On one extension of Dirac's theorem on Hamiltonicity

Yasemin Büyükçolak ${ }^{\text {a,* }}$, Didem Gözüpek ${ }^{\text {b }}$, Sibel Özkan ${ }^{\text {a }}$, Mordechai Shalom ${ }^{\text {c,d }}$
a Department of Mathematics, Gebze Technical University, Kocaeli, Turkey
${ }^{\mathrm{b}}$ Department of Computer Engineering, Gebze Technical University, Kocaeli, Turkey
${ }^{\text {c }}$ TelHai College, Upper Galilee, 12210, Israel
${ }^{\text {d }}$ Department of Industrial Engineering, Boğaziçi University, Istanbul, Turkey

ARTICLE INFO

Article history:

Received 23 December 2015
Received in revised form 5 January 2017
Accepted 17 January 2017
Available online 9 February 2017

Keywords:

Hamiltonian graph
Sufficiency condition
The minimum degree
The Dirac's theorem
A self-contained constructive proof
Graph algorithms
A path
A cycle

Abstract

The classical Dirac theorem asserts that every graph G on $n \geq 3$ vertices with minimum degree $\delta(G) \geq\lceil n / 2\rceil$ is Hamiltonian. The lower bound of $\lceil n / 2\rceil$ on the minimum degree of a graph is tight. In this paper, we extend the classical Dirac theorem to the case where $\delta(G) \geq\lfloor n / 2\rfloor$ by identifying the only non-Hamiltonian graph families in this case. We first present a short and simple proof. We then provide an alternative proof that is constructive and self-contained. Consequently, we provide a polynomial-time algorithm that constructs a Hamiltonian cycle, if exists, of a graph G with $\delta(G) \geq\lfloor n / 2\rfloor$, or determines that the graph is non-Hamiltonian. Finally, we present a self-contained proof for our algorithm which provides insight into the structure of Hamiltonian cycles when $\delta(G) \geq\lfloor n / 2\rfloor$ and is promising for extending the results of this paper to the cases with smaller degree bounds.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A cycle passing through every vertex of a graph G exactly once is called a Hamiltonian cycle of G, and a graph containing a Hamiltonian cycle is called Hamiltonian. Finding a Hamiltonian cycle in a graph is a fundamental problem in graph theory and has been widely studied. In 1972, Karp [8] proved that the problem of determining whether a given graph is Hamiltonian is NP-complete. Hence, finding sufficient conditions for Hamiltonicity has been an interesting problem in graph theory.

Sufficient conditions for Hamiltonicity: The following Theorem proven in 1952 by Dirac provides an important sufficient condition for Hamiltonicity.

Theorem 1 ([5]). If G is a graph of order $n \geq 3$ such that $\delta(G) \geq n / 2$, then G is Hamiltonian.
This lower bound on the minimum degree is tight; i.e., for every $k<n / 2$, there is a non-Hamiltonian graph with minimum degree k. In 1960, Ore [14] proved that the following weaker condition is also sufficient for Hamiltonicity: if for every nonadjacent pair of vertices u and v of a graph G, the sum the of degrees of u and v is at least the order of G, then G is Hamiltonian. The closure of a graph G is obtained from G by repeatedly adding edges between pairs of non-adjacent vertices whose degree sum is at least the order of G. In 1976, Bondy and Chvátal [4] proved that even a weaker condition is sufficient: a graph G is Hamiltonian if and only if its closure is Hamiltonian.

[^0]Some additional sufficient conditions have been found for special graph classes. In 1966, Nash-Williams proved the following:

Theorem 2 ([12]). Every k-regular graph on $2 k+1$ vertices is Hamiltonian.
In 1971, he proved the following result that is stronger than the classical Dirac theorem.
Theorem 3 ([13]). Let G be a 2-connected graph of order n with independence number $\beta(G)$ and minimum degree $\delta(G)$. If $\delta(G) \geq \max ((n+2) / 3, \beta(G))$, then G is Hamiltonian.

Since finding the independence number of a graph is in general NP-hard, the above sufficiency condition cannot be tested in polynomial-time unless $P=N P$.

The Rahman-Kaykobad condition given in [15] is a relatively new condition that helps to determine the Hamiltonicity of a given graph G : The condition is that for every non-adjacent pair of vertices u, v of G, we have $d(u)+d(v)+\operatorname{dist}(u, v)>|V|$, where $d(v)$ denotes the degree of $v, \operatorname{dist}(u, v)$ denotes the length of a shortest path between u and v, and V denotes the set of vertices of G. In 2005, Rahman and Kaykobad [15] proved that a connected graph satisfying the Rahman-Kaykobad condition has a Hamiltonian path. In 2007, Mehedy et al. [11] proved that for a graph G without cut edges and cut vertices and satisfying the Rahman-Kaykobad condition, $\operatorname{dist}(u, v) \geq 3$ and having a Hamiltonian path with endpoints u and v imply that G is Hamiltonian. In $[9,10]$, it is proven that if G is a 2 -connected graph of order $n \geq 3$ and $d(u)+d(v) \geq n-1$ for every pair of vertices u and v with $\operatorname{dist}(u, v)=2$, then G is Hamiltonian or a member of a given non-Hamiltonian graph class.
Toughness-related sufficient conditions for Hamiltonicity: Another important property of graphs related with Hamiltonicity is toughness. It is easy to see that being 1-tough is a necessary condition for Hamiltonicity. In 1990 Bauer, Hakimi and Schmeichel [2] proved that recognizing 1-tough graphs is NP-hard.

