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a b s t r a c t

A graph is equimatchable if all of itsmaximalmatchings have the same size. Equimatchable
graphs are extensively studied in the literature mainly from structural point of view.
Here we provide the first family of forbidden subgraphs of equimatchable graphs. Since
equimatchable graphs are by definition not hereditary, this task of finding forbidden
subgraphs requires the use of structural results from previous works.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

AgraphG is equimatchable if everymaximalmatching ofGhas the same size. Equimatchable graphswere first considered
independently in [7,11,13] in 1974. However, they were formally introduced in 1984 [10] where the authors provide a
structural characterization of equimatchable graphs yielding a polynomial-time recognition algorithm. A more efficient
recognition algorithm is then given in [1]. It also follows from [10] that any 2-connected equimatchable graph which is not
randomly matchable is either bipartite, or factor-critical, and these two cases are disjoint. Other studies on equimatchable
graphs focus on the structure of these graphs. Factor-critical equimatchable graphs with vertex connectivity 1 and 2 are
characterized in [5] where it is also shown that every 2-connected factor-critical equimatchable graph is Hamiltonian.
In [9], all equimatchable graphs that are 3-connected planar or 3-connected cubic are determined. In [8], it is shown that
equimatchable graphs with fixed genus have bounded size, and in [6], equimatchable graphs with girth at least 5 are
characterized. More recently, 2-connected equimatchable graphs embeddable on various surfaces are studied in [4], and
a description of k-connected equimatchable factor-critical graphs is given in [3]. A graph G is well-covered if every maximal
independent set of G has the same size. Clearly, a graph is equimatchable if and only if its line graph is well-covered. This
close relationship between equimatchable graphs andwell-covered graphs allows us in particular to test in polynomial time
whether a line graph, or more generally, a claw-free graph, is well-covered [14].

In this work we provide, to the best of our knowledge, the first family of forbidden induced subgraphs of equimatchable
graphs. Namely, we show that equimatchable graphs do not contain odd holes of length at least nine. Our proof is based on
the Gallai–Edmonds decomposition of equimatchable graphs given in [10] and the structure of factor-critical equimatchable
graphs [4].
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Let us first point out that equimatchable graphs do not admit a forbidden subgraph characterization since being
equimatchable is not a hereditary property, that is, it is not necessarily preserved by induced subgraphs. For instance, the
graph consisting of a cycle on four vertices and a path on three vertices with one endpoint of the path forming a triangle
with two vertices of the cycle is equimatchable; however, it contains a triangle with one pending vertex, which is not
equimatchable. In light of this information, finding forbidden subgraphs for equimatchability boils down to finding graphs
which are not only non-equimatchable, but are also not an induced subgraph of an equimatchable graph. This task is indeed
more complicated than finding ‘‘minimally non-equimatchable’’ graphs and thus requires different methods.

Using the above observation, it follows from the characterization of equimatchable graphs with girth at least five given
in [6] that no connected bipartite graph with girth at least five is forbidden in an equimatchable graph because they can all
be extended to an equimatchable graph by adding a leaf to each one of the vertices in one side of the bipartition. This result
implies in particular that even cycles are not forbidden (noting that a cycle on four vertices is equimatchable).

2. Preliminaries

2.1. Notation and definitions

We use standard terminology and notation for graph theory, see for instance [2]. We denote by N(v) and N[v] the open
and closed neighborhood of v, respectively on some given graph. A subset of at least 4 vertices inducing a cycle is termed a
hole. For a set X and a singleton Y = {y}, we denote X ∪ Y and X \ Y by X + y and X − y, respectively. We denote by Pn, Cn
and Kn the path, the cycle and the complete graph, respectively, on n vertices, and by Kn,m the complete bipartite graph with
bipartition of sizes n and m. For two graphs G and H , G is H-free if it does not contain H as an induced subgraph.

A matching of a graph G is a subset M ⊆ E(G) of pairwise non-adjacent edges. We denote by V (M) the set of endpoints
of M . A vertex v of G is saturated by M if v ∈ V (M) and exposed by M otherwise. A matching M is maximal in G if no other
matching of G contains M . A matching is a maximum matching of G if it is a matching of maximum cardinality. A matching
M is a perfect matching of G if V (M) = V (G). A graph G is factor-critical (or hypomatchable) if G− u has a perfect matching
for every vertex u of G.

A graph G is equimatchable if every maximal matching of G has the same cardinality. A graph G is randomly matchable if
every matching of G can be extended to a perfect matching. In other words, randomly matchable graphs are equimatchable
graphs admitting a perfect matching.

