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a b s t r a c t

The classical Dirac theorem asserts that every graph G on n ≥ 3 vertices with minimum
degree δ(G) ≥ ⌈n/2⌉ is Hamiltonian. The lower bound of ⌈n/2⌉ on the minimum degree
of a graph is tight. In this paper, we extend the classical Dirac theorem to the case where
δ(G) ≥ ⌊n/2⌋ by identifying the only non-Hamiltonian graph families in this case. We first
present a short and simple proof. We then provide an alternative proof that is constructive
and self-contained. Consequently, we provide a polynomial-time algorithm that constructs
a Hamiltonian cycle, if exists, of a graph G with δ(G) ≥ ⌊n/2⌋, or determines that the
graph is non-Hamiltonian. Finally, we present a self-contained proof for our algorithm
which provides insight into the structure of Hamiltonian cycles when δ(G) ≥ ⌊n/2⌋ and is
promising for extending the results of this paper to the cases with smaller degree bounds.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A cycle passing through every vertex of a graph G exactly once is called a Hamiltonian cycle of G, and a graph containing
a Hamiltonian cycle is called Hamiltonian. Finding a Hamiltonian cycle in a graph is a fundamental problem in graph theory
and has beenwidely studied. In 1972, Karp [8] proved that the problem of determiningwhether a given graph is Hamiltonian
is NP-complete. Hence, finding sufficient conditions for Hamiltonicity has been an interesting problem in graph theory.

Sufficient conditions for Hamiltonicity: The following Theorem proven in 1952 by Dirac provides an important sufficient
condition for Hamiltonicity.

Theorem 1 ([5]). If G is a graph of order n ≥ 3 such that δ(G) ≥ n/2, then G is Hamiltonian.

This lower bound on theminimumdegree is tight; i.e., for every k < n/2, there is a non-Hamiltonian graphwithminimum
degree k. In 1960, Ore [14] proved that the following weaker condition is also sufficient for Hamiltonicity: if for every
nonadjacent pair of vertices u and v of a graph G, the sum the of degrees of u and v is at least the order of G, then G is
Hamiltonian. The closure of a graph G is obtained from G by repeatedly adding edges between pairs of non-adjacent vertices
whose degree sum is at least the order of G. In 1976, Bondy and Chvátal [4] proved that even aweaker condition is sufficient:
a graph G is Hamiltonian if and only if its closure is Hamiltonian.
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Some additional sufficient conditions have been found for special graph classes. In 1966, Nash-Williams proved the
following:

Theorem 2 ([12]). Every k-regular graph on 2k+ 1 vertices is Hamiltonian.

In 1971, he proved the following result that is stronger than the classical Dirac theorem.

Theorem 3 ([13]). Let G be a 2-connected graph of order n with independence number β(G) and minimum degree δ(G). If
δ(G) ≥ max((n+ 2)/3, β(G)), then G is Hamiltonian.

Since finding the independence number of a graph is in generalNP-hard, the above sufficiency condition cannot be tested
in polynomial-time unless P = NP.

The Rahman–Kaykobad condition given in [15] is a relatively new condition that helps to determine the Hamiltonicity of
a given graph G: The condition is that for every non-adjacent pair of vertices u, v of G, we have d(u)+d(v)+dist(u, v) > |V |,
where d(v) denotes the degree of v, dist(u, v) denotes the length of a shortest path between u and v, and V denotes the
set of vertices of G. In 2005, Rahman and Kaykobad [15] proved that a connected graph satisfying the Rahman–Kaykobad
condition has a Hamiltonian path. In 2007, Mehedy et al. [11] proved that for a graph G without cut edges and cut vertices
and satisfying the Rahman–Kaykobad condition, dist(u, v) ≥ 3 and having a Hamiltonian path with endpoints u and v imply
that G is Hamiltonian. In [9,10], it is proven that if G is a 2-connected graph of order n ≥ 3 and d(u)+ d(v) ≥ n− 1 for every
pair of vertices u and v with dist(u, v) = 2, then G is Hamiltonian or a member of a given non-Hamiltonian graph class.