In 1978, Jung [7] proved that if G is a 1-tough graph on $n \geq 11$ vertices such that $d(x)+d(y) \geq n-4$ for every pair of non-adjacent vertices $x, y \in V(G)$, then G is Hamiltonian. In 1990, Bauer, Morgana and Schmeichel [3] provided a simple proof of Jung's theorem for graphs with more than 15 vertices. On the other hand, in 2002 Bauer et al. [1] presented a constructive proof of Jung's theorem for graphs on more than 15 vertices. Recognizing 1-tough graphs is in general NP-hard [2]. However, as a consequence of Jung's theorem, a graph G on $n \geq 11$ vertices is Hamiltonian if and only if G is 1 -tough. It follows that when $\delta(G) \geq \frac{n}{2}-2$, recognizing whether G is 1 -tough can be solved in polynomial time [2].
Algorithmic results and our contribution: In 1992, Häggkvist [6] showed that for every positive integer k, the Hamiltonicity of a graph G on n vertices with $\delta(G) \geq n / 2-k$ can be determined in time $\mathrm{O}\left(n^{5 k}\right)$.

In this paper, we first prove that a graph G with $\delta(G) \geq\lfloor n / 2\rfloor$ is Hamiltonian except two specific families of graphs. We first provide a simple proof using Nash-Williams theorem [13]. We then provide an alternative proof, which is simple, constructive, and self-contained. Using the constructive nature of our proof, we propose a polynomial-time algorithm that, given a graph G with $\delta(G) \geq\lfloor n / 2\rfloor$, constructs a Hamiltonian cycle of G, or says that G is non-Hamiltonian. Our algorithm can be used in any graph; however, if the input graph does not meet the degree condition $\delta(G) \geq\lfloor n / 2\rfloor$, the algorithm might fail to detect some Hamiltonian cycles. The main distinction of our work from [11] is that we propose a sufficient condition for Hamiltonicity by using condition $\delta(G) \geq\lfloor n / 2\rfloor$ and provide explicit non-Hamiltonian graph families, whereas [11] uses the Rahman-Kaykobad condition. Our proof also provides a novel insight into the pattern of vertices in a Hamiltonian cycle. We believe that this insight will play a pivotal role in extending our current results to a more general case. Notice that [9,10] show the same non-Hamiltonian graph classes as in our work. However, unlike [9,10], we obtain these graph classes constructively as a result of the nature of our proof. The main distinction of this work from [6] is that, [6] shows that Hamiltonicity can be determined in polynomial-time under such a minimum degree condition, whereas, in addition, we construct a Hamiltonian cycle (if exists) when $\delta(G) \geq\lfloor n / 2\rfloor$.

Recall that as a consequence of Jung's theorem, a graph G on $n \geq 11$ vertices is Hamiltonian if and only if G is 1-tough [2]. If $\delta(G) \geq\lfloor n / 2\rfloor$, a polynomial-time algorithm can then be designed by using the constructive proof of Bauer in [1], which either produces a Hamiltonian cycle or a set of vertices whose removal indicates that G is not 1-tough. However, our approach has the following advantages: (i) we specify non-Hamiltonian graph families under the minimum degree condition $\delta(G) \geq\lfloor n / 2\rfloor$, (ii) we explicitly provide a polynomial-time algorithm, (iii) we provide a shorter and simpler proof.

2. Preliminaries

We adopt [16] for terminology and notation not defined here. A graph $G=(V, E)$ is given by a pair of a vertex set $V=V(G)$ and an edge set $E=E(G)$, where $u v \in E(G)$ denotes an edge between two vertices u and v. In this work, we consider only simple graphs, i.e., graphs without loops or multiple edges. In particular, we use G_{n} to denote a simple graph on n vertices. $|V(G)|$ denotes the order of G and $N(v)$ denotes the neighbourhood of a vertex v of G. In addition, $\delta(G)$ denotes the minimum degree of G and the distance $\operatorname{dist}(u, v)$ between two vertices u and v is the length of a shortest path joining u and v. The diameter of G, denoted by $\operatorname{diam}(G)$, is the maximum distance among all pairs of vertices of G. If $P=x_{0} x_{1} x_{2} \ldots x_{k}$ is a path, then we say that x_{i} precedes (resp. follows) x_{i+1} (resp. x_{i-1}) in P.

Given two graphs $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, the union $G \cup G^{\prime}$ of G and G^{\prime} is the graph obtained by the union of their vertex and edge sets, i.e., $G \cup G^{\prime}=\left(V \cup V^{\prime}, E \cup E^{\prime}\right)$. The join $G \vee G^{\prime}$ of two disjoint graphs G and G^{\prime} is obtained from their
union by adding all edges joining V and V^{\prime}. Formally, $G \vee G^{\prime}=\left(V \cup V^{\prime}, E \cup E^{\prime} \cup\left\{V \times V^{\prime}\right\}\right)$. G_{n} denotes a graph G on n vertices, while K_{n} and \bar{K}_{n} denote the complete and empty graph, respectively, on n vertices.

We now present the main theorem of this paper:
Theorem 4. Let G be a connected graph of order $n \geq 3$ such that $\delta(G) \geq\lfloor n / 2\rfloor$. Then G is Hamiltonian unless G is the graph $K_{\lceil n / 2\rceil} \cup K_{\lceil n / 2\rceil}$ with one common vertex or a graph $\bar{K}_{\lceil n / 2\rceil} \vee G_{\lfloor n / 2\rfloor}$ for odd n.

