectivity of the source and destination
pairs. The remaining constraints (14)–(20) are not com-
pletely satisfied until the path correction and relay selec-
tion phases are finished.

After path selection, path correction is done on the tem-
porary overlay paths. Path correction is mainly associated
with constraint (14), which states that the maximum num-
ber of links that an overlay path p is allowed to share with
other overlay and underlay paths is kp. In order to satisfy
this constraint, we check if any of the overlay paths violate
this constraint and we detect the pairs causing the con-
straint violation. We correct the overlay paths of the violat-
ing pairs by finding alternative paths for those pairs by
using Yen’s k-shortest path algorithm [36].

After correcting all violations in overlay paths, MCOPA
continues with relay selection phase and ensures that total
relay cost does not exceed the given upper bound r. We
select relay nodes among the nodes belonging to overlay
paths and we do not select a node as a relay if that node
is a source or destination of an overlay path. We also
ensure that each source and destination pair has at least
one relay node on the overlay path that connects them.
Therefore, in relay selection phase we satisfy the con-
straints (15)–(20).

Algorithm 1 describes MCOPA, which takes as input the
following: G ¼ ðV ; EÞ, the set of source and destination pairs
Q ¼ fðs1; d1Þ; . . . ; ðsp; dpÞ; . . . ; ðsP; dPÞg, the set of underlay
paths U ¼ fu1; . . . ;up; . . . ;uPg, the set of upper limits for
edge sharing K ¼ fk1; . . . ; kp . . . ; kPg, the upper bound r for

total relay cost and cost matrices W1 ¼ ½Wi
1�;W2 ¼ ½Wi

2�
and W3 ¼ ½Wij

3�. Wi
1 indicates the relay cost and Wi

2 indi-

cates the energy consumption of the node i. Wij
3 gives the

energy consumption of the link between node i and node
j. The output parameters are the set of overlay paths U
and the set of relay nodes R. F indicates the forest where
all source and destination pairs are connected.

Algorithm 1. MINIMUM COST OVERLAY PATH ALGORITHM (MCOPA).
Require: G;Q ;U;K; r;W1;W2;W3

Ensure: U;R
1: U ;;R ;; F ;
2: ðU; FÞ PathSelectionMCOPA ðG;Q ;W2;W3Þ
. Described in Table 4

3: U PathCorrectionMCOPA ðU; F;K;UÞ
. Described in Table 5

4: if U ¼ ; then
5: return ð;; ;Þ
6: end if
7: R RelaySelectionMCOPA ðU;Q ;W1; rÞ
. Described in Table 6

8: return ðU;RÞ

In Line 2, path selection phase of MCOPA is executed.
Path selection phase takes the graph D and the set of
source and destination pairs Q as input. It constructs an ini-
tial solution by generating the set of initial overlay paths
U. It also returns a forest F, which is later used in the path
correction phase. The second phase is path correction,
which is executed by calling PathCorrectionMCOPAðU; F;KÞ
in Line 3. Path correction phase iteratively runs Yen’s k-
shortest path algorithm [35] for the pairs having constraint
violation. If path correction phase fails, it returns an empty
set. In this case, there is no need to continue with relay
selection; hence we terminate the algorithm immediately
in Line 5 and declare that no feasible solution is found.
After path correction, relay node selection phase is exe-
cuted in Line 7, which takes as input the set of corrected
overlay paths U and upper bound r for total relay cost. If
the relay selection phase cannot find a feasible solution,
it returns an empty set. Consequently, if MCOPA algorithm
returns an empty set for either U and/or R, it means the
algorithm cannot find a feasible solution in that case.
Detailed descriptions of the methods we use in Algorithm
1 are given as follows:

Undirected to directed graph conversion: We convert the
undirected input graph G to a directed and edge weighted
graph since Dijkstra’s shortest path algorithm used in the
path selection phase and Yen’s k-shortest path algorithm

F. Ekici, D. Gözüpek / Computer Networks 79 (2015) 323–344 331
do not handle the input graphs having both node weights
and link weights. Therefore, we need an algorithm to con-
vert an undirected graph with link and node weights to an
equivalent directed graph having only link weights. Table 3
gives the outline of this conversion algorithm. In Line 2, U
is the set of vertices for the directed graph. In other words,
U is a copy of V, the vertex set of the original input graph.
The set of edges L is initially empty. In Lines 6 and 7, for
each undirected edge, two directed edges are created.
Weight of a directed edge is the summation of the weight
of the original edge and the weight of the source node of
the directed edge. This calculation basically provides a
new weight function for edges so that a suitable input is
prepared for Dijkstra’s algorithm, which assumes no
weights on the vertices and uses the edge weights only.
The function returns the directed graph in Line 11.

Path selection phase for MCOPA: Path selection phase for
MCOPA creates an initial solution for the main algorithm
MCOPA to begin with. Details of this phase are given in
Table 4. It takes G0 ¼ ðV 0; E0Þ and the set of source and des-
tination pairs (Q) as input. It also takes node and link
energy consumption matrices (W2 and W3) as input. The
first step is to construct the minimum spanning forest of
the input graph with respect to W2 and W3 in Line 3.
Therefore, when we calculate the minimum spanning for-
est, we prune the graph G by selecting the links and nodes
having lower energy consumption. After calculating MSF in
Line 3, next step is to obtain an edge weighted digraph D
Table 3
Graph conversion algorithm.

1: function GRAPHCONVERSION ðG0 ¼ ðV 0; E0Þ;W2;W3gÞ
2: U V 0; L ;
3: for all e 2 E0 do
4: i source node of e
5: j destination node of e

6: d1 directed edge from i to j with weight ðWij
3 þWi

2Þ
7: d2 directed edge from j to i with weight ðWij

3 þW j
2Þ

8: L L [fd1; d2g
9: end for

10: D ðU; LÞ
11: return D
12: end function

Table 4
Path selection phase for MCOPA.

1: function: PATHSELECTIONMCOPA
ðG0 ¼ ðV 0; E0Þ;Q ¼ fðsp; dpÞjp ¼ 1; . . . ; Pg;W2;W3Þ

2: U ;; F ;
3: Construct the minimum spanning forest MSF on G0 by using

Prim’s algorithm wrt W2 and W3.
4: D GraphConversionðMSF;W2;W3Þ
5: for all ðsp ;dpÞ 2 Q do
6: p Minimum energy path for ðsp; dpÞ on D using Dijkstra’s

algorithm
7: U U [fpg
8: Mark all edges of p as unremovable on MSF
9: end for

10: F MSF n fe 2 MSF j e is not markedg
11: H F [fe 2 E j e does not have sleep modeg
12: return ðU;GraphConversionðH;W2;W3ÞÞ
13: end function
from MSF which is undirected. Line 4 performs this task
using the algorithm in Table 3. The reason for this conver-
sion is to provide a graph in the right form for Dijkstra’s
shortest path algorithm. After conversion to a directed
graph, we detect the minimum energy paths for each
source and destination pair ðsp; dpÞ and construct the set
of overlay paths in Lines 6 and 7. Afterward, we construct
the graph H in Lines 10 and 11 as follows: We first remove
all edges and nodes except the ones on the minimum
energy paths from MSF and obtain the Steiner Forest F in
Line 10. We then add all edges and nodes of G0 that cannot
be put into sleep mode to F since these edges cause energy
consumption in any case and hence they have to be part of
the overlay graph when we calculate the total energy con-
sumption. This way, we construct a graph H where all
source and destination pairs are connected with minimum
energy consumption paths. Note that H is not necessarily a
forest since adding extra edges in Line 11 might cause
some loops in graph H. H contains all the links and nodes
that cannot be put into sleep mode. Moreover, H does
not contain any link or node having sleep mode unless it
resides on a minimum energy path connecting some
source and destination pair. At the end of the phase, we
return the directed version of H since the next step of MCO-
PA requires a directed graph where Yen’s k-shortest path
algorithm is used if necessary.

Path correction phase for MCOPA: Path correction phase
(Table 5) initially checks if any of the overlay paths causes
the violation of constraint (14). If there is no such path, the
function terminates and we continue with relay selection.
Otherwise, we find alternative paths for the paths causing
constraint violations. Path correction phase takes as input
the set of initial overlay paths U, which were already
determined in the path selection phase. Other parameters
are as follows: Graph G0, in which we search for alternative
paths, K, which is the set of kp values for each source and
destination pair and U, which is the set of underlay paths.
Lines 3–6 identify the paths that violate constraint (14). At
the end of Line 6, the set X consists of paths that violate
constraint (14). Our idea here is to replace these paths with
other possible paths such that the total number of paths
that violate constraint (14) decreases. To this end, we cal-
culate alternative paths for the constraint violating paths
by using Yen’s k-shortest path algorithm [36], which finds
k shortest paths between a given source and destination
where the first path is the shortest one, the second path
is the second shortest one, etc. In lines 10–20 we first cal-
culate j shortest paths for path p in terms of energy con-
sumption and we then select the minimum energy path
among them such that the size of X is decreased. Note that
X is the set of paths having constraint violation. The for
loop in Line 12 processes the paths in the list of k-shortest
paths for the path p. In Line 13 we change the path p that
has constraint violation with the alternative path p. Chang-
ing the overlay path p might affect all other overlay paths
in terms of constraint violations since the number of
shared links might have been changed. Therefore, in the
for loop starting from Line 14, we recalculate the number
of violations for each overlay path and construct the set
X0, which is the new set of paths having constraint

Table 5
Path correction phase for MCOPA.