Toughness-related sufficient conditions for Hamiltonicity: Another important property of graphs related with Hamil-
tonicity is toughness. It is easy to see that being 1-tough is a necessary condition for Hamiltonicity. In 1990 Bauer, Hakimi
and Schmeichel [2] proved that recognizing 1-tough graphs is NP-hard.

In 1978, Jung [7] proved that if G is a 1-tough graph on n ≥ 11 vertices such that d(x) + d(y) ≥ n − 4 for every pair of
non-adjacent vertices x, y ∈ V (G), thenG is Hamiltonian. In 1990, Bauer,Morgana and Schmeichel [3] provided a simple proof
of Jung’s theorem for graphs with more than 15 vertices. On the other hand, in 2002 Bauer et al. [1] presented a constructive
proof of Jung’s theorem for graphs onmore than 15 vertices. Recognizing 1-tough graphs is in generalNP-hard [2]. However,
as a consequence of Jung’s theorem, a graph G on n ≥ 11 vertices is Hamiltonian if and only if G is 1-tough. It follows that
when δ(G) ≥ n

2 − 2, recognizing whether G is 1-tough can be solved in polynomial time [2].

Algorithmic results and our contribution: In 1992, Häggkvist [6] showed that for every positive integer k, theHamiltonicity
of a graph G on n vertices with δ(G) ≥ n/2− k can be determined in time O(n5k).

In this paper, we first prove that a graph G with δ(G) ≥ ⌊n/2⌋ is Hamiltonian except two specific families of graphs.
We first provide a simple proof using Nash-Williams theorem [13]. We then provide an alternative proof, which is simple,
constructive, and self-contained. Using the constructive nature of our proof, we propose a polynomial-time algorithm that,
given a graph Gwith δ(G) ≥ ⌊n/2⌋, constructs a Hamiltonian cycle of G, or says that G is non-Hamiltonian. Our algorithm can
be used in any graph; however, if the input graph does not meet the degree condition δ(G) ≥ ⌊n/2⌋, the algorithmmight fail
to detect some Hamiltonian cycles. The main distinction of our work from [11] is that we propose a sufficient condition for
Hamiltonicity by using condition δ(G) ≥ ⌊n/2⌋ and provide explicit non-Hamiltonian graph families, whereas [11] uses the
Rahman–Kaykobad condition. Our proof also provides a novel insight into the pattern of vertices in a Hamiltonian cycle. We
believe that this insightwill play a pivotal role in extending our current results to amore general case. Notice that [9,10] show
the same non-Hamiltonian graph classes as in ourwork. However, unlike [9,10], we obtain these graph classes constructively
as a result of the nature of our proof. The main distinction of this work from [6] is that, [6] shows that Hamiltonicity can be
determined in polynomial-time under such a minimum degree condition, whereas, in addition, we construct a Hamiltonian
cycle (if exists) when δ(G) ≥ ⌊n/2⌋.

Recall that as a consequence of Jung’s theorem, a graphG on n ≥ 11 vertices is Hamiltonian if and only ifG is 1-tough [2]. If
δ(G) ≥ ⌊n/2⌋, a polynomial-time algorithm can then be designed by using the constructive proof of Bauer in [1], which either
produces a Hamiltonian cycle or a set of vertices whose removal indicates that G is not 1-tough. However, our approach has
the following advantages: (i)we specify non-Hamiltonian graph families under theminimumdegree condition δ(G) ≥ ⌊n/2⌋,
(ii) we explicitly provide a polynomial-time algorithm, (iii) we provide a shorter and simpler proof.

2. Preliminaries

Weadopt [16] for terminology and notation not defined here. A graphG = (V , E) is given by a pair of a vertex setV = V (G)
and an edge set E = E(G), where uv ∈ E(G) denotes an edge between two vertices u and v. In this work, we consider only
simple graphs, i.e., graphs without loops or multiple edges. In particular, we use Gn to denote a simple graph on n vertices.
|V (G)| denotes the order of G and N(v) denotes the neighbourhood of a vertex v of G. In addition, δ(G) denotes the minimum
degree of G and the distance dist(u, v) between two vertices u and v is the length of a shortest path joining u and v. The
diameter of G, denoted by diam(G), is the maximum distance among all pairs of vertices of G. If P = x0x1x2 . . . xk is a path,
then we say that xi precedes (resp. follows) xi+1 (resp. xi−1) in P .

