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In an edge colored graph, traversal cost occurs at a vertex along a path when consec-
utive edges with different colors are traversed. We focus in this paper on two problems
which aim to find a proper edge-coloring of a graph (together with some other con-
straints) so that the total traversal cost is minimized. We present hardness results as
well as polynomial-time solvable special cases.
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1 Introduction

The cost incurred while traversing a vertex via two consecutive edges of different colors is called
traversal cost. This cost appeared in the literature under the names of reload cost and changeover
cost. The value of the traversal cost depends on the colors of the incident traversed edges. The
concept of traversal cost first appeared in [9] under the name of reload cost. Although this concept
has numerous applications, it has hitherto received little attention. Some network optimization
problems related to this concept have been studied in the literature. Some examples are the minimum
reload cost diameter problem [9, 1], the minimum reload cost cycle cover problem [3], the minimum
changeover cost arborescence problem [2, 6], as well as numerous path, tour and flow problems [4].
All of these problems focus on edge-colored graphs, where the coloring is given as input to the
problem.

In this paper, we take a different approach and focus on proper edge coloring of a given graph
such that the total traversal cost is minimized. To the best of our knowledge, this paper is the first
study about edge coloring under the the traversal cost concept. The problems we study have im-
portant applications in telecommunications. Recently, cognitive radio networks (CRN) have gained
increasing attention in the communication networks research community. Unlike other wireless tech-
nologies, CRNs are envisioned to operate in a wide range of frequencies. Therefore, switching from
one frequency band to another frequency band in a CRN has a significant cost in terms of delay
and power consumption [5]. The problems we study in this paper have important applications in
cognitive radio networks such as optimally allocating frequencies to wireless links so that the total
energy consumption or switching delay is minimized.

2 Preliminaries

Given an undirected graph G = (V(G), E(G)), we consider edge colorings x : E(G) — X of G where
the colors are taken from a set X and edges incident to the same vertex are assigned different colors.
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Without loss of generality we assume X = {1,2,...,|X]|}. Since, by Vizing theorem, every graph
is A(G) + 1 edge colorable, we also assume that |X| > A(G) + 1 so that G is colorable with colors
from X.

We follow the notation of [9] where the concept of reload cost was defined, however with a different
naming. We use the term traversal cost instead of reload cost for reasons that will be apparent later.
The traversal costs are given by a nonnegative function tc : X2 — R* U {0} satisfying
i) te(i, j) = te(g,4) for every 4, j € X, and
ii) te(i,i) =0 for every i € X.

Let P = (e1,e2,...,e/) a path of length ¢ of G. We denote by tr(P) = {{ei,eix1} :1 <i < {}
the set of traversals of P. The traversal cost associated with a traversal ¢t; = {e;,e;+1} of P is

te(t;) el te(x(ei), x(ei+1)). The traversal cost associated with P is tc(P) = 2 tetr(p) te(t). Note

that the traversal cost of P is zero whenever its length is zero or one. Therefore, we assume that all
the paths under consideration have length at least 2.

Let P be the set of paths. The set of traversals of P is tr(P) = Upep tr(P). The reload cost of

a set of paths P is
re(P) Y S teP) =3 Y te(t),
PcpP PEP tetr(P)

and its changeover cost is

ce(P) = te(t).

tetr(P)

We assume without loss of generality that F(G) = UpcpE(P), i.e. every edge of G is used by
at least one path. We note that whenever every traversal is in at most one path of P, we have
re(P) = cc(P). In particular, this holds when P is a set (as opposed to a multi-set) of paths with
length 2.

The minimum reload cost edge coloring (MINRCEC) and minimum changeover cost edge coloring
(MINCCEC) problems aim to find an edge coloring of G with minimum reload and changeover costs,
respectively. Formally,

MINRCEC (G, P, X, tc)

Input: A graph G, a set of paths P of G, a set X of at least A(G) + 1 colors, a traversal cost
function tc : X? — RT U {0}

Output: A proper edge coloring x : E(G) — X

Objective: Minimize rc(P).

MINCCEC (G, P, X, tc)

Input: A graph G, a set of paths P of G, a set X of at least A(G) + 1 colors, a traversal cost
function tc : X? — R* U {0}

Output: A proper edge coloring x : E(G) — X

Objective: Minimize cc(P).

Given a tree T and a vertex r € V(T), let P(T,r) = {pr(r,v) :v e V(T)\ {r}} where pr(r,v)
is the unique path between r and v in T. The reload and changeover costs of T' rooted at r are

re(T,r) = re(P(T,r)) and cc(T,r) =l cc(P(T,r)), respectively. Given a graph G and a vertex

r in the graph, the minimum reload cost path tree edge coloring (MINRCPTEC) and minimum
changeover cost arborescence edge coloring (MINCCAEC) problems aim to find a spanning tree
T rooted at r and a proper edge coloring of T' with minimum total reload and changeover cost,
respectively. Formally,

MINRCPTEC (G,r, X, tc)

Input: A graph G, a set of paths P of G, a vertex r of G, a set X of at least A(G) + 1 colors, a
traversal cost function tc: X? — R* U {0}

Output: A spanning tree T' of G and a proper edge coloring x : E(T) — X

Objective: Minimize rc(T,r).