1: function PATHCORRECTIONMCOPA ðU ¼ fpiji ¼ 1; . . . ; Pg; G0 ¼ ðV 0; E0Þ; K ¼ fkpjp ¼ 1; . . . ; Pg; U ¼ fup jp ¼ 1; . . . ; PgÞ
2: X ; . X is the set of paths that violate constraint (14).
3: for all p 2 U do
4: s Number of links that p shares with the other paths in U and U
5: if s > kp then X X [fpg
6: end for
7: j djE0 j=jV 0 je � P
8: while jXj > 0 do
9: for all p 2 X do . A is the list of the k-shortest paths in terms of energy consumption

10: A fqijqi ¼ ith minimum energy path for ðsp; dpÞ; i ¼ f1; . . . ;jg
11: bestAlternative p
12: for all p 2 A do . A is sorted in ascending order wrt. path length.
13: X0 ;;p p
14: for all t 2 U do
15: s Number of links that t shares with the other paths in U and U
16: if s > kt then X0 X0 [ftg
17: end for
18: if jX0 j < jXj then bestAlternative p;X X0 , break
19: end for
20: p bestAlternative
21: end for
22: if jXj has not been changed for j iterations then break
23: end while
24: if jXj > 0 then return ;
25: return U
26: end function

332 F. Ekici, D. Gözüpek / Computer Networks 79 (2015) 323–344
violations. In Line 18, we compare the size of X0 with the
previous set containing paths that have violations. If the
number of paths having constraint violation is smaller,
we choose p as the best alternative for the path p and then
we proceed with the next overlay path with constraint
violation.

j is the k value given as an input to Yen’s k-shortest
path algorithm. It is crucial to choose an appropriate k
value so that the k-shortest path algorithm finds enough
number of alternative paths. Intuitively, a constant value
for k might not be suitable for all input graphs. As the size
of the input graph increases, k should increase as well. On
the other hand, a larger graph might not necessarily imply
that there are many alternative paths between source and
destination nodes if the graph is sparse. Density of the
input graph is a more determinative factor on k rather than
the number of edges. In a dense graph, it is more likely to
find many alternative paths. Therefore, we take the graph
density into consideration while choosing the value for k.
We have experimentally seen that k values that are propor-
tional to the average degree of G, which is also an indicator
of graph density, incur more feasible solutions. The average
degree of a graph G shows how many edges are in set E
compared to the number of vertices in set V. Because each
edge is incident to two vertices and is counted while calcu-
lating the degree of both vertices, the average degree of an
undirected graph is 2� jEj=jV j. Therefore, we choose j pro-
portional to 2� jEj=jV j. Another factor that we should take
into account while choosing k is the number of source and
destination pairs P. When there is a high number of source
and destination pairs, it is more likely for an overlay path
to have shared links causing constraint violation. In this
case, we need more alternative paths to correct constraint
violations. Because of these reasons, we set j to
djEj=jV je � P, which is used as the k value for Yen’s k-short-
est path algorithm.

We also use j for the termination condition of the while
loop in Line 8. If the size of X does not change for j itera-
tions, i.e. we cannot make any further improvements on
the overlay paths having violation, we terminate the algo-
rithm in Line 22. At the end of the phase, if we succeed to
correct all paths having violation, we return the new set of
overlay paths; otherwise, we return an empty set meaning
that we could not find a feasible solution.

Relay selection phase for MCOPA: After determining over-
lay paths, the next step is to choose relay nodes. Each
source destination pair should have at least one relay node
that coordinates the communication among them along
the overlay path. Relay node selection phase, which we
outline in Table 6, is a simple greedy heuristic that selects
relay nodes among nodes residing on overlay paths. In Line
3 we detect all nodes residing on an overlay path and col-
lect them in the set �. Afterward, we exclude the nodes
that are either source or destination node from � (Line
4). For all nodes on overlay paths, we define a metric,
which we call relay metric, to be used in determining
whether the node will be selected as relay or not (Line
6). Relay metric is denoted as rg for node g, which is as
follows:

rg ¼
Wg

1

jp 2 Ujp 3 gj ð22Þ

where p 3 g refers to a path p that contains node g. Hence,
jp 2 Ujp 3 gj refers to the number of overlay paths that
contain node g. Recall that Wg

1 refers to the cost associated
with selecting node g as a relay node. Our rationale for
using Eq. (22) is the following: As the relay cost Wg

1 of a

Table 6
Relay selection phase for MCOPA.

1: function RELAYSELECTIONMCOPA
ðU ¼ fpiji ¼ 1; . . . ; Pg;Q ¼ fðsp; dpÞjp ¼ 1; . . . ; Pg; rÞ

2: R ; . R is the set of relay nodes, initially empty.
3: � fg 2 pjp 2 Ug . � is the set of nodes on overlay paths.
4: � � n fs;djðs;dÞ 2 Qg
5: for all g 2 � do
6: rg ðWg

1=jfp 2 Ujp 3 ggjÞ
7: end for
8: W ; . W is the set of overlay paths having at least one

relay node.
9: while jWj < jUj do

10: t arg min
x2�

frxg

11: R R [ftg
12: � � n ftg
13: W W [fp 2 Ujp 3 tg
14: if jWj ¼¼ jUj then break
15: for allg 2 � . Recalculate relay metric for all nodes on the

overlay graph.
16: rg ðWg

1=jfp 2 Ujp R W and p 3 ggjÞ
17: end for
18: end while
19: if

P
t2Rrt > r then return ;

20: return R
21: end function

Table 7
Path selection phase for MCOPA—LOA.

1: function PATHSELECTIONMCOPALOA

F. Ekici, D. Gözüpek / Computer Networks 79 (2015) 323–344 333
node g increases, its chances of being selected as a relay
node decreases. In addition, as the number of overlay paths
that contain the node increases, its chances of being
selected as a relay node increases. Since the goal is to find
a set of relay nodes with as little total cost as possible such
that each overlay path has at least one relay vertex, a node
with a higher relay cost might be a better candidate to be a
relay node than the node with a lower relay cost if it
resides on many overlay paths. We choose the node with
the minimum relay metric rg (Line 10) and repeat relay
metric calculation in each iteration. We repeat this process
until all source and destination pairs have a relay node. At
the end of each iteration, we recalculate in line 16 the relay
metric for nodes that have not yet been selected as a relay
node. We make this recalculation because in each iteration
the number of pairs that a node can connect changes and
this number might decrease or stay the same. This change
affects the relay metric of nodes. Therefore, we update the
relay metric of all nodes and make the relay selection over
the updated values.
ðG0 ¼ ðV 0; E0Þ;Q ¼ fðsp; dpÞjp ¼ 1; . . . ; Pg;U ¼ fup jp ¼ 1; . . . ; PgÞ
2: U ;
3: for all up 2 U do
4: Set the energy cost of links on up to HIGH-COST on G0

5: end for
6: while jQ j > 0 do
7: W ; . W is the set of minimum energy paths on G0 for

all pairs in Q
8: for all ðsi; diÞ 2 Q do
9: p minimum energy path for ðsi; diÞ on G0

10: W W [fpg
11: end for
12: p arg minp2WðPLðpÞÞ . PLðpÞ is the length of path p
13: U U [fpg
14: Set the energy cost of links on p to HIGH-COST on G0

15: Q Q n fðsp; dpÞg
16: end while
17: return U
18: end function
5.2. Minimum Cost Overlay Path Algorithm with Link Overlap
Avoidance (MCOPA—LOA)

In our experimental analysis (see Section 6), we have
seen that MCOPA does not perform well in terms of finding
feasible solutions on sparse graphs. Therefore, it is neces-
sary to design another algorithm that produces more feasi-
ble solutions. To this end, we propose ðMCOPA—LOAÞ,
which is another greedy algorithm and an improved ver-
sion of MCOPA. We outline ðMCOPA—LOAÞ in Algorithm 2.
Unlike MCOPA;MCOPA—LOA does not create a feasible for-
est in path selection phase (Line 3). Instead, it selects initial
overlay paths in a way that avoids using any link that is
already being used by an underlay path or overlay path.
The algorithm does not completely forbid any link sharing
but it discourages it by setting the energy cost of the
already used links to a high value.