The constructive nature of our proof for Theorem 4 given in Section 3 yields the following result that we prove in Section 4:
Theorem 5. There is a polynomial-time algorithm that given a graph G of order $n \geq 3$ with $\delta(G) \geq\lfloor n / 2\rfloor$, determines whether G is Hamiltonian, and finds a Hamiltonian cycle in G, if such a cycle exists.

3. Proofs of Theorem 4

In this section, we prove Theorem 4 that extends the classical Dirac theorem. The result is equivalent to Theorem 1 whenever n is even. Hence, we will prove for $n=2 r+1$ for some $r \in \mathbb{Z}^{+}$, in which case $\delta(G) \geq\lfloor n / 2\rfloor=r$. We first provide a simple proof using Theorem 3.

Proof-1 of Theorem 4. First, we consider the case that G is not 2 -connected. Let v be a cut vertex v, and $G^{(1)}, \ldots, G^{(k)}$ be the connected components of $G[V(G) \backslash\{v\}]$. Since a vertex of $G^{(i)}$ has at most one neighbour if $G \backslash G^{(i)}($ namely $v)$, we have $\left|V\left(G^{(i)}\right)\right|-1 \geq \delta\left(G^{(i)}\right) \geq r-1$, thus $\left|V\left(G^{(i)}\right)\right| \geq r$ for $i \in[1, k]$. Since $n=2 r+1$, we have $k=2$ and $\left|V\left(G^{(1)}\right)\right|=\left|V\left(G^{(2)}\right)\right|=r$. Therefore, $r-1=\left|V\left(G^{(i)}\right)\right|-1 \geq \delta\left(G^{(i)}\right) \geq r-1$, implying that every vertex of $G^{(i)}$ is adjacent to every other vertex of $G^{(i)}$ and also to v, for $i \in\{1,2\}$. Therefore, G is the graph $K_{\lceil n / 2\rceil} \cup K_{\lceil n / 2\rceil}$ with one common vertex.

Now consider the case that G is 2 -connected. The only 2 -connected graph on 3 vertices, namely K_{3}, is Hamiltonian; therefore, $n \geq 5$. If $n \geq 7$, then $\delta(G) \geq r=(n-1) / 2 \geq(n+2) / 3$. If $\delta(G) \geq \beta(G)$, then $\delta(G) \geq \max \{(n+2) / 3, \beta(G)\}$ and G is Hamiltonian due to Theorem 3, a contradiction. Therefore, $\beta(G)>\delta(G) \geq r$ and hence $\beta(\bar{G}) \geq r+1$, i.e., G has an independent set S with $r+1$ vertices. Since $\delta(G) \geq r$, every vertex of S is adjacent to every vertex of $V(\bar{G}) \backslash S$, i.e., G is a graph $\bar{K}_{r+1} \vee G_{r}$, i.e. $\bar{K}_{\lceil n / 2\rceil} \vee G_{\lfloor n / 2\rfloor}$ as claimed.

For $n=5$ consider the minimal graphs G^{\prime} with $\delta\left(G^{\prime}\right) \geq 2$, i.e., those graphs G^{\prime} that the removal of any edge violates the degree condition. By the minimality of G^{\prime}, the set U of vertices of degree more than 2 in G^{\prime} is an independent set. Since $\delta\left(G^{\prime}\right) \geq 2$, we have $\left|V\left(G^{\prime}\right) \backslash U\right| \geq 3$, i.e., $|U| \leq 2$. If $|U|=2$, then every vertex of U has to be adjacent to every vertex not in U so that its degree is 3 . On the other hand, no two vertices in $V\left(G^{\prime}\right) \backslash U$ are adjacent since this would make their degrees at least 3. Therefore, G^{\prime} is a $K_{2,3}$. If $U=\{u\}$, then $d(u)$ must be even by the handshaking lemma, i.e., $d(u)=4$. Then, the degree sequence of $G^{\prime} \backslash U$ is $(1,1,1,1)$ and G^{\prime} is a butterfly graph. Finally, if $U=\emptyset$, then G^{\prime} is a cycle. We conclude that G is obtained by adding a (possibly empty) set of edges to a graph G^{\prime} which is one of the following graphs: (i) a C_{5}, (ii) a butterfly, (iii) a $K_{2,3}$. If G^{\prime} is a C_{5}, then G is clearly Hamiltonian. If G^{\prime} is a butterfly, then G is obtained from it by the addition of at least one edge since a butterfly has a cut vertex. It is easy to verify that the addition of a single edge makes the butterfly Hamiltonian. If G^{\prime} is a $K_{2,3}$, we observe that adding an edge to the bigger part of the bipartition makes the graph Hamiltonian. Therefore, \underline{G} is either a $K_{2,3}$ or obtained from it by adding the only possible edge to the smaller part of the bipartition. Then G is a graph $\bar{K}_{3} \vee G_{2}$ as claimed.

We now present a self-contained, constructive and yet simple proof inspired by the proof of Theorem 2.
Proof-2 of Theorem 4. We start by considering the graph G^{\prime} obtained by adding a new vertex y to G and connecting it to all other vertices. The graph G^{\prime} has $2 r+2$ vertices and minimum degree at least $r+1$. By Theorem $1, G^{\prime}$ has a Hamiltonian cycle C. By the removal of y from C, we obtain a Hamiltonian path $P=x_{0} x_{1} \ldots x_{2 r}$ of G.

