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1 Introduction

Variants of domination play an important role in graph theory. They give rise to theoretically interest-

ing (and often difficult) problems and are widely applicable to model various real-life scenarios, see,

e.g. Haynes et al. (1998a,b). The main subject of the present work is the study of domination in lexico-

graphic product graphs. The works in the literature about domination in various product graphs have been

mostly centered around the Cartesian product, where the focus has largely been on Vizing’s conjecture

(Brešar et al. (2012)). For the lexicographic product graphs, various types of domination were inves-

tigated in the literature, including domination (Nowakowski and Rall (1996); Šumenjak et al. (2012)),

total domination (Zhang et al. (2011)), rainbow domination (Šumenjak et al. (2013)), Roman domina-

tion (Šumenjak et al. (2012)), and restrained domination (Zhang et al. (2011)). In particular, the works

of Šumenjak et al. (2012) and of Zhang et al. (2011) imply that the value of the domination number of a

nontrivial lexicographic product of two graphs can be exactly determined as a function of the domination

and total domination numbers of its factors. In this paper, we expand on these results by studying the

(inclusion-)minimal dominating sets and related notions in lexicographic product graphs.

One of the central notions for our study is that of well-dominated graphs. These are defined as graphs in

which all minimal dominating sets have the same size. Well-dominated graphs form a subclass of the more

widely studied class of well-covered graphs, defined as graphs in which all maximal independent sets are

of the same size (Plummer (1993), Hartnell (1999)). Well-dominated graphs were introduced by Finbow

et al. (1988), who characterized well-dominated graphs of girth at least 5 as well as well-dominated

bipartite graphs, and showed that within graphs of girth at least 6, well-dominated graphs coincide with

the well-covered ones. Not much work has been done on the subject since then. In particular, while the

recognition problem for the class well-covered graphs was shown to be co-NP-complete (Sankaranarayana

and Stewart (1992), Chvátal and Slater (1993)), the recognition complexity of well-dominated graphs is

not known. Characterizations of well-dominated graphs were obtained within the families of block graphs

and unicyclic graphs by Topp and Volkmann (1990), 4-connected 4-regular claw-free graphs by Gionet

et al. (2011), planar triangulations by Finbow and van Bommel (2015), and graphs without cycles of

lengths 4 and 5 by Levit and Tankus (2017).

We introduce the notion of an irreducible dominating set, a variant of the notion of a dominating set that

forms a common generalization of both minimal dominating sets and minimal total dominating sets (see

Section 3). Irreducible dominating sets are important for the characterization of minimal dominating sets

in a nontrivial lexicographic product of two graphs, which we develop in Section 4 (Theorem 4.3). Build-

ing on this characterization, we derive our main result: a characterization of the well-dominated nontrivial

lexicographic product graphs (Theorem 5.1). This characterization motivates the study of well-dominated

graphs with domination number two, for which we develop a polynomially testable characterization in

Section 6 (Theorem 6.2). More generally, using a connection with the well-known Hypergraph Transver-

sal problem we show that well-dominated graphs can be recognized in polynomial time in any class of

graphs with domination number bounded by a constant (Theorem 6.6). We conclude the paper with some

open questions.

2 Preliminaries

All graphs in this paper will be finite, simple, and undirected. An independent set in a graph is a set of

pairwise non-adjacent vertices. An independent set is said to be maximal if it is not contained in any

larger independent set. The maximum size of an independent set in a graph G is called the independence
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number of G and denoted by α(G). For u ∈ V (G), we denote by NG(u) the set of all neighbors of u in

G, and by NG[u] the closed neighborhood of u, that is, NG[u] = {u} ∪ NG(u). For a set S ⊆ V (G),
we write NG(S) for the set ∪v∈SNG(v), and NG[S] for the set ∪v∈SNG[v]. Note that for every set S,

we always have S ⊆ NG[S], while S is not necessarily a subset of NG(S). A vertex v in a graph G is

isolated if NG(v) = ∅ and universal if NG[v] = V (G). In all these notations, we may omit the index

whenever the graph is clear from the context. We denote the complement of a graph G by G and a cycle

on n vertices by Cn. We denote by 2K1 the edgeless graph with exactly two vertices.