2.2. Hereditary equimatchable graphs

In this section we continue the discussion on the non-hereditary property of being equimatchable, mentioned in
Section 1. As a result of that discussion, to obtain a characterization by forbidden subgraphs, one should require
equimatchability not only for the graph itself but also for all of its induced subgraphs, thus introducing the notion of
hereditary equimatchable graphs.

A diamond is a C4 with an added chord, whereas a paw is a triangle (C3) with one pendant vertex. The following shows that
hereditary equimatchable graphs form a rather small subclass of equimatchable graphs (only very slightly (and naturally)
generalizing randomly matchable graphs characterized in Lemma 3):

Proposition 1. The following are equivalent:

(i) G is a connected hereditary equimatchable graph.
(ii) G is (P4, diamond, paw)-free.
(iii) G is a complete graph or a complete bipartite graph.

Proof. It is easy to check that none of the graphs P4, diamond and paw is equimatchable; therefore, i⇒ ii. Moreover, every
complete graph and every complete bipartite graph is equimatchable, thus iii⇒ i.

ii⇒ iii: Let G be a (P4, diamond, paw)-free connected graph on n vertices. Let us show by induction on n that G is a
complete graph or a complete bipartite graph. The claim holds for n ≤ 4 since the only connected (P4, diamond, paw)-free
graphs on at most 4 vertices are K1, K2, K3, K1,2, K1,3, C4 and K4.

Let n ≥ 5, and v be a vertex of G. If G− v is disconnected, then G is a K1,n−1 since as soon as G− v contains a component
with at least two vertices, v is in a P4 or a paw. Otherwise, by the induction hypothesis G′ = G−v is either a complete graph
or a complete bipartite graph.

If G′ is a complete graph and G is not a complete graph, then taking v, a neighbor of v, a non-neighbor of v, and a fourth
vertex induces either a paw or a diamond.

If G′ is a complete bipartite graph, consider a neighbor u of v. Then, v is adjacent to every vertex w in the same part as
u, since otherwise v, u, w and any vertex from the other part of G′ form either a paw or a P4. Besides, we observe that v is
non-adjacent to any vertex u′ in the other part of G′, since otherwise v, u, u′ and a fourth vertex adjacent to one of u, u′ form
either a paw or a diamond. Therefore, G is a complete bipartite graph. �
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2.3. Related structural results

We start with the Gallai–Edmonds decomposition theorem, which gives an important characterization of a graph based
on its maximummatchings.

Theorem 2 (Gallai–Edmonds Decomposition [12]). Let G be a graph, D(G) the set of vertices of G that are not saturated by
at least one maximum matching, A(G) the set of vertices of V (G) \ D(G) with at least one neighbor in D(G), and C(G)

def
=

V (G) \ (D(G) ∪ A(G)). Then:

(i) the components of G[D(G)] are factor-critical,
(ii) G[C(G)] has a perfect matching,
(iii) every maximum matching of G matches every vertex of A(G) to a vertex of a distinct component of G[D(G)].

We now state a few results from the literature that will be useful in our proofs.

Lemma 3 ([15]). A connected graph is randomly matchable if and only if it is isomorphic to a K2n or a Kn,n (n ≥ 1).

Lemma 4 ([10]). Let G be a connected equimatchable graphwith no perfectmatching. Then C(G) = ∅ and A(G) is an independent
set of G.

Theorem 5 (Theorem 3 in [10]). Let G be a connected, equimatchable, and non factor-critical graph without a perfect matching.
Let Di be a component of G[D(G)] with at least three vertices. Then one of the following holds:

(i) Di has exactly one neighbor in A(G) and Di is P4-free.
(ii) Di contains a cut vertex of G separating Di into components Di,j, each of which is P4-free.

Theorem 3 of [10] provides the exact structure of the components Di and Di,j, which we omit here for brevity. A precise
consideration of these components reveals that these components are P4-free.

A matching M isolates v in G if v is an isolated vertex of G \ V (M). A minimal isolating matching for v is a matching that
isolates v, but no proper subset of it does so. We use the following lemma in our proofs.

Lemma 6 ([4]). Let G be a connected, factor-critical, equimatchable graph and M be a minimal isolating matching for v. Then
G \ (V (M)+ v) is randomly matchable.

3. Forbidden subgraphs of equimatchable graphs

Using Theorem 5, we first show that if an equimatchable graph contains an odd hole, then it is factor-critical.

Lemma 7. Let G be an equimatchable graph that does not admit a perfect matching and is not factor-critical. Let Di be a
factor-critical component in the Gallai–Edmonds decomposition of G, and let C be a hole of G with at least 5 vertices. Then
|V (C) ∩ V (Di)| ≤ 1.