The algorithm has nearly the same steps of MCOPA except
that the path selection phase (Line 3) does not create a fea-
sible forest connecting all source and destination pairs.
Another difference is that we convert the input graph to a
directed graph at the very beginning and instead of the fea-
sible forest, we give the full input graph D to the path correc-
tion phase (Line 3). In Line 6, the algorithm terminates if the
path correction step is unsuccessful. Otherwise, it continues
with relay node selection step (Line 8). Finally, it returns the
set of overlay paths U and the set of relay nodes R.

Algorithm 2. MCOPA—LOA

Require: G;Q ;U;K; r;W1;W2;W3

Ensure: U;R
1: U ;;R ;
2: D GraphConversion ðG;W2;W3Þ
3: U PathSelectionMCOPALOA ðD;Q ;UÞ
4: U PathCorrectionMCOPA ðU;D;K;UÞ
5: if U ¼ ; then
6: return ð;; ;Þ
7: end if
8: R RelaySelectionMCOPAðU;Q ;W1; rÞ
9: returnðU;RÞ

Since path correction and relay node selection phases
are the same as the ones used in MCOPA, we only give
the details of path selection phase in Table 7.

– Path selection phase for MCOPA—LOA: Path selection
phase of MCOPA—LOA is different from the one used in
MCOPA in two aspects: First, MCOPA—LOA avoids the
usage of a link by more than one path. Second, unlike
MCOPA;MCOPA—LOA does not eliminate from the solu-
tion the network elements that have sleep mode and
that are not on a minimum energy path between some
source and destination pair.
First of all, we set the energy cost of all links on under-

334 F. Ekici, D. Gözüpek / Computer Networks 79 (2015) 323–344
lay paths to a high cost so that we obstruct overlay
paths to share any links with underlay paths (Line 4).
Afterward, we start determining initial overlay paths
for source and destination pairs until all pairs have an
overlay path (Line 6). In Lines 9 and 10, we calculate
the minimum energy paths for each ðsp; dpÞ pair in Q.
Each path in the set of minimum energy paths is a can-
didate overlay path. Afterward, among these minimum
energy paths in W, we take the path p with the shortest
path length in terms of hop count and set this path as a
definite overlay path for the corresponding source and
destination pair ðsp; dpÞ (Lines 12, 13). Since path p is
selected to be a definite overlay path, we should aim
to make the sharing of this path’s links with other over-
lay paths as small as possible. For this purpose, in Line
14 we set the energy cost of all links on path p to a high
cost value. Moreover, we remove ðsp; dpÞ from Q since
this pair has an overlay path and should not be consid-
ered in the next iterations. The function returns the set
of initial overlay paths U as an output.

– Path correction phase for MCOPA—LOA: Path correction
phase is the same as the one used in MCOPA. Details
can be found in Table 5. The only difference is that in
MCOPA we give a forest as input parameter, whereas
in MCOPA—LOA we give the whole graph D as input. This
property of MCOPA—LOA might cause it to find more
alternative paths and hence increases the possibility
of correcting an overlay path with violated con-
straint(s). On the other hand, using the whole graph in
this phase causes the total energy cost to be higher
since there is no elimination of the network elements
with sleep mode.

– Relay selection phase for MCOPA—LOA: Relay node selec-
tion is the third and final step in MCOPA—LOA. If relay
node selection returns an empty set, it means the algo-
rithm has failed to find a feasible solution. Relay node
selection phase is the same as the one used in MCOPA.
Details can be found in Table 6.

5.3. Time complexity analysis of our proposed heuristics

5.3.1. Best case analysis
The best case for both MCOPA and MCOPA—LOA is the

situation where the path selection phase creates overlay
paths having no constraint violation. In this case, we would
not need to execute the path correction phase and we
would directly proceed to the relay selection. As for the
relay selection, the best case occurs when we select a node
as a relay node and this node already connects all source
and destination pairs. Since only the path selection phase
is specific to each heuristic, let us first determine the best
case time complexity of the path selection phases. For the
sake of simplicity, we assume that number of vertices is V,
number of edges is E and number of pairs is P.

– Path selection phase for MCOPA: The basic operations
that are done in this phase are the calculation of the
minimum spanning forest on the input graph, conver-
sion of the input graph to a digraph and running Dijk-
stra’s algorithm for each source and destination pair.
Other operations take constant time; hence, they can
be ignored. We use Prim’s algorithm for MSF calculation
with a priority queue. Complexity of this calculation is
HðE log VÞ since we use a priority queue. Graph conver-
sion algorithm in Table 3 basically consists of a single
for loop where each iteration performs construction of
two edges and adding these edges to the newly con-
structed graph. Since the for loop contains E iterations,
the complexity of graph conversion algorithm is HðEÞ.
Running the shortest path algorithm has HðE log VÞ
complexity since we use Dijkstra’s algorithm with pri-
ority queue. Overall, the best case complexity of the
path selection phase is HðE log VÞ þHðEÞ þ PHðE log VÞ,
which reduces to HðPE log VÞ.

– Path selection phase for MCOPA—LOA: Path selection
phase of MCOPA—LOA mainly consists of a main while
loop, which processes the list of the source and destina-
tion pairs Q. Size of the list Q decreases exactly by one in
each iteration. Single iteration of this while loop means
running the shortest path algorithm for P times. There-
fore, the best case complexity of this phase is as follows:
XP

i¼1

iHðE log VÞ ¼ PðP � 1Þ
2

HðE log VÞ

¼ HðP2E log VÞ ð23Þ
– Path correction phase: The best case complexity of path

correction phase for both heuristics is Hð1Þ because in
the best case, overlay paths resulting from the path
selection phase would cause no constraint violations.
Therefore, complexity of the path correction phase has
no impact on the best case complexity of MCOPA and
MCOPA—LOA.

– Relay node selection phase: The best case of this phase
occurs when a single relay node is enough for all source
and destination pairs. It means that the while loop in
Line 9 of the relay selection phase in Table 6 executes
just once. The first step is the calculation of the relay
metric for the nodes that reside on the overlay paths.
This step, i.e. the for loop in Line 6, has HðVÞ complex-
ity. Afterward, in the while loop we search for the node
having the minimum relay metric, which also has HðVÞ
complexity. Since the while loop executes once in the
best case, the overall complexity of the relay selection
function phase is HðVÞ.

The best case time complexity of two heuristics is the
summation of the complexity of three phases, namely path
selection, path correction and relay selection. For MCOPA
the best case complexity is HðPE log VÞ þHð1Þ þHðVÞ,
which reduces to HðPE log VÞ, whereas for MCOPA—LOA

the best case complexity is HðP2E log VÞ þHð1Þ þHðVÞ,
which reduces to HðP2E log VÞ.

5.3.2. Worst case analysis
Worst case scenario for our heuristics occurs when all

overlay paths obtained in the path selection phase have
at least one violated constraint. In this case, we need to
find another path for each pair in the path correction
phase. Moreover, we should also consider the worst case
of the relay node selection phase, which occurs when each
source and destination pair has a distinct relay node that is

F. Ekici, D. Gözüpek / Computer Networks 79 (2015) 323–344 335
not shared with any other pair. In the following, we deter-
mine the worst case complexity of the three phases of our
heuristic algorithms.

– Path selection phase for MCOPA: Recall that path selec-
tion operation is executed for all source and destination
pairs. Therefore, path selection phase entails an inevita-
ble computational work, which is the same for both
worst case and best case scenarios. To this end, the
worst case complexity of the path selection phase for
MCOPA is HðPE log VÞ.

– Path selection phase for MCOPA—LOA: Like MCOPA, path
selection phase of MCOPA—LOA has the same worst case
complexity in its best case since it executes the same
operation for each source and destination pair. There-
fore, the worst case complexity of this phase for
MCOPA—LOA is HðP2E log VÞ.

