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Given an edge-colored graph, a vertex on a path experiences a reload cost if it
lies between two consecutive edges of different colors. The value of the reload cost
depends only on the colors of the traversed edges. Reload cost has important appli-
cations in dynamic networks, such as transportation networks and dynamic spec-
trum access networks. In the minimum changeover cost arborescence (MinCCA)
problem, we seek a spanning tree of an edge-colored graph, in which the total sum
of crossing all internal vertices, starting from a given root, is minimized. In general,
MinCCA is known to be hard to approximate within factor n1−ε, for any ε > 0,
on a graph of n vertices.

We first show that MinCCA can be optimally solved in polynomial-time on cac-
tus graphs. Our main result is an optimal polynomial-time algorithm for graphs of
bounded treewidth, thus establishing first evidence to the solvability of our problem
on a fundamental subclass of graphs. Our results imply that MinCCA is fixed
parameter tractable when parameterized by treewidth and the maximum degree of
the input graph.

Keywords: Reload cost, changeover cost, cactus graphs, bounded treewidth graphs, network
design

1 Introduction

Background: Reload cost in an edge-colored graph refers to the cost incurred when crossing
a vertex along a path where the incident edges have distinct colors. The value of the reload
cost depends on the colors of the crossed edges. Two common models relate to this concept:
the reload cost model, and the changeover cost model. In the former, the cost is proportional
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to the amount of commodity flowing through the edges, whereas in the latter, the cost is
independent of the amount of commodity. The reload cost concept has important applications
in transportation networks, dynamic spectrum access networks, telecommunication and energy
distribution networks. Different modes of transportation can be represented by different edge
colors. Loading and unloading of cargo at the transfer points has a significant cost, which can
be represented using reload costs.

Related Work: The notion of reload cost was introduced in [7]. This and other papers
(e.g. [1, 3, 5]) study various network problems that aim to minimize a global cost related to
the reload cost. The paper [4] studies the problem of finding a spanning tree that minimizes
the sum of reload costs over the paths between all pairs of vertices, and proves the NP-
hardness of the problem. The paper [2] studies a closely related yet different problem, called
minimum changeover cost arborescence (MinCCA). The goal is to find a spanning tree that
minimizes the sum of the reload costs of traversing all internal vertices, where the sum is
independent of the amount of commodity traversing the edges. This problem is the focus
of our study. The authors consider directed graphs and show that the problem is hard to

approximate within a factor of n
1
3
−ε, for any ε > 0, when there are 3 colors. In [6], we derived

several inapproximability results, as well as polynomial-time algorithms for some special cases
of MinCCA. In particular, we showed that MinCCA is polynomial-time solvable for the
special case of cactus graphs where the number of cycles each vertex can belong to is bounded
by some constant.

Our Contribution: In this paper, we study the minimum changeover cost arborescence
problem on undirected graphs. In solving MinCCA, our algorithms for cactus graphs, and for
graphs of bounded treewidth, make non-trivial use of dynamic programming. To the best of
our knowledge, the complexity of MinCCA in graphs of bounded treewidth is studied here
for the first time. Moreover, except for the results in [6], we are not aware of any previous
studies of MinCCA on special graph classes. Given the hardness results for general graphs,
an important contribution of this paper is in establishing first evidence to the polynomial
solvability of MinCCA on a fundamental subclass of graphs. Our results imply that MinCCA
is fixed parameter tractable when parameterized by treewidth and the maximum degree of the
input graph. The question whether MinCCA parameterized by the treewidth alone is in FPT
remains open.

2 Preliminaries

Graphs, digraphs, trees, forests: Given an undirected graph G = (V (G), E(G)), dG(v)
is the degree of v in G. The minimum and maximum degrees of G are denoted as δ(G) and
∆(G) respectively. We denote by NG(U) (resp. NG[U ]) the open (resp. closed) neighborhood
of U in G. NG(U) is the set of vertices of V (G) \ U that are adjacent to a vertex of U , and

NG[U ]
def
= NG(U) ∪ U . When there is no ambiguity about the graph G we omit it from the

subscripts. For a subset of vertices U ⊆ V (G), G[U ] denotes the subgraph of G induced by U .
The degree of a vertex in a digraph is its degree in the underlying graph. A vertex is a source
of a digraph G if there is no arc entering it. We denote the set of sources of a digraph G by
SRC(G). The inbound induced subgraph G[U, in] is the subgraph of G that consists of all arcs
incoming to a vertex of U and all the vertices that are endpoints of these arcs.

We denote by parentT (v) the parent of v in the rooted tree T . A rooted forest is the disjoint
union of rooted trees. Clearly, the number of sources of a rooted forest is equal to the number
of the trees. We use the tree notation also for forests, whenever appropriate.



The changeover cost: We follow the notation and terminology of [7] where the concept of
reload cost was defined. We consider edge colored graphs G, where the colors are taken from a
finite set X and χ : E(G) 7→ X is the coloring function. The costs are given by a non-negative
function c : X2 7→ N0 satisfying ∀x1, x2 ∈ X, c(x1, x2) = c(x2, x1), and ∀x ∈ X, c(x, x) = 0.