Given two graphs G = (V , E) and G′ = (V ′, E ′), the union G ∪ G′ of G and G′ is the graph obtained by the union of their
vertex and edge sets, i.e., G ∪ G′ = (V ∪ V ′, E ∪ E ′). The join G ∨ G′ of two disjoint graphs G and G′ is obtained from their
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union by adding all edges joining V and V ′. Formally, G∨G′ = (V ∪V ′, E ∪ E ′ ∪{V ×V ′}). Gn denotes a graph G on n vertices,
while Kn and K n denote the complete and empty graph, respectively, on n vertices.

We now present the main theorem of this paper:

Theorem 4. Let G be a connected graph of order n ≥ 3 such that δ(G) ≥ ⌊n/2⌋. Then G is Hamiltonian unless G is the graph
K⌈n/2⌉ ∪ K⌈n/2⌉ with one common vertex or a graph K ⌈n/2⌉ ∨ G⌊n/2⌋ for odd n.

The constructive nature of our proof for Theorem4given in Section 3 yields the following result thatweprove in Section 4:

Theorem 5. There is a polynomial-time algorithm that given a graph G of order n ≥ 3 with δ(G) ≥ ⌊n/2⌋, determines whether
G is Hamiltonian, and finds a Hamiltonian cycle in G, if such a cycle exists.

3. Proofs of Theorem 4

In this section, we prove Theorem 4 that extends the classical Dirac theorem. The result is equivalent to Theorem 1
whenever n is even. Hence, we will prove for n = 2r + 1 for some r ∈ Z+, in which case δ(G) ≥ ⌊n/2⌋ = r . We first provide
a simple proof using Theorem 3.

Proof-1 of Theorem 4. First, we consider the case that G is not 2-connected. Let v be a cut vertex v, and G(1), . . . ,G(k) be
the connected components of G[V (G) \ {v}]. Since a vertex of G(i) has at most one neighbour if G \ G(i) (namely v), we have⏐⏐V (G(i))

⏐⏐−1 ≥ δ(G(i)) ≥ r−1, thus
⏐⏐V (G(i))

⏐⏐ ≥ r for i ∈ [1, k]. Since n = 2r+1, we have k = 2 and
⏐⏐V (G(1))

⏐⏐ = ⏐⏐V (G(2))
⏐⏐ = r .

Therefore, r − 1 =
⏐⏐V (G(i))

⏐⏐− 1 ≥ δ(G(i)) ≥ r − 1, implying that every vertex of G(i) is adjacent to every other vertex of G(i)

and also to v, for i ∈ {1, 2}. Therefore, G is the graph K⌈n/2⌉ ∪ K⌈n/2⌉ with one common vertex.
Now consider the case that G is 2-connected. The only 2-connected graph on 3 vertices, namely K3, is Hamiltonian;

therefore, n ≥ 5. If n ≥ 7, then δ(G) ≥ r = (n − 1)/2 ≥ (n + 2)/3. If δ(G) ≥ β(G), then δ(G) ≥ max{(n + 2)/3, β(G)}
and G is Hamiltonian due to Theorem 3, a contradiction. Therefore, β(G) > δ(G) ≥ r and hence β(G) ≥ r + 1, i.e., G has an
independent set S with r+1 vertices. Since δ(G) ≥ r , every vertex of S is adjacent to every vertex of V (G)\ S, i.e., G is a graph
K r+1 ∨ Gr , i.e. K ⌈n/2⌉ ∨ G⌊n/2⌋ as claimed.

