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A graph is equimatchable if all of its maximal matchings have the same size.
Equimatchable graphs are extensively studied in the literature mainly from struc-
tural point of view. Here we provide, to the best of our knowledge, the first family
of forbidden subgraphs of equimatchable graphs. Since equimatchable graphs are
not hereditary, the task of finding forbidden subgraphs requires the use of structural
results from previous works.

1 Introduction

A graph G is equimatchable if every maximal matching of G has the same size. Equimatchable
graphs were first considered independently in [3] and [5] in 1974. However, they were formally
introduced in 1984 [2]. In this work we provide, to the best of our knowledge, the first family of
forbidden induced subgraphs of equimatchable graphs. Namely, we show that equimatchable
graphs do not contain odd cycles of length at least nine. Our proof is based on the Gallai-
Edmonds decomposition of equimatchable graphs given in [2] and the structure of factor-critical
equimatchable graphs [1].

Let us first point out that equimatchable graphs do not admit a forbidden subgraph charac-
terization since being equimatchable is not a hereditary property, that is, it is not necessarily
preserved by induced subgraphs. In light of this information, finding forbidden subgraphs for
equimatchability boils down to finding graphs which are not only non-equimatchable, but are
also not an induced subgraph of an equimatchable graph. This task is indeed more complicated
than finding “minimally non-equimatchable” graphs and thus requires different methods.

2 Preliminaries

Given a simple graph (no loops or parallel edges) G = (V (G), E(G)) and a vertex v of G,
we denote by N(v) the set of neighbors (or the open neighborhood) of v in G. The closed

∗The support of 213M620 Turkish-Slovenian TUBITAK-ARSS Joint Research Project is greatly acknowledged.
†The work of this author is supported in part by the TUBITAK 2221 Programme.



neighborhood of v is N [v] = N(v)∪{v}. For a graph G and U ⊆ V (G), we denote by G[U ] the
subgraph of G induced by U . The union G∪G′ of two graphs G,G′ is (V (G)∪ V (G′), E(G)∪
E(G′)) and their difference is G \G′ = G[V (G) \V (G′)]. We denote by |G| = |V (G)| the order
of the graph G and by dG(u, v) the distance between the vertices u and v in G. For a set X and
a singleton Y = {y}, we denote X ∪Y and X \Y by X +y and X−y, respectively. We denote
by Pn, Cn and Kn the path, the cycle and the complete graph on n vertices, respectively, and
by Kn,m the complete bipartite graph with bipartition of sizes n and m.

A matching of a graph G, is a subset M ⊆ E(G) of pairwise non-adjacent edges. We denote
by V (M) the set of endpoints of M . A vertex v of G is saturated by M if v ∈ V (M) and
exposed by M otherwise. A matching M is maximal in G if no other matching of G contains
M . A matching is a maximum matching of G if it is a matching of maximum cardinality. A
matching is a perfect matching of G if V (M) = V (G).

A graph G is equimatchable if every maximal matching of G has the same cardinality. A
graph G is randomly matchable if every matching of G can be extended to a perfect matching.
In other words, randomly matchable graphs are equimatchable graphs admitting a perfect
matching. A graph G is factor-critical if G−u has a perfect matching for every vertex u of G.

Now, we proceed with the Gallai-Edmonds decomposition theorem, which gives an important
characterization of a graph based on its maximum matchings.

Theorem 1. (Gallai-Edmonds decomposition) [4] Let G be a graph, D(G) the set of vertices
of G that are not saturated by at least one maximum matching, A(G) the set of vertices of
V (G) \D(G) with at least one neighbor in D(G), and C(G) = V (G) \ (D(G) ∪ A(G)). Then,
the connected components of G[D(G)] are factor-critical, G[C(G)] has a perfect matching,
and every maximum matching of G matches every vertex of A(G) to a vertex of a distinct
component of G[D(G)].

We now state a few results from the literature that will be useful in our proofs.

Lemma 2. [6] A connected graph is randomly matchable if and only if it is isomorphic to K2n

or Kn,n (n ≥ 1).

Lemma 3. [2] Let G be a connected equimatchable graph with no perfect matching. Then
C(G) = ∅ and A(G) is an independent set of G.

Theorem 4. (Theorem 3 in [2]) Let G be a connected, equimatchable, and non factor-critical
graph without a perfect matching. Let Di be a connected component of G[D(G)] with at least
three vertices. Then, either Di has exactly one neighbor in A(G) and Di is P4-free or Di

contains a cut vertex of G separating Di into connected components Di,j, each of which is
P4-free.