– Path correction phase: Path correction phase is the same
for both heuristics. In the worst case, all source and des-
tination pairs would have at least one constraint viola-
tion requiring the path correction phase to run for each
overlay path between source and destination pairs. For
each pair, we need to run Yen’s k-shortest path algo-
rithm and select the best alternative path among k-
shortest paths and thereby reducing the number of
pairs having constraint violation. Since we try all paths
one by one in the for loop in line 12 of Table 5, in the
worst case the for loop does not terminate until we
get to the last path in the list A. Therefore, the path
assignment and recalculation of the number of shared
edges in the for loop in Line 12 executes j times. More-
over, in Line 14 recalculation of the number of shared
edges has HðPÞ complexity. Hence, if we denote the
complexity of Yen’s k-shortest path algorithm by CkSPA,
the worst case complexity of the outer for loop starting
from Line 9 is PðCkSPA þ jHðPÞÞ. The while loop in Line 8
terminates when the size of the paths with violations
reduces to zero. Moreover, if the size of this list does
not change for j iterations we terminate the while loop.
The worst case of this while loop occurs when the size
of the list reduces just by one and this reduction occurs
once in ðj� 1Þ iterations since j iterations without any
change would cause the loop to terminate. Therefore,
we need to multiply PðCkSPA þ jHðPÞÞ with ðj� 1ÞP,
which results in P2jðCkSPA þ jHðPÞÞ.
The worst case complexity of Yen’s k-shortest path
algorithm is CkSPA ¼ HðjVðEþ V log VÞÞ [36]. When we
plug in j ¼ dE=Ve � P and CkSPA ¼ HðjVðEþ V log VÞÞ,
the worst case complexity of path correction phase
becomes:
P2jðHðjVðEþ V log VÞÞ þHðjPÞÞ

¼ P3ðE=VÞðHðEPðEþ V log VÞÞ þHððE=VÞP2ÞÞ

¼ HðE2P4ððEþ V log VÞ=VÞÞ þHððE2P5Þ=V2Þ

¼ HðE2P4ðE=V þ log V þ P=V2ÞÞ

– Relay node selection phase: The worst case of this
phase occurs when each source and destination pair
has its own distinct relay node and it does not share
the relay node with any other pair. In other words, in
the worst case, the while loop in Line 9 of the relay
selection phase (see Table 2) executes P times. The
first step of this phase is the calculation of the relay
metric for the nodes that reside on the overlay paths.
This step, i.e. the for loop in lines 5–7, has HðVÞ com-
plexity. Because in each iteration we recalculate the
relay metric in Line 16 for all nodes on the overlay
graph, the while loop in line 9 has HðVÞ complexity
for each iteration. Since we have P iterations of the
while loop, in the worst case, complexity of the
while loop becomes HðPVÞ. Therefore, the overall
worst case complexity is HðPVÞ.

The worst case complexity of MCOPA is
HðPE log VÞ þHðE2P4ðE=V þ log V þ P=V2ÞÞ þHðPVÞ, which
reduces to HðE2P4ðE=V þ log V þ P=V2ÞÞ. For MCOPA—LOA,
the worst case complexity is HðP2E log VÞ þHðE2P4ðE=Vþ
log V þ P=V2ÞÞ þHðPVÞ, where the middle term dominates
and the complexity becomes the same as in MCOPA. There-
fore, we conclude that both heuristics have
HðE2P4ðE=V þ log V þ P=V2ÞÞ worst case complexity. Fur-
thermore, for dense graphs where E ¼ HðV2Þ, the worst
case complexity becomes HðP4V5 þ P5V2Þ for both
heuristics.
6. Numerical evaluation

In this section, the main objective of experiments is to
comparatively evaluate the performance of
MCOPA;MCOPA—LOA and CPLEX solutions under various
parameter settings. In particular, we compare average
energy consumption values and number of feasible out-
puts of two heuristics and CPLEX output. We implemented
both heuristics in Java. ILP formulation in (1)–(20) is also
implemented in Java with CPLEX Java library. As the prob-
lem size gets larger, CPLEX running times become too high
and we have to change epgap parameter to a higher value.
Default value of epgap is 0.0001 and it can take any value
between 0.0 and 1.0. We set this parameter to 0.05 in
our experiments.

In order to evaluate the performance of heuristics and
compare them with the CPLEX output, it is required to gen-
erate input graphs and energy consumption values that are
similar to the real life situation. We first generate input
graphs and afterward, we set the link and node energy con-
sumption values on input graphs.
6.1. Input graph generation

In our experiments, we basically make use of two topol-
ogy generators. The first one is a random generator that
implements Waxman’s topology model [37,38]. The sec-
ond topology generator we use is INET topology generator
[39], which reflects the characteristics of the Internet more
closely than the Waxman generator [27]. Moreover, INET
provides an AS-level Internet topology, whereas Waxman
provides a router level topology.

Waxman topologies have a pre-determined number N
of nodes, which are uniformly distributed over an n� n

Table 8
Power consumption of chassis and port types used in our experiments.

Configuration Type 1 (in W) Type 2 (in W)

Powerchassis 146 288
Power10Mbps port 0.12 0.42
Power100Mbps port 0.18 0.48
Power1Gbps port 0.87 0.9

336 F. Ekici, D. Gözüpek / Computer Networks 79 (2015) 323–344
grid, which implies that there are N ¼ n2 nodes and the
domain size is n� n. The probability of the existence of a
link depends on parameters a and b, where a higher a indi-
cates a higher number of links (a denser output graph) and
a higher b indicates that the density of long links is higher
than the density of the short links. In our experiments with
Waxman model, we take b ¼ 0:2 and a varying between
0.1 and 1.0. We change a to obtain dense or sparse graphs
and observe the impact of graph density on the perfor-
mance of our heuristic algorithms.

INET topologies are similar to the AS-level topology of
the Internet. They take as input the number of nodes,
which should not be less than 3037. This number repre-
sents the number of ASs on the Internet in November
1997. Another important parameter for INET is the fraction
of degree-one nodes, which slightly affects the density of
the graph.

After generating the graph structure, the second step is
to determine the link and node energy consumption val-
ues. Total energy consumption of the network consists of
the energy consumption of the nodes and links. In order
to assign realistic energy consumption values to links and
nodes, we adopt the power benchmarking model pre-
sented in [40]. We consider a system consisting of network
switches, some of which can be put into sleep mode. More-
over, the links between switches are Ethernet cables and as
in [41], they can be put into sleep mode if both ends of the
link can be put into sleep mode.

Energy consumption caused by cables can be ignored
since cables are not active network elements; physically
removing the cables from network has little effect on total
energy consumption [42]. Therefore, we ignore the impact
of cables in terms of energy consumption. On the other
hand, while disconnecting the cable, if the associated net-
work ports are also put into sleep mode, total energy con-
sumption might decrease. Hence, we assume that the
energy cost of a link is associated with the network ports
where the link is connected. In summary, the energy con-
sumption of a link is simply the sum of the energy con-
sumptions of the associated network ports.

As mentioned by [43,40], total power consumption of a
switch depends on the power consumption of the chassis,
linecards and active ports on the linecards. Depending on
the type of the switch, ports on the linecards of the switch
can be put into sleep mode. A switch might have several
linecards which can be put into sleep mode individually.
However, for the sake of simplicity, we assume in our sim-
ulations that individual linecards cannot be put into sleep
mode. For this reason, for a switch that is powered on, we
add the power consumption of all linecards to the chassis
power consumption of the switch. The work in [43] makes
the same assumption for both Rack switches and Tier 2
switches; i.e. they include the cost of all linecards while
computing the power consumption of the switch. In other
words, in our simulations, a linecard is put into sleep mode
only if the switch is completely put into sleep mode. We
use a simplified version of the switch configuration
described in [43]. We assume that there are two types of
switches. Type 1 switch has one linecard with 48 ports
and 146 W of chassis power consumption including the
consumption of the linecard. Type 2 switch has six line-
cards, each having 24 ports and 39 W of power consump-
tion. We include the cost of linecards to the cost of the
chassis of Type 2 switch, which is 54 W. Hence, the chassis
power consumption of Type 2 switch becomes 288 W. In
our simulations, if a node has 48 or less incident links,
we set the node as Type 1. Otherwise, we set the node as
Type 2 and assign energy consumption values accordingly.
As in [43], we assume that the linespeed of a port can be
10 Mbps, 100 Mbps or 1 Gbps. When we generate the input
graphs, these three possible values for the linespeeds of the
ports are equally likely. Power consumption values of the
ports having the same linespeed are different for Type 1
and Type 2 switches. Typically, ports of Type 2 switches
have higher power consumption. Detailed description of
power consumption values can be seen in Table 8.

Energy consumption of a link is associated with the
power consumption of the ports at the ends of the links.
Therefore, the energy consumption of a 10 Mbps link is
0.24 W and 0.84 W, if both ends are Type 1 and Type 2,
respectively. Likewise, energy consumption of a 10 Mbps
link with one end Type 1 and the other end Type 2 is
0.54 W. When a link is put into sleep mode, we assume
that both ports are put into sleep mode. If all ports of a
switch are in sleep mode, the switch is also in sleep mode.
If a switch does not have a sleep mode, none of its ports
can be put into sleep mode. Recall that our problem formu-
lation takes these facts into consideration.