A set D ⊆ V (G) is said to be a dominating set in G if N [D] = V (G); equivalently, if D ∩N [v] 6= ∅
for all v ∈ V (G). The minimum size of a dominating set of a graph G is called the domination number

of G and denoted by γ(G). A minimum dominating set in G is a dominating set of size γ(G). A total

dominating set in G is a set D ⊆ V (G) such that N(D) = V (G), that is, if every vertex of G has a

neighbor in D. (Note that total dominating sets exist only in graphs without isolated vertices.) The total

domination number of G, denoted by γt(G), is the minimum size of a total dominating set. A dominating

set (resp., a total dominating set) D in G is said to be minimal if it is minimal with respect to inclusion,

that is, D is a dominating set (resp., a total dominating set) that does not contain any smaller dominating

set (resp., total dominating set) in G. The maximum size of a minimal dominating set of a graph G is

called the upper domination number of G and denoted by Γ(G). A graph G is said to be well-covered if

all its maximal independent sets are of the same size, and well-dominated if all of its minimal dominating

sets are of the same size, that is, if γ(G) = Γ(G).
Let S be a set of vertices in a graph G. For x ∈ V (G), we say that x is dominated by S (or that S

dominates x) if N [x] ∩ S 6= ∅. Moreover, we say that x is totally dominated by S (or that S totally

dominates x) if N(x) ∩ S 6= ∅, and we say that x is barely dominated by S if x is dominated by S and

x is not totally dominated by S (or, equivalently, if N [x] ∩ S = {x}, that is, if x is an isolated vertex in

the subgraph of G induced by S). For two sets of vertices S and S′ in G, we say that S totally dominates

S′ if every vertex in S′ is totally dominated by S. In particular, a set S ⊆ V (G) is a total dominating set

in G if and only if S totally dominates V (G). For graph theoretic terms not defined here, see, e.g., West

(1996).

2.1 Domination number of lexicographic product graphs

The lexicographic product of two graphs G and H is the graph G[H ] (sometimes denoted also by G ◦H)

with vertex set V (G) × V (H), where two vertices (x1, y1) and (x2, y2) are adjacent if and only if either

x1x2 ∈ E(G) or x1 = x2 and y1y2 ∈ E(H). The lexicographic product of two graphs is said to be

nontrivial if both factors have at least two vertices. The projection of a given subset D ⊆ V (G) × V (H)
to the graph G is defined by pG(D) = {x ∈ V (G) : (x, y) ∈ D for some y ∈ V (H)}. For a vertex

x ∈ pG(D), we define pH,x(D) = {y ∈ V (H) : (x, y) ∈ D}. Note that every set D ⊆ V (G[H ]) can be

expressed as the disjoint union

D =
⋃

x∈pG(D)

({x} × pH,x(D)) . (1)

For further background on the lexicographic product of graphs, see, e.g., Hammack et al. (2011).

Several papers in the literature studied the value of the domination number of a nontrivial lexicographic

product of two graphs and determined the exact value in special cases, altogether giving the complete

answer. Clearly, if v is an isolated vertex in G, then G[H ] is isomorphic to the disjoint union of graphs H
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and (G − v)[H ]; in particular, this implies that γ(G[H ]) = γ(H) + γ((G− v)[H ]). It therefore suffices

to consider the case when G has no isolated vertices. Zhang et al. (2011) showed that if γ(H) = 1, then

γ(G[H ]) = γ(G). In 2012, Šumenjak et al. showed that a nontrivial lexicographic product G[H ] of a

connected graph G and a connected graph H with γ(H) ≥ 2 satisfies γ(G[H ]) = γt(G) (Šumenjak

et al., 2012, Lemma 3.3). By analyzing the proof of this result, it can be seen that the same equality holds

whenever G has no isolated vertices and γ(H) ≥ 2. Therefore, the value of the domination number of

the nontrivial lexicographic product of two graphs G and H such that G is without isolated vertices is

completely determined, as follows.

Theorem 2.1 (combining results from Šumenjak et al. (2012) and Zhang et al. (2011)). If G is a graph

without isolated vertices and H is any graph, then

γ(G[H ]) =

{

γ(G), if γ(H) = 1;

γt(G), if γ(H) ≥ 2.