Suppose that G has no Hamiltonian cycle. Then x_{0} and $x_{2 r}$ are not adjacent. We observe the following facts:

1. If x_{0} is adjacent to x_{i}, then $x_{2 r}$ is not adjacent to x_{i-1}. Otherwise, the closed trail $x_{0} x_{1} \ldots x_{i-1} x_{2 r} x_{2 r-1} x_{2 r-2} \ldots x_{i} x_{0}$ is a Hamiltonian cycle.
2. If x_{0} is not adjacent to x_{i}, then $x_{2 r}$ is adjacent to x_{i-1}. By Fact $1, N\left(x_{2 r}\right) \subseteq X=\left\{x_{i-1} \mid x_{i} \notin N\left(x_{0}\right), i \in[1,2 r]\right\}$. Since $\left|N\left(x_{0}\right)\right| \geq r$, we have $|X| \leq r$. Therefore, $r \leq\left|N\left(x_{2 r}\right)\right| \leq|X| \leq r$ and all inequalities must hold with equality. In particular, we have $N\left(x_{2 r}\right)=X, d\left(x_{2 r}\right)=r$ and $d\left(x_{0}\right)=r$.
3. Every pair of non-adjacent vertices x_{i} and $x_{j}, i, j \in[0,2 r]$, has at least one common neighbour. This is because $N\left(x_{i}\right) \subseteq$ $V(G) \backslash\left\{x_{i}, x_{j}\right\}, N\left(x_{j}\right) \subseteq V(G) \backslash\left\{x_{i}, x_{j}\right\}, d\left(x_{i}\right) \geq r$, and $d\left(x_{j}\right) \geq r$. Note that this implies $\operatorname{diam}(G)=2$.
We now consider two disjoint and complementary cases:
4. $N\left(x_{0}\right) \cup N\left(x_{2 r}\right)=V(G) \backslash\left\{x_{0}, x_{2 r}\right\}$: By this assumption and Fact $3, x_{0}$ and $x_{2 r}$ have exactly one common neighbour x_{k}. Then x_{k-1} is not adjacent to $x_{2 r}$ but adjacent to x_{0}. Proceeding in the same way, we conclude that $N\left(x_{0}\right)=\left\{x_{1}, \ldots, x_{k}\right\}$ and $N\left(x_{2 r}\right)=\left\{x_{k}, \ldots, x_{2 r-1}\right\}$. Since $d\left(x_{0}\right)=d\left(x_{2 r}\right)=r$, we conclude that $k=r$. Let $i \in[r+1,2 r-1]$ and $i_{0} \in[1, r-1]$. If $x_{i_{0}} x_{i} \in E$, the cycle $x_{i_{0}} x_{i_{0}-1} \ldots x_{0} x_{i_{0}+1} x_{i_{0}+2} \ldots x_{i-1} x_{2 r} x_{2 r-1} \ldots x_{i} x_{i_{0}}$ is a Hamiltonian cycle of G. Therefore, for every $i \in[r+1,2 r-1]$ and every $i_{0} \in[0, r-1], x_{i}$ and $x_{i_{0}}$ are non-adjacent. Then $G=K_{\lceil n / 2\rceil} \cup K_{\lceil n / 2\rceil}$ with one common vertex x_{r}. Note that G is not Hamiltonian since it contains a cut vertex, namely x_{r}.

Fig. 1. The cycles detected by MakeTypeACycle.

Fig. 2. The cycles detected by MakeTypeBCycle.
2. $N\left(x_{0}\right) \cup N\left(x_{2 r}\right) \neq V(G) \backslash\left\{x_{0}, x_{2 r}\right\}$: Then there is an $i_{0} \in[2,2 r-2]$ such that $x_{i_{0}+1}$ is adjacent to x_{0}, but $x_{i_{0}}$ is not. By Fact $2, x_{i_{0}-1}$ is adjacent to $x_{2 r}$. Hence, we have a (2r)-cycle $x_{i_{0}-1} x_{i_{0}-2} \ldots x_{0} x_{i_{0}+1} x_{i_{0}+2} \ldots x_{2 r} x_{i_{0}-1}$, which does not contain $x_{i_{0}}$, say C. We rename the vertices of C such that $y_{1} y_{2} \ldots y_{2 r}$ and $y_{0}=x_{i_{0}}$. If y_{0} is adjacent to two consecutive vertices of C, then G is Hamiltonian. Therefore, y_{0} is not adjacent to two consecutive vertices of C. Combining this with the fact that $d\left(y_{0}\right) \geq r$, we conclude that $d\left(y_{0}\right)=r$ and y_{0} is adjacent to every second vertex of C. Without loss of generality, let $N\left(y_{0}\right)=\left\{y_{1}, y_{3}, \ldots, y_{2 r-1}\right\}$. Observe that by replacing $y_{2 i}$ by y_{0} for some $i \in[1, r]$, we obtain another cycle with $2 r$ vertices. Then, by the same argument, $N\left(y_{2 i}\right)=\left\{y_{1}, y_{3}, \ldots, y_{2 r-1}\right\}$ for every $i \in[0,2]$. Hence, $G=\bar{K}_{[n / 2\rceil} \vee G_{\lfloor n / 2\rfloor}$, where the vertices with even index form the empty graph $\bar{K}_{\lceil n / 2\rceil}$ and the vertices with odd index form a not necessarily connected graph $G_{\lfloor n / 2\rfloor}$. Notice that G is not Hamiltonian since it contains an independent set with more than half of the vertices, namely $\left\{y_{0}, \ldots, y_{2 r}\right\}$.

In the following section, inspired by the above proof, we propose a polynomial-time algorithm to find a Hamiltonian cycle of a given graph G satisfying our minimum degree condition.