For n = 5 consider the minimal graphs G′ with δ(G′) ≥ 2, i.e., those graphs G′ that the removal of any edge violates
the degree condition. By the minimality of G′, the set U of vertices of degree more than 2 in G′ is an independent set. Since
δ(G′) ≥ 2, we have

⏐⏐V (G′) \ U
⏐⏐ ≥ 3, i.e., |U | ≤ 2. If |U | = 2, then every vertex of U has to be adjacent to every vertex not in

U so that its degree is 3. On the other hand, no two vertices in V (G′) \ U are adjacent since this would make their degrees at
least 3. Therefore, G′ is a K2,3. If U = {u}, then d(u) must be even by the handshaking lemma, i.e., d(u) = 4. Then, the degree
sequence of G′ \U is (1, 1, 1, 1) and G′ is a butterfly graph. Finally, if U = ∅, then G′ is a cycle. We conclude that G is obtained
by adding a (possibly empty) set of edges to a graph G′ which is one of the following graphs: (i) a C5, (ii) a butterfly, (iii) a
K2,3. If G′ is a C5, then G is clearly Hamiltonian. If G′ is a butterfly, then G is obtained from it by the addition of at least one
edge since a butterfly has a cut vertex. It is easy to verify that the addition of a single edge makes the butterfly Hamiltonian.
If G′ is a K2,3, we observe that adding an edge to the bigger part of the bipartition makes the graph Hamiltonian. Therefore,
G is either a K2,3 or obtained from it by adding the only possible edge to the smaller part of the bipartition. Then G is a graph
K 3 ∨ G2 as claimed. □

We now present a self-contained, constructive and yet simple proof inspired by the proof of Theorem 2.

Proof-2 of Theorem 4. We start by considering the graph G′ obtained by adding a new vertex y to G and connecting it to
all other vertices. The graph G′ has 2r + 2 vertices and minimum degree at least r + 1. By Theorem 1, G′ has a Hamiltonian
cycle C . By the removal of y from C , we obtain a Hamiltonian path P = x0x1 . . . x2r of G.

Suppose that G has no Hamiltonian cycle. Then x0 and x2r are not adjacent. We observe the following facts:

1. If x0 is adjacent to xi, then x2r is not adjacent to xi−1. Otherwise, the closed trail x0x1 . . . xi−1x2rx2r−1x2r−2 . . . xix0 is a
Hamiltonian cycle.

2. If x0 is not adjacent to xi, then x2r is adjacent to xi−1. By Fact 1, N(x2r ) ⊆ X = {xi−1|xi ̸∈ N(x0), i ∈ [1, 2r]}. Since
|N(x0)| ≥ r , we have |X | ≤ r . Therefore, r ≤ |N(x2r )| ≤ |X | ≤ r and all inequalities must hold with equality. In
particular, we have N(x2r ) = X , d(x2r ) = r and d(x0) = r .

3. Every pair of non-adjacent vertices xi and xj, i, j ∈ [0, 2r], has at least one common neighbour. This is because N(xi) ⊆
V (G) \

{
xi, xj

}
, N(xj) ⊆ V (G) \

{
xi, xj

}
, d(xi) ≥ r , and d(xj) ≥ r . Note that this implies diam(G) = 2.

We now consider two disjoint and complementary cases:

1. N(x0)∪N(x2r ) = V (G)\{x0, x2r}: By this assumption and Fact 3, x0 and x2r have exactly one common neighbour xk. Then
xk−1 is not adjacent to x2r but adjacent to x0. Proceeding in the same way, we conclude that N(x0) = {x1, . . . , xk} and
N(x2r ) = {xk, . . . , x2r−1}. Since d(x0) = d(x2r ) = r , we conclude that k = r . Let i ∈ [r + 1, 2r − 1] and i0 ∈ [1, r − 1].
If xi0xi ∈ E, the cycle xi0xi0−1 . . . x0xi0+1xi0+2 . . . xi−1x2rx2r−1 . . . xixi0 is a Hamiltonian cycle of G. Therefore, for every
i ∈ [r + 1, 2r − 1] and every i0 ∈ [0, r − 1], xi and xi0 are non-adjacent. Then G = K⌈n/2⌉ ∪ K⌈n/2⌉ with one common
vertex xr . Note that G is not Hamiltonian since it contains a cut vertex, namely xr .
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Fig. 1. The cycles detected byMakeTypeACycle.