Theorem 3 of [2] provides the exact structure of the components Di and Di,j , which we omit
here for brevity. The fact that every component mentioned therein is P4-free can be easily
derived from the rather involved statement of the theorem.

A matching M isolates v in G if v is an isolated vertex of G \ V (M). We use the following
lemma in our proofs.

Lemma 5. [1] Let G be a connected, factor-critical, equimatchable graph and M be a matching
isolating v. Then G \ (V (M) + v) is randomly matchable.



3 Forbidden Subgraphs of Equimatchable Graphs

Using Theorem 4, we first show that if an equimatchable graph contains an odd cycle of length
at least five, then it is factor-critical.

Lemma 6. Let G be an equimatchable and non factor-critical graph with an induced subgraph
C isomorphic to a cycle Cm for some m ≥ 5. Let also Di be a factor-critical component in the
Gallai-Edmonds decomposition of G. Then |V (C) ∩ V (Di)| ≤ 1.

Proof. We show that this contradicts Theorem 4.

Lemma 7. If G is an equimatchable graph with an induced subgraph C isomorphic to a cycle
C2k+1 for some k ≥ 2, then G is factor-critical.

Proof. By using lemmata 3 and 7 we find a bipartite graph containing C. A contradiction.

The following observation gives us some insight about the structure of the intersection of a
randomly matchable graph with a path.

Observation 8. Let P be a path of a graph G and H an induced subgraph of G isomorphic
to a K2n or a Kn,n. Then, if H[V (P )] is not connected then H is a Kn,n and H[V (P )] is an
independent set, otherwise H[V (P )] has at most 3 vertices.

Given a factor-critical equimatchable graph, we will also need the following construction of
a special isolating matching with some additional properties.

Lemma 9. Let v be a vertex of an equimatchable and factor-critical graph G, and let C ⊆
V (G). There is a set of three vertex disjoint matchings M1,M2,M3 and a partition of N(v)
into N1, N2, N3 such that:
i) M1 ∪M2 ∪M3 isolates v,
ii) M1 is a perfect matching of N1,
iii)M2 matches N2 to some N ′2 such that N ′2 ∩ C = ∅,
iv) M3 matches N3 to some N ′3 ⊆ C \N [v],
v ) N2 ∪N3 is an independent set,
vi) N(N3) ⊆ N1 ∪N ′2 ∪ C + v.

Proof. Since G is factor-critical, there is a matching isolating v. We provide an algorithm
which constructs the sets N1, N2, N3 and the matchings M1,M2,M3 starting from such a
matching, greedily augmenting N1, and then greedily augmenting M2. Figure 1 depicts the
sets N1, N2, N3 and the matching constructed by this algorithm.

It is easy to verify that C2k+1 is equimatchable if and only if k ≤ 3. In the sequel we prove a
stronger result. Namely, C2k+1 is an induced subgraph of an equimatchable graph if and only
if k ≤ 3.

Theorem 10. Equimatchable graphs are C2k+1-free for any k ≥ 4.

Proof. Let G be an equimatchable graph and let C be an induced odd cycle of G with at least
9 vertices. Then, by Lemma 7, G is factor-critical. Therefore, every maximal matching of G
leaves exactly one vertex exposed. Therefore, a matching M such that G\V (M) has at least 2
odd components, constitutes a contradiction. Our proof is based on building such matchings.



Figure 1: The matching M1 ∪M2 ∪M3 isolating v, and the unique perfect matching MP of P .

Let v be any vertex of C, and let M1,M2,M3, N1, N2, N3 be the matchings and the sets

of vertices whose existence are guaranteed by Lemma 9. Let M
def
= M1 ∪M2 ∪M3, and let

P = C \N [v] denote the path isomorphic to a P2k−2 obtained by the removal of v and its two
neighbors from the cycle C. Let MP be the unique perfect matching of P (see Figure 1).

Using Observation 8, a simple counting shows that |C| ≤ 4 |N3| + 6. Then, N3 6= ∅ for
the cycles under consideration. If |C| ≥ 15 then |N3| ≥ 3. Consider a matching M ′ =
M1 ∪ M2 ∪ MP + {v, u} where u is any vertex of N3. Every vertex of N3 − u is isolated
in G \ V (M ′) by Lemma 9 item vi). Since |N3 − u| ≥ 2, M ′ constitutes a contradiction as
described above. In the full version, we build specific matchings for the case |N3| ∈ {1, 2} to
conclude the proof for the cycles C9, C11 and C13.
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