6.2. Simulation results

In all experiments, we consider the case where the relay
cost of each node is equal to each other; i.e., all relay costs
are equal to one. Since there is one relay node for each
communication pair, r, which is the upper bound (thresh-
old value) for the total relay cost, equals P, which is the
total number of communication pairs in our experiments.
Moreover, we set the underlay path for each communica-
tion pair as the path with minimum number of hops.

In our first set of experiments, we execute our heuristic
algorithms and the CPLEX implementations of our ILP for-
mulation with 100 randomly generated input graphs that
are based on the Waxman topology. We then compara-
tively evaluate their performance in terms of average
energy consumption and number of feasible solutions.
We evaluate the impact of the following parameters: a;g,
probability of having sleep mode, number of pairs, and
domain size.

To begin with, the parameter a, which takes values in
the range ð0;1�, is the link density parameter that linearly
affects the probability of the existence of a link between
two arbitrary nodes in Waxman topology. Therefore, a

F. Ekici, D. Gözüpek / Computer Networks 79 (2015) 323–344 337
higher a implies an input graph with higher density. In
order to evaluate the impact of kp, we define the parameter
g ¼ kp=LengthðupÞ, where up is the underlay path for pair p.
g takes values in the range ½0;1� and represents the propor-
tion of links on an overlay path that are allowed to be
shared with underlay paths and other overlay paths. This
way, it basically helps us to determine the upper limit kp

value for a pair p. While giving a kp value as an input to
the algorithms, it is more realistic that kp takes a value pro-
portional to the length of the underlay path of the pair p
rather than being constant for all pairs. The relationship
between g and kp is as follows: kp ¼ g� LengthðupÞ, where
up is the underlay path for pair p. Probability of having a
sleep mode is a value in the ½0;1� range and related only
to the nodes. If a node has a sleep mode, it can be put into
sleep mode if none of its ports are currently used; i.e., all of
its ports are inactive. Number of pairs is a parameter that
might make it difficult to find a feasible solution. It might
also cause the average energy consumption to increase.
Table 9 shows the details of the experimental setup related
to Waxman topology generator. In our experiments, in
order to test the effect of a parameter, as the parameter
under consideration takes values in the range specified in
Table 9, we set the other parameters to their middle values.
This way, we make sure that only the parameter under
consideration has an effect on test results. The middle val-
ues for a;g, and probability of sleep mode are 0.5, while
Table 9
Parameter values used in experiments with Waxman topology.

Parameter Value range

a f0:1;0:2; . . . ;1:0g
g f0:1;0:2; . . . ;1:0g
Probability of sleep

mode
f0:1;0:2; . . . ;1:0g

Number of pairs f10;20;30; . . . ;90;100g
Domain size f10� 10;20� 20;30� 30;40� 40;50� 50g

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4
x 104

α

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
(W

at
ts

)

MCOPA
MCOPA−LOA
CPLEX

(a)Average energy consumption with varying α

Fig. 1. Comparison of MCOPA, MCOPA–LOA and CPLEX
the middle values for the number of pairs and domain size
are 50 and 25, respectively. For example, when we test the
effect of a, we set g and probability of sleep mode to 0.5
and run the tests with 50 pairs on a graph that is produced
by Waxman generator on a 25 by 25 domain size. The same
logic applies when we test other parameters.

We illustrate in Fig. 1 the results of the experiments
that are related to the first parameter in Table 9. Recall that
a is a parameter that directly affects the density of the
input graph; hence, a higher a might help the algorithms
to find more feasible solutions. We define the overlay
graph as the 2-tuple consisting of the set of links on over-
lay paths and the set of nodes on overlay paths. Nodes and
links that cannot be put into sleep mode are also included
in these sets since they contribute to the energy consump-
tion irrespective of whether they are on the overlay paths.
In fact, the energy consumption of the overlay graph that
we just defined corresponds to the objective function in
our ILP formulation. We compare in Fig. 1a the perfor-
mance of our heuristics and CPLEX in terms of the average
energy consumption of the resulting overlay graph. As
expected, the average energy consumption becomes lower
as a gets closer to 1.0. Since a higher a value causes a den-
ser input graph, it becomes easier to find a shorter alterna-
tive path, leading to more feasible solutions on the average.
This situation causes the total energy consumption of the
overlay graph to decrease. The energy consumption does
not decrease any more after a ¼ 0:7. The reason for this
behavior is as follows: the input graph becomes dense
enough after a ¼ 0:5; hence, adding excessive links does
not change the length or the total energy consumption of
the overlay paths. On the other hand, Fig. 1b shows the
comparison of our heuristics and CPLEX solutions in terms
of the number of feasible solutions. As expected, CPLEX
always gives the highest number of feasible solutions.
Besides, MCOPA—LOA always finds more feasible solutions
than MCOPA until a ¼ 0:7. Starting from a ¼ 0:7, two
heuristics find the same number of feasible solutions.
Therefore, MCOPA—LOA has closer performance to CPLEX
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

α

N
um

be
r o

f F
ea

si
bl

e
So

lu
tio

ns

MCOPA
MCOPA−LOA
CPLEX

(b) Number of feasible solutions with varying α

outputs for varying a with Waxman topology.

338 F. Ekici, D. Gözüpek / Computer Networks 79 (2015) 323–344
compared to MCOPA in terms of satisfying the ILP
constraints.

We investigate in Fig. 2 the effect of g. As we mentioned
before, g determines the kp value for a pair p. A lower value
of g means that the overlay paths have less overlapping
edges with the underlay and other overlay paths. As g
increases, there is a nearly quadratic decrease in the aver-
age energy consumption. This decrease is more apparent
on the curve belonging to CPLEX output. This result can
be explained as follows: As g increases, kp values also
increase, allowing more shared links between overlay
and underlay paths. Therefore, the produced overlay paths
are shorter; hence, the energy consumption of the overlay
graph is smaller. As for the number of feasible solutions,
MCOPA—LOA always finds more feasible solutions than
MCOPA, which can be seen in Fig. 2b. Also in Fig. 2b, as g
gets higher, the number of feasible solutions increases.
Because higher g values lead to higher kp values, higher
number of shared edges does not create constraint viola-
tions. Therefore, the number of feasible solutions found
by heuristics and CPLEX increases.

The ratio of nodes that can be put into sleep mode is
also an important parameter that has impact on the aver-
age energy consumption of the resulting overlay graphs.
We investigate in Fig. 3a the average energy consumption
resulting from two heuristics and CPLEX solutions. We see
that having more nodes that have sleep mode causes a lin-
ear decrease on the average energy consumption. This
behavior is expected since a higher ratio of nodes having
sleep mode means saving energy from more nodes and
links that are not being used. In Fig. 3a, MCOPA and
MCOPA—LOA give akin average energy consumption; how-
ever, the average energy consumption of MCOPA is slightly
lower than MCOPA—LOA. The reason for this difference is
that MCOPA—LOA prunes in path selection phase the nodes
having sleep mode, whereas MCOPA—LOA does not
prune these nodes and construct paths by selecting nodes
regardless of their capability of being put in sleep mode.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4
x 104

η

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
(W

at
ts

)

MCOPA
MCOPA−LOA
CPLEX

(a) Average energy consumption with varying η

Fig. 2. Comparison of MCOPA, MCOPA–LOA and CPLEX ou
Fig. 3b shows the number of feasible solutions with vary-
ing probability of sleep mode. This figure shows us that
the ratio of nodes having sleep mode does not have much
impact on the number of feasible solutions found by CPLEX
and MCOPA—LOA. However, MCOPA has a decreasing trend
in terms of the number of feasible solutions. Since MCOPA
prunes the nodes having sleep mode, it becomes more dif-
ficult to find alternative paths for an overlay path having
constraint violation. This behavior causes less feasible
solutions for MCOPA.

We show in Fig. 4a and b the impact of varying the
number of pairs while the graph size and density stay con-
stant. Number of pairs has a nearly linear effect on heuris-
tics and CPLEX results in terms of average energy
consumption. However, the gap between MCOPA and
MCOPA—LOA increases as the number of pairs becomes
higher. For lower values, we see that MCOPA—LOA results
in less energy consumption than MCOPA. Both algorithms
perform close to CPLEX solutions in terms of average
energy consumption. Fig. 4b shows the performance in
terms of the number of feasible solutions. MCOPA—LOA
mostly leads to higher number of feasible solutions. Never-
theless, as the number of pairs increases, the number of
feasible solutions produced by both heuristics become very
close to each other. This behavior is caused by the difficulty
of finding disjoint overlay paths for higher number of
source and destination pairs.