Fig. 2. The cycles detected byMakeTypeBCycle.

2. N(x0)∪N(x2r ) ̸= V (G) \ {x0, x2r}: Then there is an i0 ∈ [2, 2r − 2] such that xi0+1 is adjacent to x0, but xi0 is not. By Fact
2, xi0−1 is adjacent to x2r . Hence, we have a (2r)-cycle xi0−1xi0−2 . . . x0xi0+1xi0+2 . . . x2rxi0−1, which does not contain xi0 ,
say C . We rename the vertices of C such that y1y2 . . . y2r and y0 = xi0 . If y0 is adjacent to two consecutive vertices of
C , then G is Hamiltonian. Therefore, y0 is not adjacent to two consecutive vertices of C . Combining this with the fact
that d(y0) ≥ r , we conclude that d(y0) = r and y0 is adjacent to every second vertex of C . Without loss of generality,
let N(y0) = {y1, y3, . . . , y2r−1}. Observe that by replacing y2i by y0 for some i ∈ [1, r], we obtain another cycle with
2r vertices. Then, by the same argument, N(y2i) = {y1, y3, . . . , y2r−1} for every i ∈ [0, 2]. Hence, G = K ⌈n/2⌉ ∨ G⌊n/2⌋,
where the vertices with even index form the empty graph K ⌈n/2⌉ and the vertices with odd index form a not necessarily
connected graph G⌊n/2⌋. Notice that G is not Hamiltonian since it contains an independent set with more than half of
the vertices, namely {y0, . . . , y2r}. □

In the following section, inspired by the above proof, we propose a polynomial-time algorithm to find a Hamiltonian cycle
of a given graph G satisfying our minimum degree condition.

4. Proof of Theorem 5

In this section, we present Algorithm FindHamiltonian that, given a graph G, returns either a Hamiltonian cycle C or
None. Although FindHamiltonian may in general return None for a Hamiltonian graph G, we will show that this will not
happen if δ(G) ≥ ⌊n/2⌋. FindHamiltonian, whose pseudocode is given in Algorithm 1, first tests G for the two exceptional
graph families mentioned in Theorem 4, i.e. graphs with vertex connectivity 1, and graphs G of the form K ⌈n/2⌉ ∨ G⌊n/2⌋ for
odd n. In the latter case, Ḡ is the disjoint union of a K⌈n/2⌉ and a G⌊n/2⌋. These tests are done in lines 1 through 4. Once G passes
the tests, the algorithm first builds a maximal path by starting with an edge and then extending it in both directions as long
as this is possible. After this stage, the algorithm tries to find a larger path by closing the path to a cycle and then adding to
it a new vertex and opening it back to a path. This is done in the main loop, in lines 6–14. Provided that MakeCycle never
returns a cycle with less vertices than P , and since C can always be extended to a longer path in a connected graph, at least
one of the following holds at the end of every iteration of the loop: |V (C)| = n, C = None, the path P is strictly longer than
in the beginning of the iteration. Since the graph is bounded, finally we will have either |V (C)| = n or C = None, in which
case the loop terminates and returns C , which is either None or a Hamiltonian cycle of G. It remains to show that under the
conditions of Theorem 4, i.e., whenever δ(G) ≥ ⌊n/2⌋, MakeCycle will always be able to construct a cycle from the vertices
of P . MakeCycle tries three different constructions using the functions MakeTypeACycle (see Fig. 1), MakeTypeBCycle (see
Fig. 2), andMakeTypeCCycle (see Fig. 3).

Note that Algorithm 1 is polynomial since (i) lines 1–4 can be computed in polynomial time, (ii) constructing a maximal
path in lines 7–8, constructing a cycle in line 9, and obtaining a largermaximal path in lines 10–13 can be done in polynomial
time, (iii) the loop in lines 6–14 iterates at most n times. Therefore, it is sufficient to prove the following lemma.