4. Proof of Theorem 5

In this section, we present Algorithm FindHamiltonian that, given a graph G, returns either a Hamiltonian cycle C or None. Although FindHamiltonian may in general return None for a Hamiltonian graph G, we will show that this will not happen if $\delta(G) \geq\lfloor n / 2\rfloor$. FindHamiltonian, whose pseudocode is given in Algorithm 1, first tests G for the two exceptional graph families mentioned in Theorem 4, i.e. graphs with vertex connectivity 1 , and graphs G of the form $\bar{K}_{\lceil n / 2\rceil} \vee G_{\lfloor n / 2\rfloor}$ for odd n. In the latter case, \bar{G} is the disjoint union of a $K_{\lceil n / 2\rceil}$ and a $G_{\lfloor n / 2\rfloor}$. These tests are done in lines 1 through 4 . Once G passes the tests, the algorithm first builds a maximal path by starting with an edge and then extending it in both directions as long as this is possible. After this stage, the algorithm tries to find a larger path by closing the path to a cycle and then adding to it a new vertex and opening it back to a path. This is done in the main loop, in lines 6-14. Provided that MakeCycle never returns a cycle with less vertices than P, and since C can always be extended to a longer path in a connected graph, at least one of the following holds at the end of every iteration of the loop: $|V(C)|=n, C=$ None, the path P is strictly longer than in the beginning of the iteration. Since the graph is bounded, finally we will have either $|V(C)|=n$ or $C=$ None, in which case the loop terminates and returns C, which is either None or a Hamiltonian cycle of G. It remains to show that under the conditions of Theorem 4, i.e., whenever $\delta(G) \geq\lfloor n / 2\rfloor$, MaкeCycle will always be able to construct a cycle from the vertices of P. MakeCycle tries three different constructions using the functions MakeTypeACycle (see Fig. 1), MakeTypeBCycle (see Fig. 2), and MakeTypeCCycle (see Fig. 3).

Note that Algorithm 1 is polynomial since (i) lines $1-4$ can be computed in polynomial time, (ii) constructing a maximal path in lines $7-8$, constructing a cycle in line 9 , and obtaining a larger maximal path in lines 10-13 can be done in polynomial time, (iii) the loop in lines 6-14 iterates at most n times. Therefore, it is sufficient to prove the following lemma.

Lemma 6. Let $|V(G)|=n \geq 3, \delta(G) \geq\lfloor n / 2\rfloor$ and P be a maximal path of G. If function MakeCycle returns None, then G has either a cut vertex or an independent set with more than $n / 2$ vertices constituting a connected component of \bar{G}.

Proof. Let $P=x_{0} x_{1} \ldots x_{k}$ be a maximal path of G for some $k \leq n-1$. Assume that the functions MakeTypeACycle, MakeTypeBCycle and MakeTypeCCycle all return None. Since P is maximal, $N\left(x_{0}\right), N\left(x_{k}\right) \subseteq V(P)$. Suppose that $x_{0} x_{k} \in E(G)$. Then, setting $i=0$ and $j=k-1$ in function MaкeTypeACycle would detect a cycle. Therefore, $x_{0} x_{k} \notin E(G)$, i.e., $N\left(x_{0}\right), N\left(x_{k}\right) \subseteq$ $V(A)=\left\{x_{1}, \ldots, x_{k-1}\right\}$, where A is the path obtained by deleting the endpoints x_{0} and x_{k} of P. We partition $V(A)$ by the adjacency of their vertices to x_{0} and x_{k}. We denote the set of vertices $N\left(x_{0}\right) \backslash N\left(x_{k}\right)$ by $A_{0}, N\left(x_{k}\right) \backslash N\left(x_{0}\right)$ by $A_{k}, N\left(x_{0}\right) \cap N\left(x_{k}\right)$

Fig. 3. The cycles detected by MakeTypeCCycle.
by $A_{0 k}$, and the set of vertices $A \backslash\left(N\left(x_{0}\right) \cup N\left(x_{k}\right)\right)$ by $A_{\overline{0 k}}$. In the sequel, we use a_{p} to denote an arbitrary element of A_{p} for $p \in\{0, k, 0 k, \overline{0 k}\}$, and we use regular expression notation for sequences of elements of these sets. In particular, $(p)^{*}$ denotes zero or more repetitions of the pattern p.

Suppose that $x_{i} \in N\left(x_{k}\right)$ and $x_{i+1} \in N\left(x_{0}\right)$ for some $x_{i} \in V(A)$. Then, for this value of i and for $j=k-1$, the function MAKETYPEACyCLE would detect a cycle. We conclude that such a vertex x_{i} does not exist in A. Therefore, two consecutive vertices $\left(x_{i}, x_{i+1}\right)$ of A do not follow any of the following forbidden patterns: $\left(a_{k}, a_{0}\right),\left(a_{k}, a_{0 k}\right),\left(a_{0 k}, a_{0}\right),\left(a_{0 k}, a_{0 k}\right)$. This is true since a pair $\left(x_{i}, x_{i+1}\right)$ following one of these patterns implies $x_{i} \in N\left(x_{k}\right)$ and $x_{i+1} \in N\left(x_{0}\right)$.