Fig. 5 displays the effect of the domain size while all
other parameters stay constant. The domain size for Wax-
man topology is related to the size of the input graph.
Fig. 5a shows that the average energy consumption
increases quadratically as the domain size increases. As
the network gets larger, the hop count of the paths
between the source and destination pairs also gets larger.
Therefore, the average energy consumption increases.
Furthermore, as the number of nodes in the network gets
larger, the number of nodes that cannot be put into sleep
mode also gets larger. Hence, this increase also contributes
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

η

N
um

be
r o

f F
ea

si
bl

e
So

lu
tio

ns

MCOPA
MCOPA−LOA
CPLEX

(b) Number of feasible solutions with varying η

tputs for varying g values with Waxman topology.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6
x 104

Probability of A Node to Have Sleep Mode

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
(W

at
ts

)

MCOPA
MCOPA−LOA
CPLEX

(a)Average energy consumption with
varying sleep mode probability

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

Probability of A Node to Have Sleep Mode

N
um

be
r o

f F
ea

si
bl

e
So

lu
tio

ns

MCOPA
MCOPA−LOA
CPLEX

(b)Number of feasible solutions with
varying sleep mode probability

Fig. 3. Comparison of MCOPA, MCOPA–LOA and CPLEX outputs for varying sleep mode probability with Waxman topology.

0 10 20 30 40 50 60 70 80 90 100 110
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

x 104

Number of Pairs

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
(W

at
ts

)

MCOPA
MCOPA−LOA
CPLEX

(a) Average energy consumption with
 varying number of pairs

0 10 20 30 40 50 60 70 80 90 100 110
0

10

20

30

40

50

60

70

80

90

100

Number of Pairs

N
um

be
r o

f F
ea

si
bl

e
So

lu
tio

ns

MCOPA
MCOPA−LOA
CPLEX

(b) Number of feasible solutions with
 varying number of pairs

Fig. 4. Comparison of MCOPA, MCOPA–LOA and CPLEX outputs for varying number of pairs with Waxman topology.

F. Ekici, D. Gözüpek / Computer Networks 79 (2015) 323–344 339
to the increase in the average energy consumption. Again,
MCOPA—LOA has better performance than MCOPA in terms
of finding feasible solutions.

In the second set of experiments, we evaluate the per-
formance of our heuristics on the input graphs that are
generated by INET topology generator. We again run our
experiments on 100 randomly generated input graphs.
Note that the most basic difference between INET and
Waxman generators is that Waxman generates router level
topologies while INET generates AS-level topologies. Fur-
thermore, while it is possible to produce dense graphs with
Waxman, INET generates proportionally sparse graphs
with nearly 2N links for N nodes given by the user. While
generating graphs with INET, we give the number of nodes,
the fraction of degree one nodes and the seed number as
input. We choose the fraction of degree one nodes to be
0.1 because we aim not to generate very sparse graphs
since observing the actual performance of our heuristics
would be extremely difficult in such a situation. As in Wax-
man experiments, we compare the average energy con-
sumption and number of feasible solutions of our
heuristic algorithms and CPLEX solutions. We evaluate
the impact of the following parameters: g, probability of
having sleep mode, number of pairs, and number of nodes.
Note that the only parameter that is different from the
ones in Waxman experiments is the number of nodes in
the input graph. INET enables user control on the number
of nodes while in Waxman we cannot give this parameter
as an input; i.e., we cannot predetermine the number of
nodes in Waxman generator. Table 10 shows the details

5 10 15 20 25 30 35 40 45 50 55

0.5

1

1.5

2

2.5

x 105

n for nxn domain size

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
(W

at
ts

)

MCOPA
MCOPA−LOA
CPLEX

(a) Average energy consumption with
 varying domain size

5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

60

70

80

90

100

n for nxn domain size

N
um

be
r o

f F
ea

si
bl

e
So

lu
tio

ns

MCOPA
MCOPA−LOA
CPLEX

(b) Number of feasible solutions with
 varying domain size

Fig. 5. Comparison of MCOPA, MCOPA–LOA and CPLEX outputs for varying graph domain size with Waxman topology.

Table 10
Parameter values used in experiments with INET topology generator.

Parameter Value range

g f0:1;0:2; . . . ;1:0g
Probability of sleep mode f0:1;0:2; . . . ;1:0g
Number of pairs f50;60;70; . . . ;130;140g
Number of nodes f3037;3500;4000; . . . ;6000g

340 F. Ekici, D. Gözüpek / Computer Networks 79 (2015) 323–344
of the experimental setup related to the INET topology
generator.

Fig. 6 displays the effect of g when we run heuristics
and CPLEX on INET generated graphs with 4500 nodes
and 100 pairs. We see in Fig. 6a and b that changing g
has the same effect as in Waxman experiments. When g
increases, we have more tolerance for overlapping edges
and hence, an overlay path does not need to prefer a longer
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

9
x 104

η

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
(W

at
ts

)

MCOPA
MCOPA−LOA
CPLEX

(a)Average energy consumption with varying η

Fig. 6. Comparison of MCOPA, MCOPA–LOA and CPLEX outp
path to avoid sharing links with other paths. This situation
enables the overlay paths to be shorter and explains the
decrease in the average energy consumption in Fig. 6a. Fur-
thermore, there is an important difference between INET
results and Waxman results. In Waxman experiments with
varying g, we have obtained feasible solutions after g is 0.1,
while in INET experiments we start to obtain feasible solu-
tions after g is 0.3. This behavior can be explained by the
sparsity of INET generated graphs. Moreover, Inet’s hierar-
chical tree structure causes the number of shared edges to
be higher compared to Waxman topology. When the num-
ber of shares edges is higher, neither of the algorithms can
find feasible solutions in case of lower g values.

Fig. 7 displays the impact of the probability of having
sleep mode on the performance of our heuristics and
CPLEX solutions. Fig. 7a shows that the average energy
consumption decreases as the probability of sleep mode
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

η

N
um

be
r o

f F
ea

si
bl

e
So

lu
tio

ns

MCOPA
MCOPA−LOA
CPLEX

(b) Number of feasible solutions with varying η

uts for varying g values with Inet topology generator.

F. Ekici, D. Gözüpek / Computer Networks 79 (2015) 323–344 341
increases because higher number of nodes can save from
power by means of the sleep state. Fig. 7B displays the
number of feasible solutions with varying sleep mode
probability. This probability does not have a significant
impact except that it causes a decrease in MCOPA starting
from 0.3. The reason for this behavior is the pruning of
the nodes having sleep mode at the beginning steps of
MCOPA.

Fig. 8 shows the impact of increasing number of com-
munication pairs on INET generated networks. We vary
the number of pairs between 50 and 140. Fig. 8a shows
that average energy consumption linearly increases when
the number of pairs increases. The gap between MCOPA
and MCOPA—LOA increases as the number of pairs
increases because MCOPA—LOA aims to find paths as
disjoint as possible and this behavior increases the path
0 0.2 0.4 0.6 0.8 1
2

4

6

8

10

12

14
x 104

Ratio Of Sleep Mode

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
(W

at
ts

)

MCOPA
MCOPA−LOA
CPLEX

(a) Average energy consumption with
varying sleep mode probability

Fig. 7. Comparison of MCOPA, MCOPA–LOA and CPLEX outputs for

40 50 60 70 80 90 100 110 120 130 140 150

7.8

8

8.2

8.4

8.6

8.8

9

9.2

9.4
x 104

Number of Pairs

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
(W

at
ts

)

MCOPA
MCOPA−LOA
CPLEX

(a) Average energy consumption with
 varying number of pairs

Fig. 8. Comparison of MCOPA, MCOPA–LOA and CPLEX out
lengths and average energy consumption. Fig. 8a shows
the number of feasible solutions with varying number of
pairs. In general, MCOPA—LOA gives higher number of fea-
sible solutions than MCOPA. However, the gap between
two heuristics decreases with higher number of pairs
because finding disjoint paths becomes more difficult as
the number of pairs increases.

Unlike Waxman, the number of nodes is under user’s
control in INET topology generator. Fig. 9 displays the
impact of increasing number of nodes while all other
parameters are constant. Recall that INET topology genera-
tor runs when the number of nodes is greater than or equal
to 3037. Starting from 3037, we increase the number of
nodes until 6000. Fig. 9a shows that average energy con-
sumption increases linearly as the number of nodes
increases. The reason is the following: INET places the
0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

Ratio Of Sleep Mode

N
um

be
r o

f F
ea

si
bl

e
So

lu
tio

ns

MCOPA
MCOPA−LOA
CPLEX

(b) Number of feasible solutions with
varying sleep mode probability

varying sleep mode probability with Inet topology generator.

40 50 60 70 80 90 100 110 120 130 140 150
0

10

20

30

40

50

60

70

80

90

100

Number Of Pairs

N
um

be
r o

f F
ea

si
bl

e
So

lu
tio

ns

MCOPA
MCOPA−LOA
CPLEX

(b) Number of feasible solutions with
 varying number of pairs

puts for varying number of pairs with Inet topology.