Proof. Since C is 2-connected, C − v is in a component of G− v. Clearly, C − v contains an induced P4. Suppose that some
factor-critical component Di contains two vertices of C . Then, Di − v contains C − v. Thus, Di − v contains an induced P4.
Noting that both cases of Theorem 5 imply that Di − v is P4-free, we get a contradiction. �

Lemma 8. If G is an equimatchable graph with an odd hole, then G is factor-critical.

Proof. We first note that G does not admit a perfect matching since otherwise it is randomly matchable, and by Lemma 3
every component of G is either a complete graph of even order or a complete bipartite graph both of which are (odd hole)-
free.

Suppose that G is not factor-critical. Then it has a (non-trivial) Gallai–Edmonds decomposition. Construct a graph G′ by
contracting every component Di of D(G) to a single vertex. The vertices corresponding to the components Di constitute an
independent set of G′. Since G is equimatchable, by Lemma 4, A(G) is an independent set and C(G) = ∅. Therefore, G′ is
bipartite. Let C be an odd hole of G (note that here C and C(G) are different; C is an odd hole of Gwhile C(G) denotes the set
of vertices defined for Gallai–Edmonds decomposition of G in Theorem 2). Lemma 7 implies that no pair of vertices of C is
contracted when G′ is constructed from G. Then C is an odd hole of G′, contradicting the fact that G′ is bipartite. �

The following observation gives us some insight about the structure of the intersection of a randomly matchable graph
with a path.

Observation 9. Let P be an induced path of a graph G andH be an induced subgraph of G isomorphic to a K2n or a Kn,n. If H[V (P)]
is not connected, then H is a Kn,n and H[V (P)] is an independent set; otherwise, H[V (P)] has at most 3 vertices.
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Fig. 1. The matchingM1 ∪M2 ∪M3 isolating v and the unique perfect matchingMP of P .

Given a factor-critical equimatchable graph, and any subset C of its vertices (not necessarily a hole) wewill also need the
following construction of a special minimal isolating matching having some properties with respect to C .

Lemma 10. Let v be a vertex of a factor-critical graph G, and let C ⊆ V (G). There is a set of three vertex disjoint matchings
M1,M2,M3 and a near-partition1 {N1,N2,N3} of N(v) such that:

(i) M1 ∪M2 ∪M3 is a minimal isolating matching for v,
(ii) M1 is a perfect matching of N1,
(iii) M2 matches N2 to some N ′2 such that N ′2 ∩ C = ∅,
(iv) M3 matches N3 to some N ′3 ⊆ C \ N[v],
(v) N2 ∪ N3 is an independent set, and
(vi) N(N3) ⊆ N1 ∪ N ′2 ∪ C + v.

Proof. Since G is factor-critical, there is a perfect matchingM of G− v. Starting from such a matching, we first throw away
edges not incident with N(v) to get a minimal isolating matching M of v. We will adapt this matching while maintaining
the invariant ofM being a minimal isolating matching of v.

As long as there are two adjacent vertices x, y ofN(v) such that xy ∉ Mand both arematched to vertices outsideN(v), we
replace the two edges of M incident to {x, y} by the edge xy. At the end of this procedure, M contains a maximal matching
M1 of N(v). Let N1 be the set of these endpoints, namely N1 = V (M1). Then N(v) \ N1 is an independent set.

We further modifyM \M1 such thatM saturates a minimal subset of C . As long as there is a vertex xmatched byM \M1
to a vertex of C and x is adjacent to an unmatched vertex y different from v and not in C , we replace the matching edge
incident to xwith xy. N2 (resp. N3) is the set of vertices of N(v) matched to a vertex not in C (resp. in C).

Algorithm BuildIsolatingMatching greedily constructs the sets N1,N2,N3 and the matchings M1,M2,M3 as described
above, and Fig. 1 depicts the sets N1,N2,N3 and these matchings. The proof of the claimed properties follow from the
algorithm and its invariants that are stated as comments in Algorithm 1. �

It is easy to verify that C2k+1 is equimatchable if and only if k ≤ 3. In the sequel, we prove a stronger result; namely, C2k+1
is not an induced subgraph of an equimatchable graph whenever k ≥ 4.

Theorem 11. Equimatchable graphs are C2k+1-free for any k ≥ 4.

Proof. Let G be an equimatchable graph and let C be an odd hole of Gwith at least 9 vertices. Then, by Lemma 8, G is factor-
critical. Therefore, every maximal matching of G leaves exactly one vertex exposed. In the rest of the proof, we construct
matchings such that the removal of the vertex set of each one of them separatesG into at least two odd components, implying
the existence of maximal matchings leaving at least two vertices of G exposed, leading to a contradiction.