Consider two vertices $x_{i}, x_{j} \in A_{0 k}(i<j)$, with no vertices from $A_{0 k}$ between them in A. Furthermore, suppose that there are no vertices from $A_{\overline{0 k}}$ between x_{i} and x_{j}. By these assumptions and due to the forbidden pairs previously mentioned, we have $x_{i+1}, \ldots, x_{j-1} \in A_{k}$. However, $\left(x_{j-1}, x_{j}\right)$ is also a forbidden pair, contradiction. Therefore, there is at least one vertex from $A_{\overline{0 k}}$ between any two vertices of $A_{0 k}$. We conclude that $\left|A_{\overline{0 k}}\right| \geq\left|A_{0 k}\right|-1$. We have

$$
\begin{aligned}
n-2 & \geq k-1=\left|A_{0 k}\right|+\left|A_{k}\right|+\left|A_{0}\right|+\left|A_{\overline{0 k}}\right|=\left(\left|A_{0 k}\right|+\left|A_{k}\right|\right)+\left(\left|A_{0 k}\right|+\left|A_{0}\right|\right)+\left|A_{\overline{0 k}}\right|-\left|A_{0 k}\right| \\
& \geq d\left(x_{k}\right)+d\left(x_{0}\right)-1 \geq 2 \delta(G)-1 \\
\frac{n-1}{2} & \geq \delta(G) .
\end{aligned}
$$

Since $\delta(G) \geq\lfloor n / 2\rfloor \geq \frac{n-1}{2}$, we have $\delta(G)=\frac{n-1}{2}$, and all the inequalities above hold with equality, implying the following:
(a) $d\left(x_{0}\right)=d\left(x_{k}\right)=\delta(G)=\frac{n-1}{2}$, thus n is odd and $\left|A_{k}\right|=\left|A_{0}\right|$.
(b) $k=n-1$, thus $V(P)=V(G)$.
(c) $\left|A_{\overline{0 k}}\right|=\left|A_{0 k}\right|-1$. There is exactly one vertex of $A_{\overline{0 k}}$ between two consecutive vertices from $A_{0 k}$ and there are no other vertices from $A_{\overline{0 k}}$ in A.
The vertices between (and including) two consecutive vertices from $A_{0 k}$ follow the pattern ($a_{0 k} a_{k}^{*} a_{\overline{0 k}} a_{0}^{*} a_{0 k}$). All vertices before the first vertex from $A_{0 k}$ are from A_{0}, and all vertices after the last vertex from $A_{0 k}$ are from A_{k}. We conclude that A follows the pattern:

$$
a_{0}^{*}\left(a_{0 k} a_{k}^{*} a_{\overline{0 k}} a_{0}^{*}\right)^{*} a_{0 k} a_{k}^{*}
$$

Then, every vertex of $A_{\overline{0 k}}$ is preceded by a neighbour of x_{k} and followed by a neighbour of x_{0}; in other words, a vertex $x_{i} \in A_{\overline{0 k}}$ satisfies the condition in Line 4 of MakeTypeBCycle. Since, because of our assumption, MakeTypeBCycle does not close a cycle, the condition in Line 6 is not satisfied for any value of j. We conclude that x_{i} is not adjacent to two consecutive vertices of A. Then, the number of neighbours of x_{i} among x_{1}, \ldots, x_{i-1} is at most $\left\lceil\frac{i-1}{2}\right\rceil$ and the number of neighbours of x_{i} among x_{i+1}, \ldots, x_{k-1} is at most $\left\lceil\frac{k-1-i}{2}\right\rceil$. Therefore,

$$
d\left(x_{i}\right) \leq\left\lceil\frac{i-1}{2}\right\rceil+\left\lceil\frac{k-1-i}{2}\right\rceil \leq \frac{i}{2}+\frac{k-i}{2}=\frac{k}{2}=\frac{n-1}{2}=\delta(G) .
$$

Since $d\left(x_{i}\right) \geq \delta(G)$, all the inequalities above hold with equality, implying the following:

1. Both i and k are even
2. $N\left(x_{i}\right)=A_{\text {odd }}$ where $A_{\text {odd }}=\left\{x_{1}, x_{3}, \ldots, x_{k-1}\right\}$.

Since for every $x_{i} \in A_{\overline{0 k}}, x_{i}$ is even and $N\left(x_{i}\right)=A_{o d d}$, we conclude that $A_{\overline{0 k}}$ is an independent set. Recalling that $x_{0} x_{k} \notin E(G)$ and the definition of $A_{\overline{0 k}}$, we conclude that $I=A_{\overline{0 k}} \cup\left\{x_{0}, x_{k}\right\}$ is an independent set.

We observe in the previous pattern that the set of vertices preceding the neighbours of x_{0} (i.e., $A_{0} \cup A_{0 k}$) is $A_{0} \cup A_{\overline{0 k}}$, and the set of vertices following the neighbours of x_{k} (i.e., $A_{k} \cup A_{0 k}$) is $A_{k} \cup A_{\overline{0 k}}$. Let x_{i} be a vertex that precedes a neighbour of x_{0} and let x_{j} be a vertex that follows a neighbour of x_{k} with $i<j$. If $x_{i} x_{j} \in E$, MaKeTypeACycle can close a cycle since the condition in Line 5 is satisfied. Therefore, a pair of adjacent vertices $\left(x_{i}, x_{j}\right)$ with $i<j$ in G cannot follow one of the following patterns: $\left(a_{\overline{0 k}}, a_{\overline{0 k}}\right),\left(a_{\overline{0 k}}, a_{k}\right),\left(a_{0}, a_{\overline{0 k}}\right),\left(a_{0}, a_{k}\right)$. If $\left|A_{\overline{0 k}}\right|=0$, then $\left|A_{0 k}\right|=1$ and A follows the pattern $a_{0}^{*} a_{0 k} a_{\bar{k}}^{*}$. Since $\left(a_{0}, a_{k}\right)$ is a forbidden pattern for adjacent vertices, none of the vertices of A_{0} is adjacent to a vertex in A_{k}. Therefore, the unique vertex $a_{0 k} \in A_{0 k}$ is a cut vertex of G, contradicting our assumption. We conclude that $\left|A_{\overline{0 k}}\right|>0$.

