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In this study, we focus on the classical Dirac theorem, which asserts that every
graph on n vertices with minimum degree at least dn/2e is Hamiltonian. This lower
bound of dn/2e on minimum degree of a graph strictly holds. In this paper, we
extend the classical Dirac theorem by classifying the only graphs without a Hamil-
tonian cycle when the minimum degree is at least bn/2c. Our proof is constructive
and hence may lead to a polynomial time algorithm, which is left as a future work.

1 Introduction

A Hamiltonian cycle of a graph is a cycle which passes through every vertex of the graph exactly
once, and a graph is Hamiltonian if it contains a Hamiltonian cycle. Finding a Hamiltonian
cycle in a graph is one of the important problems in graph theory, and has been studied for
years. Karp [4] proved that the problem of determining whether a Hamiltonian cycle exists in
a given graph is NP-complete. However, in the past years some important sufficient conditions
have been found. For instance, in [6] Ore proved that for all distinct nonadjacent pairs of
vertices u, v of a graph G if the sum of degrees of u and v is at least the order of G, then G is
Hamiltonian. One vital sufficient condition proved by Dirac [2] is that every graph on n vertices
with minimum degree at least dn/2e is Hamiltonian. This lower bound on the minimum degree
of a graph strictly holds, so no smaller minimum degree can be sufficient for hamiltonicity of a
given graph in general. But we show that except two families of graphs this minimum degree
bound can be lowered to bn/2c.

Furthermore, some additional sufficient conditions have been found for special graph classes.
Nash-Williams [5] proved that every k-regular graph on 2k+ 1 vertices is Hamiltonian. In [5],
he also proved that a 2-connected graph of order n with minimum degree at least max{(n +
2)/3, β}, where β is independence number, is Hamiltonian. Although this last result is more
general than others, since finding the independence number of a graph is in general NP-hard,
this result does not give an efficient algorithm to determine the hamiltonicity of any given
graph. In contrast, here we give a constructive characterization without using independence
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number. We extend the classical Dirac theorem on Hamiltonian cycle to the case where the
minimum degree is at least bn/2c by classifying non-Hamiltonian graphs under this condition.

We adopt [7] and [3] for terminology and notation not defined here. A graph G = (V,E)
is given by a pair of a vertex set V = V (G) and a edge set E = E(G). In this work, we
consider only simple graphs, which have no loops or multiple edges. Particularly, Gn denotes
not necessarily connected simple graph on n vertices. We use |V (G)| to denote the order of
G and N(v) to denote the neighborhood of a vertex v of G. In addition, d(v) denotes degree
of a vertex v of G and δ(G) denotes the minimum degree of G. The distance d(u, v) between
two vertices u and v is the length of a shortest path joining u and v; and the diameter of G,
denoted by d(G), is the maximum distance among all pairs of vertices of G. Given a graph G
with n vertices, the closure cl(G) of G is uniquely constructed from G by repeatedly adding a
new edge uv connecting a nonadjacent pair of vertices u and v with d(v) + d(u) ≥ n until no
more pairs with this property can be found.

Moreover, there are binary operations which create a new graph from two initial graphs
G(V,E) and G′(V ′, E′). The union of two graphs G(V,E) and G′(V ′, E′) is the union of their
vertex and edge sets, denoted by G∪G′ = (V ∪V ′, E ∪E′). When V and V ′ are disjoint, their
union is referred to as the disjoint union. The join of graphs G and G′ is the disjoint union
graph G ∪G′ together with all the edges joining V and V ′, denoted by G+G′. The complete
graphs can be seen as the join of two complete graphs, Kn1+n2 = Kn1 +Kn2 ; and the complete
bipartite graphs can be seen as the join of empty graphs, Kn,m = K̄n + K̄m.

The classical Dirac theorem, which we will extend as the main result of this work, is stated
as follows:

Theorem 1. (Dirac [2]) If G is a graph of order n ≥ 3 such that δ(G) ≥ dn/2e, then G is
Hamiltonian.

We now present the main theorem of this paper:

Theorem 2. (Extension of Dirac Theorem) Let G be a graph of order n ≥ 3 such that
δ(G) ≥ bn/2c. Then G is Hamiltonian unless G is the graph Kdn/2e∪Kdn/2e with one common
vertex or the graph K̄dn/2e +Gbn/2c for odd n.

2 Proof of the Main Theorem

In this section we constructively prove the main theorem. In contrast to Theorem 3, we extend
the classical Dirac theorem to the case δ(G) ≥ bn/2c by classifying non-Hamiltonian graphs
without using the independence number under this condition.

The following results will be used to establish the proof of the main theorem:

Lemma 3. (Nash-Williams [5]) Let G be a 2-connected graph of order n with δ(G) ≥
max{(n+ 2)/3, β}, where β is the independence number of G. Then G is Hamiltonian.