It is worth mentioning that these works were preceded by the observation that for every graphG without

isolated vertices, we have γ(G[2K1]) = γt(G). This relation was noted by Kratsch and Stewart in 1997,

who used it to reduce the total dominating set problem to the dominating set problem (Kratsch and Stewart

(1997)). The proof of equality γ(G[2K1]) = γt(G) is implicit in the proof of Lemma 2 from Kratsch and

Stewart (1997).

Let us also remark that Theorem 6 from Sitthiwirattham (2013) regarding the value of the domination

number of the lexicographic product of two graphs where the base graph is complete is not true. The

theorem states that for every connected graph H , we have γ(Kn[H ]) = γ(H). Theorem 2.1 contradicts

this. Namely, if H is a graph with γ(H) ≥ 2 and n ≥ 2, then by Theorem 2.1, we have γ(Kn[H ]) =
γt(Kn) = 2. Hence, for every connected graph H with γ(H) ≥ 3 and every n ≥ 2 the equality

γ(Kn[H ]) = γ(H) stated in Theorem 6 in Sitthiwirattham (2013) is false.

For the sake of completeness, we give in the following corollary a formula for the domination number

of the lexicographic product of any two graphs.

Corollary 2.2. Let G and H be any two graphs and let I be the set of isolated vertices in G. Then

γ(G[H ]) =







|V (G)|γ(H), if G is edgeless;

γ(G), if G has an edge and γ(H) = 1;

γt(G− I) + |I|γ(H), if G has an edge and γ(H) ≥ 2.

Proof: Let m = |I|. If G is edgeless, then I = V (G) and G[H ] is isomorphic to the disjoint union of

m copies of H , hence γ(G[H ]) = mγ(H). Suppose now that G has an edge. Setting G′ = G − I , we

observe that the product G[H ] is isomorphic to the disjoint union of the product G′[H ] and m copies of

H , hence γ(G[H ]) = γ(G′[H ]) +mγ(H). By Theorem 2.1, we have

γ(G′[H ]) =

{

γ(G′), if γ(H) = 1;

γt(G
′), if γ(H) ≥ 2 ,

which implies

γ(G[H ]) =

{

γ(G′) +m, if γ(H) = 1;

γt(G
′) +mγ(H), if γ(H) ≥ 2 ,

Using the fact that γ(G) = γ(G′) +m, the result follows.
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3 Reducible and irreducible dominating sets

An important notion for our characterization of minimal dominating sets of the lexicographic product

graphs is the notion of irreducible dominating sets, which we now introduce.

Definition 3.1. A dominating set D is said to be reducible if there exists a vertex u ∈ D such that D\{u}
is also a dominating set of G and the sets of vertices that are totally dominated by D and D \{u} coincide

(that is, N(D) = N(D \ {u})). A dominating set is irreducible if it is not reducible.

To illustrate these notions, we now list some easily verifiable facts and examples:

• A dominating set D is reducible if and only if for some u ∈ D, the set D \ {u} totally dominates

N [u].

• Every minimal dominating set is irreducible. Consequently, every dominating set contains an irre-

ducible dominating set.

• Every minimal total dominating set is irreducible.

• Suppose that D is a dominating set inducing a subgraph of maximum degree at most one (that is,

every vertex in D has at most one neighbor in D). Then, D is irreducible.

• Consider a complete graph Kn on n vertices with n ≥ 3. The only irreducible dominating sets in

Kn are those of size 1 or 2, that is, minimal dominating sets and minimal total dominating sets.

The next proposition compares a well-known characterization of minimal dominating sets with a char-

acterization of irreducible dominating sets. In order to state the proposition, we need to introduce some

more terminology. Given a set D ⊆ V (G), a vertex u ∈ D and a vertex v ∈ V (G), we say that v is a

D-private closed neighbor of u if N [v] ∩D = {u}. Note that u is a D-private closed neighbor of itself

if and only if u is barely dominated by D. If u is totally dominated by D, then every D-private closed

neighbor v of u is an element of V (G) \D that is not adjacent to any vertex in D \ {u}. Moreover, every

vertex in D with a unique neighbor in D will be called a D-leaf.

Proposition 3.2. For any graph G and a dominating set D ⊆ V (G), the following holds:

1. D is minimal if and only if every vertex in D has a D-private closed neighbor.

2. D is irreducible if and only if every vertex in D either has a D-private closed neighbor or is

adjacent to a D-leaf.