MINCCAEC (G,r, X, tc)

Input: A graph G, a set of paths P of G, a vertex r of G, a set X of at least A(G) + 1 colors, a
traversal cost function tc : X? — RT U {0}

Output: A spanning tree 7" of G and a proper edge coloring x : E(T) — X

Objective: Minimize cc(T,r).

Approximation Algorithms. Let II be a minimization problem and p > 1. A (feasible)
solution s of an instance I of Il is a p-approzimation if its objective function value Ory(s) is at most
a factor p of the optimal objective function value Of;(I) of I, i.e., Oni(s) < px Of;(I). An algorithm
ALG is said to be a p-approximation algorithm for a minimization problem II if ALG returns a
p-approximation for every instance I of II supplied to it. II is said to be p-inapprozimable if there
is no polynomial-time p-approximation algorithm for it unless P = N P.

The Lightest k-Subgraph Problem:

Given an edge weighted graph G, the K-LIGHTEST SUBGRAPH problem is to find an induced subgraph
of G on k vertices, with minimum total edge weight. This problem is NP-Hard in the strong sense
even when the graph is a complete graph and the edge weights are either 1 or 2 [§].

3 Hardness Results

Theorem 1. MINCCEC and MINRCEC are inapproximable within any polynomial-time com-
putable function f(|P|).

Proof. The proof is by reduction from the minimum chromatic index problem. The chromatic index
of a graph G is either A(G) or A(G) + 1. However, it in NP-Complete to decide between these
two values [7]. Given a graph G we construct an instance (G, P, X, tc) where P consists of all the
distinct paths of length 2 of G, | X| = A(G) + 1, and

0 ifi=j
te(i,j)=<¢ M ifi# j and max(i,j) = A(G) + 1
1  otherwise

where M = |P|- f(|P|). If G is A(G) edge-colorable, i.e. the minimum chromatic index of G is
A(G), for an edge coloring y with A(G) colors we get r¢(P) = cc(P) = |P|. Therefore, an f(|P|)-
approximation algorithm A for either problem will return at most |P|- f(|P]). On the other hand, for
any edge coloring with A(G)+1 colors we have r¢(P) = ce(P) > |P|+M —1 = |P|+|P|- f(|P])—1 >
|P|- f(|P]). Therefore, G is A(G) edge-colorable if and only if A returns at most |P|- f(|P]). O

We now show that both problems are NP-Complete even in very simple graphs that are in par-
ticular A(G) edge-colorable, namely stars.

Theorem 2. MINCCEC and MINRCEC are NP-Hard in the strong sense even when tc(i,j) €
{1,2} for every distinct pair i,j and G is a star.

Proof. We show a reduction from the Lightest k-Subgraph problem which is NP-Hard in the strong
sense even on complete graphs with edge weights either 1 or 2. Given such an instance (K, w)
of Lightest k-Subgraph where K is a clique and w is the edge weight function, we build the following

instance: G is a star on k + 1 vertices. P consists of the paths between every pair of leaves,

k
2
| X| = |K]|, and tc(i,j) = w(i,j). The cost of a solution of MINCCEC (or MINCCEC) on this
instance is equal to the weight of a clique on k vertices of K. ]

Theorem 3. MINCCAEC and MINRCPTEC are NP-Hard in the strong sense.

Proof. We prove this theorem by a reduction from the set cover problem. O



4 Polynomial-time Solvable Cases

Theorem 4. MINCCEC problem is solvable in polynomial-time when G is a tree, and a particular
vertex v of G is an endpoint of every path P € P.

Proof. We proposing a dynamic programming algorithm that traverses the tree and finds a minimum
weight perfect matching of an auxiliary graph at each vertex. O

We note that in the MINCCAEC problem when G is a tree, there is only one spanning tree, and
we get is a special case of the MINCCEC problem where G is a tree and a particular vertex r of G
is the source vertex of all paths. Therefore,

Corollary 5. MINCCAEC problem is solvable in polynomial-time for trees.

Theorem 6. MINCCEC problem is solvable in polynomial-time when G is a tree and |X|A(G) s a

polynomial, i.e., when A(G) is poly-logarithmic.
Proof. We prove this theorem by proposing a dynamic programming algorithm and using the fact

X
that there are at most (’ 9 ) color traversals at each vertex in this special case. ]

Theorem 7. MINCCAEC problem is solvable in polynomial-time for cactus graphs.
Proof. We prove this theorem by proposing a dynamic programming-based algorithm. O

Theorem 8. MINCCAEC problem is solvable in polynomial-time for graphs G with |E(G)|— |V (G)|
1s bounded by some constant.

Proof. This is done by trying all the possible spanning trees which are at most ]E(G)]'E(G)‘_W(G)|
in number.
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