Lemma 4. (Bondy-Chvátal [1]) A graph G is Hamiltonian if and only if its closure cl(G)
is Hamiltonian.

We prove the main result of this work as follows:

Proof of Theorem 2. For n = 2r where r ∈ Z+, the result holds by Theorem 1. Hence, we
assume that n = 2r+ 1 and δ(G) ≥ r. First, we add a vertex y to the graph G and connect it



to all other vertices. This new graph G′ has |V (G′)| = 2r + 2 and δ(G′) ≥ r + 1. By Theorem
1, it has a Hamiltonian cycle. After removing y, we still have a Hamiltonian path P in G, say
P = (x0, ..., x2r).

Suppose G has no Hamiltonian cycle. That is, x0 and x2r are not adjacent. W.l.o.g, if
d(x0) > r or d(x2r) > r, then x0 and x2r are adjacent in closure of G. Hence, the closure cl(G)
is Hamiltonian and therefore G is Hamiltonian by Theorem 4. That is, we can assume that
d(x0) = d(x2r) = r.

Now, we observe the following facts:

1. If x0 is adjacent to xi, then x2r is not adjacent to xi−1. Otherwise, the closed trail
x0x1..xi−1x2rx2r−1x2r−2..xix0 yields a Hamiltonian cycle.

2. If x0 is not adjacent to xi, then x2r is adjacent to xi−1. By the first fact, x2r can
be adjacent to vertices whose successive vertices in P are not adjacent to x0. Since
the number of vertices whose successive vertices in P are not adjacent to x0 is r and
d(x2r) = r, x2r has to be adjacent to the all such vertices.

3. Every pair of non-adjacent vertices xi and xj have at least one common neighbor where
0 ≤ i, j ≤ 2r. Notice that the diameter d(G) = 2 since |V (G)| = 2r+1 and d(xi), d(xj) ≥
r for any 0 ≤ i, j ≤ 2r.

Then, the following two cases arise:

Case 1: N(x0) ∪N(x2r) = V (G) By assumption and the third fact, x0 and x2r have exactly
one common neighbor xk. Then xk−1 is not adjacent to x2r but adjacent to x0. Pro-
ceeding in the same way, we conclude that x0 is adjacent to all vertices x1 through xk
and x2r is adjacent to all vertices xk through x2r−1. Since both vertices x0 and x2r have
degree r, we conclude that k = r. Hence, there is an i0 with 1 < i0 ≤ r such that xi0 is
adjacent to xi for all r+1 ≤ i < 2r. If there is a xi0 6= xr for any r+1 ≤ i < 2r, then the
cyle xi0xi0−1..x0xi0+1xi0+2..xi−1x2rx2r−1..xixi0 is a Hamiltonian cycle in G. If there is
no xi0 6= xr for all r+1 ≤ i < 2r, then we have a non-Hamiltonian graph Kdn/2e∪Kdn/2e
with common vertex xr.

Case 2: N(x0) ∪N(x2r) 6= V (G) Then, there is an i0 with 1 < i0 < 2r − 1 such that xi0+1 is
adjacent to x0, but xi0 is not. By the second fact, xi0−1 must be adjacent to x2r. Hence,
we have a (2r)-cycle xi0−1xi0−2..x0xi0+1xi0+2..x2rxi0−1 not containing xi0 . W.l.o.g, let
C = (y1, y2, ..., y2r) be the (2r)-cycle and y0 be the remaining vertex. Note that C is
a maximum cycle in G due to the assumption that G has no Hamiltonian cycle. It
implies that y0 cannot be adjacent to two consecutive vertices on C. Otherwise, C is
not a maximum cycle and there exists a Hamiltonian cycle. Therefore, d(y0) = r and y0
must be adjacent to every second vertex on C. W.l.o.g, let the second vertices on C be
y1, y3, ..., y2r−1. That is, y0 is adjacent to all vertices with odd index and non-adjacent
to any vertex with even index. Observe that replacing y2i by y0 gives another maximum
cycle C ′ where 1 ≤ i ≤ r, and then d(y2i) = r by the above argument on y0. Therefore,
every vertex with even index is adjacent to every vertex with odd index, and non-adjacent
to any vertex with even index. Hence, we get the graph K̄dn/2e+Gbn/2c where the vertices
with even index form the empty graph K̄dn/2e and the vertices with odd index form a
not necessarily connected graph Gbn/2c. Notice that the graph K̄dn/2e + Gdn/2e is a
non-Hamiltonian graph since the order of K̄dn/2e is larger than the order of Gbn/2c.



3 Conclusion

In this paper, we have extended the classical Dirac theorem to the case where the minimum
degree is at least bn/2c by classifying non-Hamiltonian graphs under this condition. Our proof
is constructive and hence, as a future work, we plan to design a polynomial time algorithm
which produces a Hamiltonian cycle in a given graph satisfying our condition, if exists, or says
it is non-Hamiltonian.
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