Consequently, D is reducible if and only if it has a vertex that: (i) does not have any D-private closed

neighbors and (ii) is not adjacent to any D-leaf.

Proof: Let D be a dominating set in G. Suppose first that D is minimal, let u ∈ D, and let D′ = D \{u}.

If u has no D-private closed neighbor, then for every vertex v ∈ V (G), we have N [v] ∩ (D \ {u}) 6= ∅.

Hence, D′ is a dominating set in G, contradicting the minimality of D. This shows that every vertex in

D has a D-private closed neighbor. Conversely, if every vertex u ∈ D has a D-private closed neighbor,

say xu, then for every proper subset D′ ⊂ D and every u ∈ D \D′, we have N [xu] ∩D = {u}, which

implies N [xu] ∩D′ ⊆ (N [xu]∩D) \ {u} = ∅, hence the set D′ does not dominate xu. It follows that D

is a minimal dominating set.
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Suppose next that D is irreducible and suppose for the sake of contradiction that some vertex u ∈ D

does not have any D-private closed neighbor and is not adjacent to any D-leaf. Since u does not have any

D-private closed neighbor, the set D \ {u} is also a dominating set of G. Thus, since D is irreducible,

the sets of vertices totally dominated by D and D \ {u} do not coincide, that is, there is a vertex v ∈
N(D) \ (N(D \ {u})). Then N(v)∩D = {u} and since u does not have any D-private closed neighbor,

we infer that v ∈ D. It follows that v is a D-leaf adjacent to u, contradicting the assumption that u is not

adjacent to any D-leaf.

Finally, suppose that every vertex in D either has a D-private closed neighbor or is adjacent to a D-leaf

and, for the sake of contradiction, that D is reducible. Then, there exists a vertex u ∈ D such that D \{u}
is a dominating set of G and N(D) = N(D \ {u}). The fact that D \ {u} is a dominating set implies

that u does not have a D-private closed neighbor, and consequently u is adjacent to some D-leaf, say v.

We thus have N(v) ∩D = {u}, which implies that v ∈ N(D) \ (N(D \ {u})), contrary to the fact that

N(D) = N(D \ {u}). This completes the proof.

4 Minimal dominating sets in lexicographic product graphs

In this section we investigate the structure of dominating sets and of minimal dominating sets in the

lexicographic product of two graphs.

4.1 Dominating sets

The following lemma characterizes when a vertex in the lexicographic product graph is dominated by a

given set.

Lemma 4.1. For graphs G and H , a vertex (g, h) ∈ V (G[H ]), and a set D ⊆ V (G) × V (H), the

following conditions are equivalent:

1. D dominates (g, h) in G[H ].

2. Either pG(D) totally dominates g in G or pH,g(D) dominates h in H .

In particular, if (g, h) is dominated by D in G[H ], then g is dominated by pG(D) in G.

Proof: The definition of the lexicographic product implies that the closed neighborhood of a vertex (g, h)
in G[H ] is given by NG[H][(g, h)] = ({g} × NH [h]) ∪ (NG(g) × V (H)). Hence, the condition that

D dominates (g, h) in G[H ] is equivalent to the condition that either D ∩ ({g} × NH [h]) 6= ∅ or D ∩
(NG(g)×V (H)) 6= ∅. The former condition is equivalent to the condition that pH,g(D)∩NH [h] 6= ∅ (that

is, pH,g(D) dominates h in H), while the latter one is equivalent to the condition that pG(D)∩NG(g) 6= ∅
(that is, pG(D) totally dominates g in G).

It remains to show that if (g, h) is dominated by D in G[H ], then g is dominated by pG(D) in G. If g

is totally dominated by pG(D) in G, then it is also dominated. If g is not totally dominated by pG(D) in

G, then by the above the set pH,g(D) dominates h in H . In particular, pH,g(D) 6= ∅, which implies that

g ∈ pG(D). Hence, g is dominated by pG(D) in G also in this case.

Next, we characterize the dominating sets in the lexicographic product of two graphs. Recall that given

a set S ⊆ V (G), a vertex x ∈ V (G) is said to be barely dominated by S if N [x] ∩ S = {x} (that is, if x

is an isolated vertex in the subgraph of G induced by S).
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Proposition 4.2. For any two graphs G and H , a set D ⊆ V (G) × V (H) is a dominating set in G[H ] if

and only if pG(D) is a dominating set in G such that for every vertex g ∈ V (G) that is barely dominated

by pG(D), the set pH,g(D) is a dominating set in H .