Let $x_{i} \in A_{\overline{0 k}}$ and $x_{j} \in A_{o d d}=N\left(x_{i}\right)$. If $j<i$ then $x_{j} \notin A_{0}$, since otherwise they follow the pattern ($a_{0}, a_{\overline{0 k}}$) and they are adjacent. Similarly, if $i<j$, then $x_{j} \notin A_{k}$. We conclude that, in A all the vertices between two vertices from $A_{\overline{0 k}}$ are from $A_{0 k}$. Moreover, all vertices before the first (after the last) vertex from $A_{\overline{0 k}}$ except one vertex from $A_{0 k}$ are from A_{k} (resp. A_{0}). Then A follows the pattern:

$$
a_{0 k} a_{k}^{*}\left(a_{\overline{0 k}} a_{0 k}\right)^{*} a_{\overline{0 k}} a_{0}^{*} a_{0 k}
$$

We now observe that $x_{k-1} \in A_{0 k}$, i.e., $x_{0} x_{k-1} \in E(G)$. Let $\eta=\left|A_{k}\right|=\left|A_{0}\right|$. Suppose that $\eta \neq 0$. Then $x_{k} x_{1}, x_{k} x_{2} \in E(G)$ and MakeTypeCCycle will close a cycle. Therefore, $\eta=0$, i.e., A follows the pattern:

$$
\left(a_{0 k} a_{\overline{0 k}}\right)^{*} a_{0 k}
$$

We conclude that I has $|I|=\frac{n+1}{2}$ vertices, and every vertex of I is adjacent to every vertex of $A_{o d d}=A_{0 k}=V(G) \backslash I$. Then I is a connected component of \bar{G}.

```
Algorithm 1 FindHAMILTONIAN
Require: A graph \(G\) with \(|V(G)|=n\) and \(\delta(G) \geq\lfloor n / 2\rfloor\)
Ensure: \(C\) is a cycle of \(G\)
    if \(G\) has a cut vertex then return None.
    \(\bar{G} \leftarrow\) the complement of \(G\).
    \(\bar{H} \leftrightarrows\) the biggest connected component of \(\bar{G}\).
    if \(\bar{H}\) is a complete graph, and \(|V(\bar{H})|>\frac{n}{2}\) then return None.
    \(P \leftarrow\) a trivial path (a vertex) of \(G\).
    repeat
        while \(P\) is not maximal do
            Append an edge to \(P\) the get a longer path. \(\triangleright P\) is a maximal path in \(G\).
        \(C \leftarrow \operatorname{MakeCycle}(G, P)\).
        if \(C \neq\) None and \(|V(C)| \neq n\) then
            Let \(e\) be an edge with exactly one endpoint in \(C\).
            Let \(e^{\prime}\) be an edge of \(C\) incident to \(e\). \(\triangleright\) There are two such edges.
            \(P \leftarrow C+e-e^{\prime}\).
    until \(|V(C)|=n\) or \(C=\) None
    return \(C\). \(\triangleright C\) is a Hamiltonian cycle of \(G\).
```

```
Algorithm 2 Making a Cycle
    function MakeCycle (G, \(P\) )
Require: \(P\) is a maximal path in \(G\).
Ensure: return a cycle \(C\) such that \(V(C)=V(P)\) or None
    \(C \leftarrow \operatorname{MakeTypeACycle}(G, P)\).
    if \(C \neq\) None then return \(C\).
    \(C \leftarrow \operatorname{MakeTypeBCycle}(G, P)\).
    if \(C \neq\) None then return \(C\).
    \(C \leftarrow \operatorname{MakeTypeCCycle}(G, P)\).
    return \(C\). \(\quad \triangleright\) Possibly \(C=\) None.
```

Algorithm 3 Making a Type-A Cycle
function MakeTypeACycle(G, P)
Require: P is a maximal path in G.
Ensure: return a cycle C such that $V(C)=V(P)$ or None
Let $P=x_{0} x_{1} \ldots x_{k}$.
for $i \in[0, k-3]$ do
for $j \in[i+2, k-1]$ do
if $x_{0} x_{i+1} \in E(G)$ and $x_{i} x_{j+1} \in E(G)$ and $x_{j} x_{k} \in E(G)$ then
return $C=\left(x_{0}, x_{1}, \ldots, x_{i}, x_{j+1}, x_{j+2}, \ldots, x_{k}, x_{j}, x_{j-1} \ldots, x_{i+1}, x_{0}\right)$.
return None.

```
Algorithm 4 Making a Type-B Cycle
    function MAKETypeBCycle( \(G, P\) )
Require: \(P\) is a maximal path in \(G\).
Ensure: return a cycle \(C\) such that \(V(C)=V(P)\) or None
    Let \(P=x_{0} x_{1} \ldots x_{k}\).
        for \(i \in[1, k-2]\) do
            if \(x_{0} x_{i+1} \in E(G)\) and \(x_{i-1} x_{k} \in E(G)\) then
                for \(j \in[1, k-1] \backslash\{i\}\) do
                    if \(x_{i} x_{j} \in E(G)\) and \(x_{i} x_{j+1} \in E(G)\) then
                            return \(C=\left(x_{0}, x_{1}, \ldots, x_{i-1}, x_{k}, x_{k-1}, \ldots, x_{j+1}, x_{i}, x_{j}, x_{j-1} \ldots, x_{i+1}, x_{0}\right)\).
        return None.
```

```
Algorithm 5 Making a Type-C Cycle
    function MaкeTypeCCycle( \(G, P\) )
Require: \(P\) is a maximal path in \(G\).
Ensure: return a cycle \(C\) such that \(V(C)=V(P)\) or None
        Let \(P=x_{0} x_{1} \ldots x_{k}\).
        if \(x_{0} x_{k-1} \in E(G)\) then
            for \(i \in[0, k-2]\) do
                if \(x_{k} x_{i} \in E(G)\) and \(x_{k} x_{i+1} \in E(G)\) then
                        return \(C=\left(x_{0}, x_{1}, \ldots, x_{i}, x_{k}, x_{i+1}, \ldots, x_{k-1}, x_{0}\right)\)
        if \(x_{k} x_{1} \in E(G)\) then
            for \(i \in[1, k-1]\) do
                if \(x_{0} x_{i} \in E(G)\) and \(x_{0} x_{i+1} \in E(G)\) then
                    return \(C=\left(x_{1}, x_{2}, \ldots, x_{i}, x_{0}, x_{i+1}, \ldots, x_{k}, x_{1}\right)\)
        return NoNE.
```