The cost of traversing two incident edges e1, e2 is c(e1, e2)
def
= c(χ(e1), χ(e2)). Given a tree

T rooted at r, for every outgoing edge of r we define prev(e) = e, and for every other edge
prev(e) is the edge preceding e on the path from r to e. The changeover cost of T with respect

to r is c(T, r)
def
=
∑

e∈E(T ) c(prev(e), e).

Problem Statement: The MinCCA problem aims to find a spanning tree rooted at r with
minimum changeover cost [2]. Formally,

MinCCA (G,X, χ, r, c)
Input: A graph G = (V,E) with an edge coloring function χ : E 7→ X, a vertex r ∈ V and a
reload cost function c : X2 7→ N0.
Output: A spanning tree T of G.
Objective: Minimize c(T, r).

Parameterized complexity: In parameterized complexity theory, the complexity of an al-
gorithm is expressed as a function of both the size n of the input, and a parameter k depending
on the input. A problem is called fixed parameter tractable (FPT), if it can be solved in time
f(k) · p(n), where f is a function depending solely on k and p is a polynomial in n.

3 Bounded Treewidth Graphs

In this section we present a polynomial-time algorithm for MinCCA for any graph whose
treewidth is bounded by some constant. Our algorithms make non-trivial use of dynamic
programming. This algorithm is an extension of a simpler algorithm for cactus graphs which
is omitted from this presentation.

We start by introducing notations that we use in this section. Let G be the input graph,
and let T be a small tree decomposition of G of smallest width. For simplicity we direct T so
that it is rooted at some bag B that contains r. All trees and forests considered in this section
are rooted. The ancestor-descendant relation among the vertices of a rooted forest is clearly a
partial order. We refer to a forest also as the partial order it induces. Two forests on the same
set of vertices are equal if and only if the partial orders they induce are equal. Given a forest
F and U ⊆ V (F ), F

∣∣
U

is a forest with vertex set U , s.t. (u, u′) is an arc of F
∣∣
U

if and only if

u is the closest ancestor of u′ in F such that u ∈ U . In other words, the partial order F
∣∣
U

is
the partial order F restricted to U .

Proposition 1. SRC(F ) ∩ U ⊆ SRC(F
∣∣
U

). Moreover, if SRC(F ) ⊆ U then SRC(F ) =

SRC(F
∣∣
U

).

For a bag B ∈ V (T ) we denote by TB the subtree of T rooted at B, and define B∗
def
= ∪TB

as all the vertices in the bags of TB. For a subset U of vertices of G, F(U) is the set of
all non-trivial forests F with the following properties: The source of F is not in U but is a
neighbor of some vertex in U ; in addition, F spans all vertices in U and naturally its source
vertices (which are not in U). More formally,

F(U)
def
= {F is a forest : U ⊆ V (F ) ⊆ NG[U ], SRC(F ) = V (F ) \ U, δ(F ) > 0} .



We note that every forest of F(U) can be obtained by choosing a parent for every u ∈ U from
its neighbors. Therefore, |F(U)| ≤

∏
u∈U dG(u) ≤ ∆(G)|U |.

For a forest F ∈ F(B) we define F(F ) as follows:

F(F )
def
= {f is a forest : V (f) = SRC(F ), SRC(f) = SRC(F ) \B∗} .

We note that every forest of F(F ) can be obtained by choosing a parent for every v ∈ SRC(F )∩
B∗ from SRC(F ). Therefore, |F(F )| ≤ (|SRC(F )| − 1)|SRC(F )|.

Let F ∈ F(B), and f ∈ F(F ). We say that a forest F ′ is compatible with F and f , and
denote as F ′ ∼ (F, f) if F ∪ F ′ is a forest and (F ∪ F ′)

∣∣
V (f)

is a subgraph of f . We denote

as cU (F ) the cost of those edges that join two vertices of U in forest F . The following lemma
describes how a tree decomposition divides a spanning tree into forests.

Lemma 2. Let B be a bag of T with children B1, . . . Bk in T . F ∗ ∈ F(B∗) if and only if there
exist unique forests F, f, F ∗1 , . . . , F

∗
k such that

i) F ∗ = F ∪∪i∈[k]F ∗i , ii) F ∈ F(B), iii) ∀i ∈ [k], F ∗i ∈ F(B∗i ), iv) f ∈ F(F ), v) ∀i ∈ [k], F ∗i ∼
(F, f), and

v) c(F ∗) = c(F ) +
∑k

i=1 (c(F ∗i )− cY (F ∗i )) where Y = B ∩ (∪i∈[k]Bi).

For a forest F ∈ F(B), and f ∈ F(F ), let opt(B,F, f) be the minimum cost of a forest F ∗ ∈
F(B∗) that is compatible with (F, f). The following lemma implies a dynamic programming
algorithm.

Lemma 3. Let B be a bag of T with children B1, . . . Bk, F ∈ F(B), and f ∈ F(F ). Then,

opt(B,F, f) = c(F ) +
k∑
i=1

min
Fi∈F(Bi)

(
min

fi∈F(Fi),(Fi∪fi)∼(F,f)
opt(Bi, Fi, fi)− cY (Fi)

)
where Y is defined as in Lemma 2.

Theorem 4. There exists a dynamic programming algorithm solving MinCCA optimally for
bounded treewidth graphs and its running time is O(∆(G)2(tw(G)+1)).
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