Lemma 6. Let |V (G)| = n ≥ 3, δ(G) ≥ ⌊n/2⌋ and P be a maximal path of G. If function MakeCycle returns None, then G has
either a cut vertex or an independent set with more than n/2 vertices constituting a connected component of Ḡ.

Proof. Let P = x0x1 . . . xk be a maximal path of G for some k ≤ n − 1. Assume that the functions MakeTypeACycle,
MakeTypeBCycle and MakeTypeCCycle all return None. Since P is maximal, N(x0),N(xk) ⊆ V (P). Suppose that x0xk ∈ E(G).
Then, setting i = 0 and j = k−1 in functionMakeTypeACyclewould detect a cycle. Therefore, x0xk ̸∈ E(G), i.e.,N(x0),N(xk) ⊆
V (A) = {x1, . . . , xk−1}, where A is the path obtained by deleting the endpoints x0 and xk of P . We partition V (A) by the
adjacency of their vertices to x0 and xk. We denote the set of vertices N(x0) \ N(xk) by A0, N(xk) \ N(x0) by Ak, N(x0) ∩ N(xk)
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Fig. 3. The cycles detected byMakeTypeCCycle.

by A0k, and the set of vertices A \ (N(x0) ∪ N(xk)) by A0k. In the sequel, we use ap to denote an arbitrary element of Ap for
p ∈

{
0, k, 0k, 0k

}
, and we use regular expression notation for sequences of elements of these sets. In particular, (p)∗ denotes

zero or more repetitions of the pattern p.
Suppose that xi ∈ N(xk) and xi+1 ∈ N(x0) for some xi ∈ V (A). Then, for this value of i and for j = k − 1, the function

MakeTypeACycle would detect a cycle. We conclude that such a vertex xi does not exist in A. Therefore, two consecutive
vertices (xi, xi+1) of A do not follow any of the following forbidden patterns: (ak, a0), (ak, a0k), (a0k, a0), (a0k, a0k). This is true
since a pair (xi, xi+1) following one of these patterns implies xi ∈ N(xk) and xi+1 ∈ N(x0).

Consider two vertices xi, xj ∈ A0k (i < j), with no vertices from A0k between them in A. Furthermore, suppose that there
are no vertices from A0k between xi and xj. By these assumptions and due to the forbidden pairs previously mentioned, we
have xi+1, . . . , xj−1 ∈ Ak. However, (xj−1, xj) is also a forbidden pair, contradiction. Therefore, there is at least one vertex
from A0k between any two vertices of A0k. We conclude that

⏐⏐A0k

⏐⏐ ≥ |A0k| − 1. We have

n− 2 ≥ k− 1 = |A0k| + |Ak| + |A0| +
⏐⏐A0k

⏐⏐ = (|A0k| + |Ak|)+ (|A0k| + |A0|)+
⏐⏐A0k

⏐⏐− |A0k|

≥ d(xk)+ d(x0)− 1 ≥ 2δ(G)− 1
n− 1
2
≥ δ(G).

Since δ(G) ≥ ⌊n/2⌋ ≥ n−1
2 , we have δ(G) = n−1

2 , and all the inequalities above hold with equality, implying the following:

(a) d(x0) = d(xk) = δ(G) = n−1
2 , thus n is odd and |Ak| = |A0|.

(b) k = n− 1, thus V (P) = V (G).
(c)

⏐⏐A0k

⏐⏐ = |A0k| − 1. There is exactly one vertex of A0k between two consecutive vertices from A0k and there are no other
vertices from A0k in A.

The vertices between (and including) two consecutive vertices from A0k follow the pattern (a0ka∗ka0ka
∗

0a0k). All vertices
before the first vertex from A0k are from A0, and all vertices after the last vertex from A0k are from Ak. We conclude that A
follows the pattern:

a∗0(a0ka
∗

ka0ka
∗

0)
∗a0ka∗k .