Proof: Suppose first that D is a dominating set in G[H ]. Fix an arbitrary vertex h ∈ V (H). For every

vertex g ∈ V (G), set D dominates vertex (g, h) in G[H ]. Hence, by Lemma 4.1, set pG(D) dominates

g in G. Since this holds for an arbitrary vertex of G, we infer that pG(D) is a dominating set in G.

Moreover, if g ∈ V (G) is a vertex that is barely dominated by pG(D), then, since (g, h) is dominated by

D, Lemma 4.1 implies that pH,g(D) dominates h in H . Since this holds for an arbitrary vertex h of H ,

we infer that pH,g(D) is a dominating set in H , as claimed.

Conversely, suppose that pG(D) is a dominating set in G such that for every vertex g ∈ V (G) that

is barely dominated by pG(D), the set pH,g(D) is a dominating set in H . Consider an arbitrary vertex

(g, h) ∈ V (G[H ]). If pG(D) totally dominates g, then by Lemma 4.1, we conclude that D dominates

(g, h). Suppose that g ∈ V (G) is a vertex that is not totally dominated by pG(D). Since pG(D) is

a dominating set in G, vertex g is barely dominated by D. By assumption, pH,g(D) is a dominating

set in H . Therefore, pH,g(D) dominates h in H , and we again conclude that D dominates (g, h) using

Lemma 4.1.

Proposition 4.2 leads to an alternative proof of Theorem 2.1.

Proof of Theorem 2.1: Let G be a graph without isolated vertices and suppose first that γ(H) = 1. Let D

be a minimum dominating set in G[H ]. Then by Proposition 4.2 it follows that pG(D) is a dominating set

in G. Hence γ(G[H ]) = |D| ≥ |pG(D)| ≥ γ(G), where the first inequality follows from the definition

of the projection map pG and the second one from the fact that pG(D) is a dominating set in G. Let now

D1 be a minimum dominating set in G, let h be a universal vertex in H , and let D = D1 × {h}. It

follows from Proposition 4.2 that D is a dominating set in G[H ]. Hence γ(G[H ]) ≤ |D| = |D1| = γ(G).
Therefore γ(G[H ]) = γ(G).

Suppose now that γ(H) ≥ 2. Let Dt be a minimum total dominating set in G. Then by Proposition 4.2,

it follows that Dt × {h} is a dominating set in G[H ], for every h ∈ V (H). This shows that

γ(G[H ]) ≤ γt(G). (2)

Let D be a minimum dominating set of G[H ]. Let A ⊆ pG(D) be the set of vertices of pG(D) that are

strongly dominated by pG(D), and let B = pG(D) \A, that is, B is the set of vertices barely dominated

by pG(D). It follows from Proposition 4.2 that pG(D) is a dominating set of G and for every x ∈ B, the

set pH,x(D) is a dominating set of H . We conclude that

|D| =
∑

x∈pG(D)

|pH,x(D)| =
∑

x∈A

|pH,x(D)|+
∑

x∈B

|pH,x(D)| ≥ |A|+ γ(H)|B| ≥ |A|+ 2|B| .

Since G has no isolated vertices, we can associate to every vertex b ∈ B a neighbor b′ of b in G. Let

B′ = {b′ : b ∈ B}. Clearly, |B′| ≤ |B| and it is easy to see that the set A ∪B ∪B′ is a total dominating

set in G. We conclude that

γ(G[H ]) = |D| ≥ |A|+ 2|B| ≥ |A|+ |B|+ |B′| ≥ γt(G). (3)

Inequalities (2) and (3) imply that γ(G[H ]) = γt(G).
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4.2 Minimal dominating sets

We now develop a characterization of minimal dominating sets in the lexicographic product G[H ]. In

order to state it, we need some additional terminology. Let D be an irreducible dominating set in a graph

G. For a vertex x ∈ D we say that x is D-redundant if D \{x} is a dominating set in G (equivalently, if x

does not have any D-private closed neighbors). Using this terminology, the characterization of irreducible

dominating sets given by Proposition 3.2 can be restated as follows: a dominating set D is irreducible if

and only if every D-redundant vertex is adjacent to a D-leaf.