3000 3500 4000 4500 5000 5500 6000

4

5

6

7

8

9

10

11

12

13

x 104

Number of Nodes

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
(W

at
ts

)

MCOPA
MCOPA−LOA
CPLEX

(a) Average energy consumption with
 varying number of nodes

3000 3500 4000 4500 5000 5500 6000
0

10

20

30

40

50

60

70

80

90

100

Number Of Nodes

N
um

be
r o

f F
ea

si
bl

e
So

lu
tio

ns

MCOPA
MCOPA−LOA
CPLEX

(b) Number of feasible solutions with
 varying number of nodes

Fig. 9. Comparison of MCOPA, MCOPA–LOA and CPLEX outputs for varying number of nodes with Inet topology.

342 F. Ekici, D. Gözüpek / Computer Networks 79 (2015) 323–344
nodes on a 10,000 by 10,000 plane, which has the default
size. When the number of nodes increases, network den-
sity does not change as long as the fraction of degree one
nodes does not change. Instead, the trees in the tree struc-
ture of the INET generated network enlarge and this situa-
tion increases the probability of source and destination
nodes to be further away from each other. This behavior
causes the paths to become longer, which explains the lin-
ear increase in the average energy consumption. There is a
fast increase in the number of feasible solutions until some
point where it gets slower. The initial fast increase is due to
the fact that as the number of nodes increases, the number
of shared links tends to get lower. However, after some
point the rate of increase decreases. Here, again the reason
is that adding extra nodes to the graph using INET does not
make the graph denser; it only enlarges the tree structure
of the graph. The hierarchical tree structure of INET topol-
ogy is responsible for this behavior. The performance gap
between heuristics gets smaller with higher number of
nodes because the number of pairs is constant and as the
number of nodes increases, the number of shared links
tends to get lower. Therefore, heuristics perform better
and more closely.

To sum up, MCOPA—LOA performs in general better than
MCOPA in terms of finding feasible solutions. However, the
same observation is not true when we compare them in
terms of average energy consumption; in some cases,
MCOPA gives lower energy consumption than
MCOPA� LOA. For instance when the input graph is sparse,
the number of pairs is very high or g is very high, i.e., kp

values are high, MCOPA yields lower average energy con-
sumption than MCOPA—LOA. Throughout our experiments
we have seen that both heuristics perform very close to
CPLEX in terms of average energy consumption. We have
also observed that MCOPA—LOA yields more feasible solu-
tions than MCOPA. Furthermore, both heuristics have low
computational complexity, which makes them suitable
for finding energy efficient overlay paths. Note also that
the centralized nature of our proposed heuristic algorithms
is in line with the recently emerging software defined net-
working paradigm [44], where data and control plane are
separated such that decisions such as routing can be made
in a logically centralized manner.
7. Conclusion

Overlay routing is an important concept for wired net-
works since it provides a more reliable routing mechanism.
It supports and maintains the connection between source
and destination pairs by finding alternative paths and relay
nodes for each pair. Energy efficiency of the overlay net-
work is as crucial as the energy efficiency of the underlying
routing scheme. To the best of our knowledge, this study is
the first in the literature that considers both energy effi-
ciency and relay node selection on overlay networks.

In this study, we have investigated overlay routing on
wired networks in terms of energy efficiency and relay
selection. We have formulated an optimization problem
called JORRA (Joint Overlay Routing and Relay Assignment)
as an integer linear program, where the goal is to minimize
the energy consumption. We have implemented our pro-
posed formulation by using the optimization software
CPLEX. Moreover, we have proved that JORRA is APX-Hard
in addition to being NP-Hard in the strong sense even in
its special cases. For this reason, we have designed two
computationally efficient heuristic algorithms, namely
MCOPA and MCOPA—LOA. MCOPA—LOA is an improved ver-
sion of MCOPA and has a higher computational complexity.
We have made experiments by using Internet like network
topologies and demonstrated that our proposed algorithms
provide very close performance to the CPLEX solutions.
Furthermore, we have observed that MCOPA—LOA finds
more feasible solutions than MCOPA.

F. Ekici, D. Gözüpek / Computer Networks 79 (2015) 323–344 343
As a future work, we plan to add extra constraints to our
integer linear programming formulation such as ensuring
that each link has a specific upper limit for the number
of overlay paths that can use it or each link has a capacity
and the total traffic demand of source and destination pairs
using a particular link should not exceed its capacity. This
way, heterogeneity in the reliability aspects of different
links can be addressed. We also plan to propose a distrib-
uted algorithm for a distributed environment where a cen-
tralized server having all information about energy
consumption values and underlay paths does not exist. In
such a scenario, we plan to consider the case where there
are some specialized servers in the network having local
information as well as the situation with an entirely dis-
tributed environment where each node possesses informa-
tion about its neighboring nodes.

References

[1] S. Ricciardi, F. Palmieri, U. Fiore, D. Careglio, G. Santos-Boada, J. Solé-
Pareta, An energy-aware dynamic RWA framework for next-
generation wavelength-routed networks, Comput. Networks 56
(10) (2012) 2420–2442.

[2] G. Fettweis, E. Zimmermann, ICT energy consumption-trends and
challenges, in: International Symposium on Wireless Personal
Multimedia Communications, 2008.

[3] M. Gupta, S. Singh, Greening of the internet, in: ACM SIGCOMM,
2003, pp. 19–26.

[4] W. Fisher, M. Suchara, J. Rexford, Greening backbone networks:
reducing energy consumption by shutting off cables in bundled
links, in: ACM SIGCOMM Workshop on Green Networking, 2010, pp.
29–34.

[5] M. Cha, S. Moon, C. Park, A. Shaikh, Placing relay nodes for intra-
domain path diversity, in: IEEE International Conference on
Computer Communications (INFOCOM), vol. 1, 2006, pp. 1–12.

[6] M. Kodialam, T. Lakshman, S. Sengupta, Efficient and robust routing
of highly variable traffic, in: Workshop on Hot Topics in Networks
(HotNets-III), 2004.

[7] R. Cohen, D. Raz, Cost effective resource allocation of overlay routing
relay nodes, in: IEEE International Conference on Computer
Communications (INFOCOM), 2011, pp. 3236–3244.

[8] K. Christensen, B. Nordman, Reducing the energy consumption of
networked devices, IEEE 802.3 Tutorial.

[9] E. Goma, M. Canini, A. Lopez Toledo, N. Laoutaris, D. Kostić, P.
Rodriguez, R. Stanojević, P. Yagüe Valentin, Insomnia in the access:
or how to curb access network related energy consumption, in: ACM
SIGCOMM, 2011, pp. 338–349.

[10] L. Chiaraviglio, M. Mellia, F. Neri, Reducing power consumption in
backbone networks, in: IEEE International Conference on
Communications (ICC), 2009, pp. 1–6.

[11] A. Bianzino, C. Chaudet, F. Larroca, D. Rossi, J. Rougier, Energy-aware
routing: a reality check, in: IEEE GLOBECOM Workshops, 2010, pp.
1422–1427.

[12] F. Giroire, D. Mazauric, J. Moulierac, B. Onfroy, Minimizing routing
energy consumption: from theoretical to practical results, in: IEEE
International Conference on Green Computing and Communications
(GreenCom), 2010, pp. 252–259.

[13] L. Chiaraviglio, I. Matta, Greencoop: cooperative green routing with
energy-efficient servers, in: International Conference on Energy-
Efficient Computing and Networking, 2010, pp. 191–194.

[14] N. Maxemchuk, Dispersity routing, in: IEEE International Conference
on Communications (ICC), vol. 75, 1975, pp. 41–10.

[15] S. Savage, A. Collins, E. Hoffman, J. Snell, T. Anderson, The end-to-end
effects of internet path selection, in: ACM SIGCOMM Computer
Communication Review, vol. 29, 1999, pp. 289–299.

[16] N. Feamster, D.G. Andersen, H. Balakrishnan, M.F. Kaashoek,
Measuring the effects of internet path faults on reactive routing,
in: ACM SIGMETRICS Performance Evaluation Review, vol. 31, 2003,
pp. 126–137.

[17] S. Patek, R. Venkateswaran, J. Liebeherr, Enhancing aggregate QoS
through alternate routing, in: IEEE Global Telecommunications
Conference (GLOBECOM), vol. 1, 2000, pp. 611–615.
[18] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell, A. Collins,
E. Hoffman, J. Snell, A. Vahdat, G. Voelker, et al., Detour: informed
internet routing and transport, IEEE Micro 19 (1) (1999)
50–59.