Then, every vertex of A0k is preceded by a neighbour of xk and followed by a neighbour of x0; in other words, a vertex
xi ∈ A0k satisfies the condition in Line 4 of MakeTypeBCycle. Since, because of our assumption, MakeTypeBCycle does not
close a cycle, the condition in Line 6 is not satisfied for any value of j. We conclude that xi is not adjacent to two consecutive
vertices of A. Then, the number of neighbours of xi among x1, . . . , xi−1 is at most ⌈ i−12 ⌉ and the number of neighbours of xi
among xi+1, . . . , xk−1 is at most ⌈ k−1−i2 ⌉. Therefore,

d(xi) ≤
⌈
i− 1
2

⌉
+

⌈
k− 1− i

2

⌉
≤

i
2
+

k− i
2
=

k
2
=

n− 1
2
= δ(G).

Since d(xi) ≥ δ(G), all the inequalities above hold with equality, implying the following:

1. Both i and k are even
2. N(xi) = Aodd where Aodd = {x1, x3, . . . , xk−1}.

Since for every xi ∈ A0k, xi is even and N(xi) = Aodd, we conclude that A0k is an independent set. Recalling that x0xk ̸∈ E(G)
and the definition of A0k, we conclude that I = A0k ∪ {x0, xk} is an independent set.

We observe in the previous pattern that the set of vertices preceding the neighbours of x0 (i.e., A0 ∪ A0k) is A0 ∪ A0k, and
the set of vertices following the neighbours of xk (i.e., Ak ∪ A0k) is Ak ∪ A0k. Let xi be a vertex that precedes a neighbour of
x0 and let xj be a vertex that follows a neighbour of xk with i < j. If xixj ∈ E, MakeTypeACycle can close a cycle since the
condition in Line 5 is satisfied. Therefore, a pair of adjacent vertices (xi, xj) with i < j in G cannot follow one of the following
patterns: (a0k, a0k), (a0k, ak), (a0, a0k), (a0, ak). If

⏐⏐A0k

⏐⏐ = 0, then |A0k| = 1 and A follows the pattern a∗0a0ka
∗

k . Since (a0, ak) is
a forbidden pattern for adjacent vertices, none of the vertices of A0 is adjacent to a vertex in Ak. Therefore, the unique vertex
a0k ∈ A0k is a cut vertex of G, contradicting our assumption. We conclude that

⏐⏐A0k

⏐⏐ > 0.
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Let xi ∈ A0k and xj ∈ Aodd = N(xi). If j < i then xj ̸∈ A0, since otherwise they follow the pattern (a0, a0k) and they are
adjacent. Similarly, if i < j, then xj ̸∈ Ak. We conclude that, in A all the vertices between two vertices from A0k are from A0k.
Moreover, all vertices before the first (after the last) vertex from A0k except one vertex from A0k are from Ak (resp. A0). Then
A follows the pattern:

a0ka∗k(a0ka0k)
∗a0ka

∗

0a0k.

We now observe that xk−1 ∈ A0k, i.e., x0xk−1 ∈ E(G). Let η = |Ak| = |A0|. Suppose that η ̸= 0. Then xkx1, xkx2 ∈ E(G) and
MakeTypeCCyclewill close a cycle. Therefore, η = 0, i.e., A follows the pattern:

(a0ka0k)
∗a0k.

We conclude that I has |I| = n+1
2 vertices, and every vertex of I is adjacent to every vertex of Aodd = A0k = V (G) \ I . Then

I is a connected component of G. □

Algorithm 1 FindHamiltonian
Require: A graph Gwith |V (G)| = n and δ(G) ≥ ⌊n/2⌋
Ensure: C is a cycle of G
1: if G has a cut vertex then return None.
2: Ḡ← the complement of G.
3: H̄ ← the biggest connected component of G.
4: if H̄ is a complete graph, and

⏐⏐V (H̄)
⏐⏐ > n

2 then return None.
5: P ← a trivial path (a vertex) of G.
6: repeat
7: while P is not maximal do
8: Append an edge to P the get a longer path. ▷ P is a maximal path in G.
9: C ←MakeCycle(G, P).
10: if C ̸= None and |V (C)| ̸= n then
11: Let e be an edge with exactly one endpoint in C .
12: Let e′ be an edge of C incident to e. ▷ There are two such edges.
13: P ← C + e− e′.
14: until |V (C)| = n or C = None
15: return C . ▷ C is a Hamiltonian cycle of G.