Let v be any vertex of C , and let M1,M2,M3,N1,N2,N3 be the matchings and the sets of vertices whose existence are
guaranteed by Lemma 10. LetM

def
= M1∪M2∪M3, and let P = C \N[v] denote the path isomorphic to a P2k−2 obtained by the

1 A partition possibly containing empty parts. For instance, if N(v) is an independent set, then the set N1 would be empty; or if the graph G is K2n+1 , then
the sets N2 and N3 would be empty.
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Algorithm 1 BuildIsolatingMatching
Require: G is a factor-critical graph, v ∈ V (G), C ⊆ V (G)
Ensure: N1,N2,N3,M1,M2,M3 satisfy the conditions of Lemma 10

1: M ← a perfect matching of G− v.
2: while ∃e ∈ M joining two vertices x, y of V (G) \ N(v) do
3: M ← M − e.
4: ◃M is a minimal isolating matching for v.

5: ◃ Use a maximal matching of N(v).
6: while ∃xy ∈ E(G) \M such that x, y ∈ N(v) and x, y matched to vertices not in N(v) do
7: ex ← the edge incident to x in M .
8: ey ← the edge incident to y in M .
9: M ← M − ex − ey + xy.

10: ◃M is a minimal isolating matching for v.

11: ◃ PartitionM into M1,M2,M3 according to the endpoints of the edges.
12: M1 ← all edges e ∈ M with exactly two endpoints in N(v)
13: ◃M1 is a maximal matching of N(v).
14: M2 ← all edges e ∈ M with one endpoint in N(v) and the other in V (G) \ C
15: M3 ← all edges e ∈ M with one endpoint in N(v) and the other in C
16: N1

def
= V (M1), N2

def
= V (M2) ∩ N(v), N3

def
= V (M3) ∩ N(v).

17: ◃ N2 ∪ N3 is an independent set.

18: ◃ AugmentM2.
19: while ∃xy such that x ∈ N3 and y /∈ V (M1 ∪M2 ∪M3) ∪ C + v do
20: ex ← the edge incident to x in M3.
21: M2 ← M2 + xy.
22: M3 ← M3 − ex.
23: ◃ Every vertex x ∈ N3 is adjacent only to vertices of V (M1 ∪M2 ∪M3) ∪ C + v

removal of v and its two neighbors from the cycle C (we note that C ∩N(v) ⊆ N1 ∪N2 ∪N3). Recall that N ′3 ⊆ C \N[v] = P .
We denote byMP the unique perfect matching of P (see Fig. 1).

Let us first show that |N3| ≤ 2. Let u ∈ N3 and consider the matching M ′ = M1 ∪M2 ∪MP + uv. Every vertex of N3 − u
(i.e. at least two vertices) is isolated in G\V (M ′) by Lemma 10(vi). Therefore, we reach a contradiction of the form described
previously.

SinceM isolates v, G\(M+v) is randomlymatchable. Therefore, every component of G\(M+v) is randomlymatchable.
By Lemma 3, each such component is either a K2n or a Kn,n for some n ≥ 1. Let S = P \ N ′3 and let S0, S1, . . . , be the
segments (i.e. components) of S in the order they are visited when P is traversed in an arbitrary direction. The number of
these segments is clearly at most

N ′3+ 1 = |N3| + 1. Each such segment Si is in a component G(Si) ∈ G. By Observation 9,
Si contains at most 3 vertices.

We also note that N3 ≠ ∅ since otherwise P contains at most one segment with at most 3 vertices, implying that C has
at most 6 vertices, a contradiction.

In the rest of the proof we analyze the remaining two cases separately:

• |N3| = 2: Let N3 = {u1, u2} and N ′3 = {w1, w2} and M3 = {u1w1, u2w2}. Then, S contains at most three segments
S0, S1, S2. If a segment Si has three vertices, thenG(Si) ≠ G(Sj) for any other j ≠ i, implying that the removal of the vertices
of the matching M1 ∪M2 ∪MP + vu1 leaves u2 isolated and also G(Si) as an odd component, leading to a contradiction.
Therefore, |S0| , |S1| , |S2| ≤ 2; moreover, S contains at least two segments since otherwise |S| ≤ 2 implying that |P| ≤ 4,
i.e. |C | ≤ 7. We consider two cases:
– One of u1, u2 has no neighbors in S: Let without loss of generality u1 be such a vertex and let M(2) be the matching

M1 ∪ M2 + vu2 + w1x1 + w2x2 where x1 and x2 are chosen from two different components of G. Then G \ V (M(2))
contains three odd components, namely {u1} and the components containing x1 and x2, leading to a contradiction.