The characterization of minimal dominating sets in the product graph G[H ] is given in Theorem 4.3.

The theorem gives necessary and sufficient conditions that a set D ⊆ V (G[H ]) has to satisfy in order

to be a minimal dominating set in G[H ]. The conditions are expressed in terms of conditions on the set

pG(D), which is a subset of V (G), and the sets pH,x(D) for x ∈ pG(D), which are subsets of V (H).
Note that, due to relation (1), the theorem also yields a constructive way obtaining all minimal dominating

sets in D.

Theorem 4.3. For any two graphs G and H , a set D ⊆ V (G) × V (H) is a minimal dominating set in

G[H ] if and only if the following conditions hold:

(i) pG(D) is an irreducible dominating set in G;

(ii) for every vertex x ∈ pG(D),

the set pH,x(D) is a

{

subset of size 1 of V (H), if x is totally dominated by pG(D) in G;

minimal dominating set in H, if x is barely dominated by pG(D) in G;

(iii) every pG(D)-redundant vertex is adjacent to a pG(D)-leaf y such that the set pH,y(D) is not domi-

nating in H .

Proof: First, we establish necessity of the three conditions. Let D ⊆ V (G) × V (H) be a minimal

dominating set in G[H ]. We show each of the three conditions one by one.

(i) Proposition 4.2 implies that pG(D) is a dominating set in G. To prove that (i) holds, it remains to

prove that pG(D) is irreducible. Suppose that pG(D) is a reducible dominating set in G. Then there exists

u ∈ pG(D) such that pG(D)\{u} is a dominating set in G and the sets of vertices of G totally dominated

by pG(D) and pG(D) \ {u} coincide. Let D′ = D \ ({u} × V (H)). Observe that D′ is a proper subset

of D and pG(D
′) = pG(D) \ {u}. We claim that D′ is also a dominating set in G[H ]. Suppose this is

not the case, that is, there exists a vertex (g, h) of G[H ] not dominated by D′. Since (g, h) is dominated

by D but not by D′, all elements of NG[H][(g, h)] ∩D have u as first coordinate. If g 6= u, then we infer

that g is adjacent to u in G; in particular, g is totally dominated by pG(D) in G. Since the sets of vertices

of G totally dominated by pG(D) and pG(D) \ {u} coincide, g is totally dominated by pG(D
′), which

further implies that (g, h) is dominated by D′. If g = u, then since pG(D
′) is a dominating set in G, it

follows that u is totally dominated by pG(D
′), and consequently, (u, h) is dominated by D′. This shows

that D′ is a dominating set and contradicts the assumption that D is a minimal dominating set. It follows

that pG(D) is an irreducible dominating set in G.

(ii) Let x ∈ pG(D) be totally dominated by pG(D). Since x ∈ pG(D), it follows that pH,x(D) is

non-empty. We claim that it has size 1. Suppose to the contrary that h1, h2 ∈ pH,x(D) for h1 6= h2.

Let D′ = D \ {(x, h2)}. We claim that D′ is also a dominating set in G[H ]. For g ∈ V (G) \ {x} and
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h ∈ V (H), it is clear that (g, h) is dominated by (x, h1) if and only if it is dominated by (x, h2). Since

(x, h1), (x, h2) ∈ D and D is a dominating set in G[H ], it follows that (g, h) is dominated by D′. It

remains to show that D′ dominates vertices with first coordinate equal to x. However, this easily follows

from the fact that x is totally dominated by pG(D). We conclude that D′ is a dominating set in G[H ].
Since D′ is a proper subset of D, this contradicts the assumption that D is a minimal dominating set in

G[H ]. The obtained contradiction shows that |pH,x(D)| = 1.

Suppose now that x ∈ pG(D) is barely dominated by pG(D). Then by Proposition 4.2, the set pH,x(D)
is a dominating set in H . Moreover, pH,x(D) is also a minimal dominating set in H , since otherwise, if

DH is a dominating set in H that is properly contained in pH,x(D), one could apply Proposition 4.2 to

infer that the set (D\({x}×V (H)))∪({x}×DH) is a dominating set in G[H ] that is properly contained

in D, contradicting the minimality of D. This establishes (ii).