Algorithm 2Making a Cycle
1: functionMakeCycle(G, P)
Require: P is a maximal path in G.
Ensure: return a cycle C such that V (C) = V (P) or None
2: C ←MakeTypeACycle(G, P).
3: if C ̸= None then return C .
4: C ←MakeTypeBCycle(G, P).
5: if C ̸= None then return C .
6: C ←MakeTypeCCycle(G, P).
7: return C . ▷ Possibly C = None.

Algorithm 3Making a Type-A Cycle
1: functionMakeTypeACycle(G, P)
Require: P is a maximal path in G.
Ensure: return a cycle C such that V (C) = V (P) or None
2: Let P = x0x1 . . . xk .
3: for i ∈ [0, k− 3] do
4: for j ∈ [i+ 2, k− 1] do
5: if x0xi+1 ∈ E(G) and xixj+1 ∈ E(G) and xjxk ∈ E(G) then
6: return C = (x0, x1, . . . , xi, xj+1, xj+2, . . . , xk, xj, xj−1 . . . , xi+1, x0).
7: return None.

Algorithm 4Making a Type-B Cycle
1: functionMakeTypeBCycle(G, P)
Require: P is a maximal path in G.
Ensure: return a cycle C such that V (C) = V (P) or None
2: Let P = x0x1 . . . xk .
3: for i ∈ [1, k− 2] do
4: if x0xi+1 ∈ E(G) and xi−1xk ∈ E(G) then
5: for j ∈ [1, k− 1] \ {i} do
6: if xixj ∈ E(G) and xixj+1 ∈ E(G) then
7: return C = (x0, x1, . . . , xi−1, xk, xk−1, . . . , xj+1, xi, xj, xj−1 . . . , xi+1, x0).
8: return None.
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Algorithm 5Making a Type-C Cycle
1: function MakeTypeCCycle(G, P)
Require: P is a maximal path in G.
Ensure: return a cycle C such that V (C) = V (P) or None
2: Let P = x0x1 . . . xk .
3: if x0xk−1 ∈ E(G) then
4: for i ∈ [0, k− 2] do
5: if xkxi ∈ E(G) and xkxi+1 ∈ E(G) then
6: return C = (x0, x1, . . . , xi, xk, xi+1, . . . , xk−1, x0)
7: if xkx1 ∈ E(G) then
8: for i ∈ [1, k− 1] do
9: if x0xi ∈ E(G) and x0xi+1 ∈ E(G) then
10: return C = (x1, x2, . . . , xi, x0, xi+1, . . . , xk, x1)
11: return None.

5. Conclusion

In this work, we presented an extension of the classical Dirac theorem to the case where δ(G) ≥ ⌊n/2⌋. We identified the
only non-Hamiltonian graph families under this minimum degree condition. Our proof is short, simple, constructive, and
self-contained. Then, we provided a polynomial-time algorithm that constructs a Hamiltonian cycle, if exists, of a graph G
with δ(G) ≥ ⌊n/2⌋, or determines that the graph is non-Hamiltonian. The proofwe present for the algorithmprovides insight
into the pattern of vertices onHamiltonian cycleswhen δ(G) ≥ ⌊n/2⌋. We believe that this insightwill be useful in extending
the results of this paper to graphs with lower minimum degrees, i.e., in identifying the exceptional non-Hamiltonian graph
families when theminimum degree is smaller and constructing the Hamiltonian cycles, if exists. A natural question to ask in
this direction is:What are the exceptional non-Hamiltonian graph familieswhen δ(G) ≤ ⌊(n−1)/2⌋ or δ(G) ≤ (n−2)/2?How
can we design an algorithm that not only determines whether a Hamiltonian cycle exists in such a case, but also constructs
one if it exists? The investigation of these questions is subject of future work.
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