– Each of u1, u2 has a neighbor in S: We divide into two cases:
∗ One of w1, w2 has neighbors in two different components: Let without loss of generality w1 be such a vertex and

consider the matchingM(3)
= M1 ∪M2+ u2w2+ u1y1+w1x1 where y1 is a neighbor of u1 in S and x1 is a neighbor

of w1 in S, not in the same component as y1. The removal of V (M(3)) from G leaves three odd components, namely
{v} and the two components of G containing x1 and y1.
∗ None of w1, w2 has neighbors in two different components: In this case there are exactly two components, and

w1, w2 are adjacent. We have again two cases:
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· u1 and u2 have neighbors in two distinct components: In this case the removal of the vertices of the matching
M(4)
= M1∪M2+w1w2+u1y1+u2y2 where y1 and y2 are chosen from distinct components, leaves at least three

odd components, namely, {v} and the components of G.
· The neighbors of u1 and u2 in S are in the same component: Assumewithout loss of generality that these neighbors
are in S1 and w1, w2 are adjacent to G(S0),G(S1), respectively. In this case, choose a vertex y1 ∈ S1 adjacent to u1,
and a vertex x2 ∈ G(S0) adjacent tow1. Consider the matchingM(5)

= M1∪M2+u2w2+u1y1+w1x2. G\V (M(5))
contains at least three odd components, namely {v} and the components of G.

• |N3| = 1: Let N3 = {u} and N ′3 = {w}. Then, S contains at most two segments S0, S1 with |S0| , |S1| ≤ 3, implying that
|P| ≤ 7, i.e. |C | ≤ 10. Since C is an odd cycle with at least 9 vertices, |C | = 9, i.e. |P| = 6 and |S| = 5. We conclude
without loss of generality that |S0| = 2 and |S1| = 3, and G(S0) ≠ G(S1). Clearly, w is adjacent to both S0 and S1. We
consider two cases:
– u has a neighbor in S: Let y be a vertex of S adjacent to u, and let x be a vertex of S adjacent to w and not in the same

segment as y. Then, thematchingM1∪M2+uy+wx is amatchingwhose removal (togetherwith the edges’ endpoints)
divides G into at least three odd components. Namely, {v} and the components of G.

– u does not have a neighbor in S: We summarize the properties of u: (a) u is not in C (since otherwise w would have
3 neighbors in C), (b) u is adjacent to v ∈ V (C) and also to w ∈ V (P) ⊆ V (C) where w is at distance 4 to v on C ,
and (c) u is adjacent to at most two vertices of C − v − w, namely to the neighbors of v in C (in case they are in N1).
We now rename the vertices of C as z0, . . . , z8 such that v is renamed as z0, its neighbors are z1 and z8, the vertices
of S0 are z2 and z3, w is z4, and finally the vertices of S1 are z5, z6 and z7. By choosing the vertex z2 as v and repeating
the same construction, we either reach a contradiction, thus concluding the proof, or we find a vertex u′ adjacent
to z2 satisfying properties (a) through (c). By property (b), u′ has a neighbor in C which is at distance 4 to z2 on C;
hence, u′ is adjacent to either z6 or z7. Therefore, u′ is adjacent to both G(S0) and G(S1). Since these are two distinct
components of G, u′ ∉ G(S0) and u′ ∉ G(S1). By property (c) u′ is possibly adjacent also to {z1, z3} but not to z0,
i.e. u′ ∉ N[v]. We conclude that u′ ∈ N ′2. Let w′ ∈ N2 be the vertex matched to u′ by M2. Now consider the matching
M ′′ = M1 ∪M2 − u′w′ + vw′ + u′z2(=u′v′)+ z4z5(=wz5). Removing V (M ′′) from G leaves u isolated, and G(S0) and
G(S1) as odd components, constituting a contradiction. �

4. Conclusion

Having shown that odd holes of order at least 9 are forbidden for being equimatchable, one canwonderwhether there are
any other forbidden structures. Unfortunately, we do not have any candidate structure which might possibly be forbidden
and have no intuition onwhether or not such forbidden structures exist. However, we think that one can apply our approach
as a generic method to find an equimatchable graph containing the non-equimatchable structure H under consideration or
to prove that such an equimatchable graph does not exist.

A possible future work can be to study the impact of our result in line graphs. Since a graph is equimatchable if and only
if its line graph is well-covered, and also a graph contains a hole if and only if its line graph contains a hole, our result implies
thatwell-covered line graphs are C2k+1-free for k ≥ 4. The question iswhether this result can be generalized towell-covered
claw-free graphs or any other family containing well-covered line graphs.
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