[19] L. Subramanian, I. Stoica, H. Balakrishnan, R. Katz, OverQoS: offering
internet QoS using overlays, vol. 33, 2003, pp. 11–16.

[20] A.P. Bianzino, C. Chaudet, D. Rossi, J.-L. Rougier, A survey of green
networking research, IEEE Commun. Surv. Tutorials 14 (1) (2012)
3–20.

[21] S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, D.
Wetherall, Reducing network energy consumption via sleeping
and rate adaptation, in: USENIX Symposium on Networked
System Design and Implementation (NSDI), vol. 8, 2008, pp.
323–336.

[22] A.P. Bianzino, C. Chaudet, S. Moretti, J.-L. Rougier, L. Chiaraviglio, E.
Le Rouzic, Enabling sleep mode in backbone IP-networks: a
criticality-driven tradeoff, in: EEE International Conference on
Communications (ICC), 2012, pp. 5946–5950.

[23] A.P. Bianzino, L. Chiaraviglio, M. Mellia, J.-L. Rougier, Grida: green
distributed algorithm for energy-efficient IP backbone networks,
Comput. Networks 56 (14) (2012) 3219–3232.

[24] H. Matsuura, Energy-saving routing algorithm using Steiner tree, in:
2013 IFIP/IEEE International Symposium on Integrated Network
Management (IM 2013), 2013, pp. 378–386.

[25] B. Addis, A. Capone, G. Carello, L. Gianoli, B. Sanso, Energy
management through optimized routing and device powering for
greener communication networks, vol. PP, 2013, pp. 1–1.

[26] R.G. Garroppo, S. Giordano, G. Nencioni, M.G. Scutella, Mixed integer
non-linear programming models for green network design, Comput.
Oper. Res. 40 (1) (2013) 273–281.

[27] S. Roy, H. Pucha, Z. Zhang, Y. Hu, L. Qiu, On the placement of
infrastructure overlay nodes, IEEE/ACM Trans. Network. 17 (4)
(2009) 1298–1311.

[28] V.V. Vazirani, Approximation Algorithms, Springer, 2001.
[29] C.-L. Li, S.T. McCormick, D. Simchi-Levi, The point-to-point delivery

and connection problems: complexity and algorithms, Discr. Appl.
Math. 36 (3) (1992) 267–292.

[30] G. Robins, A. Zelikovsky, Improved Steiner tree approximation in
graphs, in: ACM-SIAM Symposium on Discrete Algorithms, 2000, pp.
770–779.

[31] M. Bern, P. Plassmann, The Steiner problem with edge lengths 1 and
2, Inform. Process. Lett. 32 (4) (1989) 171–176.

[32] M.X. Goemans, D.P. Williamson, A general approximation technique
for constrained forest problems, SIAM J. Comput. 24 (2) (1995) 296–
317.

[33] S. Even, A. Itai, A. Shamir, On the complexity of time table and multi-
commodity flow problems, in: IEEE Annual Symposium on
Foundations of Computer Science, 1975, pp. 184–193.

[34] M. Kramer, J. van Leeuwen, The complexity of wire-routing and
finding minimum area layouts for arbitrary vlsi circuits, Adv.
Comput. Res. 2 (1984) 129–146.

[35] J.Y. Yen, Finding the k shortest loopless paths in a network, Manage.
Sci., Theory Ser. 17 (1971) 712–716.

[36] E. Martins, M. Pascoal, A new implementation of Yen’s ranking
loopless paths algorithm, Quart. J. Belg., Fr. Ital. Oper. Res. Soc. 1 (2)
(2003) 121–133.

[37] I. Kaj, R. Gaigalas, Waxman Random Network Topology Generator.
<http://www2.math.uu.se/research/telecom/software/stgraphs.
html>.

[38] B. Waxman, Routing of multipoint connections, IEEE J. Sel. Areas
Commun. 6 (9) (1988) 1617–1622.

[39] C. Jin, Q. Chen, S. Jamin, Inet: Internet Topology Generator. <http://
topology.eecs.umich.edu/inet>.

[40] P. Mahadevan, P. Sharma, S. Banerjee, P. Ranganathan, A power
benchmarking framework for network devices, in: Proceedings of
the 8th International IFIP-TC 6 Networking Conference,
NETWORKING ’09, Springer-Verlag, Berlin, Heidelberg, 2009, pp.
795–808.

[41] S. Ricciardi, D. Careglio, U. Fiore, F. Palmieri, G. Santos-Boada, J. Solé-
Pareta, Analyzing local strategies for energy-efficient networking, in:
Proceedings of the IFIP TC 6th International Conference on
Networking, NETWORKING’11, 2011, pp. 291–300.

[42] R. Sohan, A. Rice, A.W. Moore, K. Mansley, Characterizing 10 Gbps
network interface energy consumption, in: IEEE Conference on Local
Computer Networks (LCN), 2010, pp. 268–271.

[43] P. Mahadevan, P. Sharma, S. Banerjee, P. Ranganathan, Energy
aware network operations, in: Proceedings of the 28th IEEE
International Conference on Computer Communications

http://refhub.elsevier.com/S1389-1286(15)00008-0/h0005
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0005
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0005
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0005
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0090
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0090
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0090
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0090
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0100
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0100
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0100
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0115
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0115
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0115
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0130
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0130
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0130
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0135
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0135
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0135
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0140
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0140
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0145
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0145
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0145
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0155
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0155
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0160
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0160
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0160
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0170
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0170
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0170
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0175
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0175
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0180
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0180
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0180
http://www2.math.uu.se/research/telecom/software/stgraphs.html
http://www2.math.uu.se/research/telecom/software/stgraphs.html
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0190
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0190
http://topology.eecs.umich.edu/inet
http://topology.eecs.umich.edu/inet
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0200
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0200
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0200
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0200
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0200
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0200
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0215
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0215
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0215

344 F. Ekici, D. Gözüpek / Computer Networks 79 (2015) 323–344
Workshops, INFOCOM’09, IEEE Press, Piscataway, NJ, USA, pp.
25–30.

[44] F. de Oliveira Silva, J.H. de Souza Pereira, P.F. Rosa, S.T. Kofuji,
Enabling future internet architecture research and experimentation
by using software defined networking, in: IEEE European Workshop
on Software Defined Networking (EWSDN), 2012, pp. 73–78.

Fatma Ekici received the B.S. degree (honors)
and M.S. degree in computer engineering
from Bogazici University, Istanbul, Turkey, in
2009 and 2014, respectively. She worked as a
software engineer in Nortel Netas from 2009
to 2011. Since 2011, she is a researcher in the
Sensor and Radar Division of the Scientific and
Technological Research Council of Turkey
(TUBITAK). Her main research interests are
wireless networks, optimization, graph the-
ory, multi-radar target tracking and data
fusion.
Didem Gözüpek received the B.S. degree
(high honors) in telecommunications engi-
neering from Sabanci University, Istanbul,
Turkey, in 2004, the M.S. degree in electrical
engineering from the New Jersey Institute of
Technology (NJIT), Newark, NJ, USA, in 2005,
and the Ph.D. degree in computer engineering
from Bogazici University, Istanbul, Turkey, in
2012. She is an Assistant Professor with the
Computer Engineering Department, Gebze
Technical University, Kocaeli, Turkey. From
2005 to 2008, she worked as an R&D Engineer

in a telecommunications company in Istanbul. Her main research inter-
ests are scheduling and resource allocation in communication networks,
algorithmic graph theory, and approximation algorithms. Dr. Gözüpek

received the CAREER Award from the Scientific and Technological
Research Council of Turkey (TUBITAK) in 2014, the Dr. Serhat Özyar
Young Scientist of the Year Honorary Award in 2013, and the Bogazici
University Ph.D. Thesis Award in 2012. She was a finalist for the Google
Anita Borg Memorial Scholarship in 2009.

http://refhub.elsevier.com/S1389-1286(15)00008-0/h0215
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0215
http://refhub.elsevier.com/S1389-1286(15)00008-0/h0215

	Joint overlay routing and relay assignment for green networks
	1 Introduction
	2 Related work and summary of contributions
	2.1 Related work
	2.2 Summary of contributions

	3 Problem formulation
	4 Computational complexity
	4.1 Preliminaries
	4.2 Complexity of JORRA problem

	5 Heuristic algorithms
	5.1 Minimum Cost Overlay Path Algorithm (MCOPA)
	5.2 Minimum Cost Overlay Path Algorithm with Link Overlap Avoidance (?)
	5.3 Time complexity analysis of our proposed heuristics
	5.3.1 Best case analysis
	5.3.2 Worst case analysis

	6 Numerical evaluation
	6.1 Input graph generation
	6.2 Simulation results

	7 Conclusion
	References