5. Conclusion

In this work, we presented an extension of the classical Dirac theorem to the case where $\delta(G) \geq\lfloor n / 2\rfloor$. We identified the only non-Hamiltonian graph families under this minimum degree condition. Our proof is short, simple, constructive, and self-contained. Then, we provided a polynomial-time algorithm that constructs a Hamiltonian cycle, if exists, of a graph G with $\delta(G) \geq\lfloor n / 2\rfloor$, or determines that the graph is non-Hamiltonian. The proof we present for the algorithm provides insight into the pattern of vertices on Hamiltonian cycles when $\delta(G) \geq\lfloor n / 2\rfloor$. We believe that this insight will be useful in extending the results of this paper to graphs with lower minimum degrees, i.e., in identifying the exceptional non-Hamiltonian graph families when the minimum degree is smaller and constructing the Hamiltonian cycles, if exists. A natural question to ask in this direction is: What are the exceptional non-Hamiltonian graph families when $\delta(G) \leq\lfloor(n-1) / 2\rfloor$ or $\delta(G) \leq(n-2) / 2$? How can we design an algorithm that not only determines whether a Hamiltonian cycle exists in such a case, but also constructs one if it exists? The investigation of these questions is subject of future work.

Acknowledgement

The work of last author is supported in part by the TUBITAK 2221 Programme.

References

[1] D. Bauer, H.J. Broersma, A. Morgana, E. Schmeichel, Polynomial algorithms that prove an NP-hard hypothesis implies an NP-hard conclusion, Discrete Appl. Math. 120 (2002) 13-23.
[2] D. Bauer, S.L. Hakimi, E. Schmeichel, Recognizing tough graphs are NP-hard, Discrete Appl. Math. 28 (1990) 191-195.
[3] D. Bauer, A. Morgana, E. Schmeichel, A simple proof of a theorem of Jung, Discrete Math. 79 (1989-1990) 147-152.
[4] J.A. Bondy, V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111-135.
[5] G.A. Dirac, Some theorems on abstract graphs, Proc. Lond. Math. Soc. 2 (1952) 69-81.
[6] R. Häggkvist, On the structure of non-hamiltonian graphs I, Combin. Probab. Comput. 1 (1992) 27-34.
[7] H.A. Jung, On maximal circuits in finite graphs, Ann. Discrete Math. 3 (1978) 129-144.
[8] R.M. Karp, Reducibility among combinatorial problems, in: Complexity of Computer Computations, in: The IBM Research Symposia Series, 1972, pp. 85-103.
[9] Rao Li, A new sufficient condition for Hamiltonicity of graph, Inform. Process. Lett. 98 (2006) 159-161.
[10] Shengjia Li, Ruijuan Li, Jinfeng Feng, An efficient condition for a graph to be Hamiltonian, Discrete Appl. Math. 155 (2007) $1842-1845$.
[11] L. Mehedy, M. Kamrul Hasan, M. Kaykobad, An improved degree based condition for Hamiltonian cycles, Inform. Process. Lett. 102 (2007) $108-112$.
[12] J.A. Nash-Williams, On Hamiltonian circuits in finite graphs, Proc. Amer. Math. Soc. 317 (1966) 466-447.
[13] J.A. Nash-Williams, Edge-disjoint Hamiltonian circuits in graphs with vertices of large valency, in: L. Mirsky (Ed.), Studies in Pure Mathematics, 1971, pp. 157-183.
[14] O. Ore, Note on Hamiltonian circuits, Amer. Math. Monthly 65 (1960) 55.
[15] M.S. Rahman, M. Kaykobad, On Hamiltonian cycles and Hamiltonian paths, Inform. Process. Lett. 94 (2005) 37-41.
[16] D.B. West, Introduction to Graph Theory, second ed., Prentice-Hall, 2001.

[^0]: This work is supported by TUBITAK-CNRS under Grant No. 114E731.

 * Corresponding author.

 E-mail addresses: y.buyukcolak@gtu.edu.tr (Y. Büyükçolak), didem.gozupek@gtu.edu.tr (D. Gözüpek), s.ozkan@gtu.edu.tr (S. Özkan), cmshalom@telhai.ac.il (M. Shalom).