(iii) Suppose that (iii) fails, that is, there exists a pG(D)-redundant vertex x such that for every pG(D)-
leaf y adjacent to x, the set pH,y(D) is dominating in H . Let D′ = D\({x}×V (H)). We claim that D′ is

also a dominating set in G[H ]. Using Proposition 4.2, it is sufficient to verify that pG(D
′) is a dominating

set in G such that for every vertex g ∈ V (G) that is barely dominated by pG(D
′), the set pH,g(D

′) is a

dominating set in H . Observe that pG(D
′) = pG(D) \ {x}. The fact that x is D-redundant implies that

pG(D
′) is a dominating set in G. Now, let g ∈ V (G) be a vertex that is barely dominated by pG(D

′).
Then g ∈ pG(D

′) and g ∈ pG(D). In particular, this implies that pH,g(D
′) = pH,g(D). If g is barely

dominated also by pG(D), then the fact that D is a dominating set in G[H ] and Proposition 4.2 imply that

the set pH,g(D
′) is a dominating set in H . If g is not barely dominated by pG(D), then g is a pG(D)-leaf

in G adjacent to x. By assumption, the set pH,g(D
′) is a dominating set in H . By Proposition 4.2, we

conclude that D′ is a dominating set, contradicting the assumption that D is a minimal dominating set.

The obtained contradiction shows that (iii) holds.

In the rest of the proof, we show that the three conditions are also sufficient for D to be a minimal

dominating set. Suppose that conditions (i)–(iii) hold. The fact that D is a dominating set in G[H ]
follows from Proposition 4.2.

It remains to prove minimality. Let (g, h) ∈ D be arbitrary, and define the set D′ as D′ = D \{(g, h)}.

If g is barely dominated by pG(D), then condition (ii) implies that pH,g(D) is a minimal dominating set

in H . Note that h ∈ pH,g(D). Since pH,g(D) \ {h} is not a dominating set in H , there exists a vertex h′

in H that is not dominated by pH,g(D) \ {h}. It follows that vertex (g, h′) is not dominated by the set of

vertices in D′ with first coordinate g. Since g is barely dominated by pG(D), no vertex in G[H ] with first

coordinate g is adjacent to a vertex in D with first coordinate other than g. We infer that vertex (g, h′) is

not dominated by D′, contradicting the assumption that D′ is a dominating set in G[H ].

Next suppose that g is totally dominated by pG(D). Since (g, h) ∈ D and g is totally dominated by

D, condition (ii) implies that there exists a vertex h ∈ V (H) such that pH,g(D) = {h}. We conclude

that pG(D
′) = pG(D) \ {g}. If g is not pG(D)-redundant, then pG(D) \ {g} is not a dominating set

in G, and by Proposition 4.2 it follows that D′ is not a dominating set in G[H ]. Now suppose that g is

pG(D)-redundant. By condition (iii), vertex g is adjacent to a pG(D)-leaf, say g1, such that pH,g1(D)
is not a dominating set in H . Since pH,g1(D

′) = pH,g1(D) and g1 is barely dominated by D′, it follows

from Proposition 4.2 that D′ is not a dominating set in G[H ]. We conclude that no proper subset of D is a

dominating set in G[H ] and hence D is a minimal dominating set in G[H ]. This completes the proof.

Note that assuming condition (ii) in Theorem 4.3, condition (iii) can be equivalently stated as follows:

every pG(D)-redundant vertex is adjacent to a pG(D)-leaf y such that the unique vertex in pH,y(D) is not
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universal in H . This condition is trivially satisfied if γ(H) ≥ 2. Therefore, for the case when γ(H) ≥ 2,

Theorem 4.3 takes on the following simpler formulation.

Theorem 4.4. For any two graphs G and H with γ(H) ≥ 2, a set D ⊆ V (G) × V (H) is a minimal

dominating set in G[H ] if and only if the following conditions hold:

(i) pG(D) is an irreducible dominating set in G;

(ii) for every vertex x ∈ pG(D),

the set pH,x(D) is a

{

subset of size 1 of V (H), if x is totally dominated by pG(D) in G;

minimal dominating set in H, if x is barely dominated by pG(D) in G.

It might be worth pointing out that in general, conditions (i) and (ii) alone do not imply condition (iii).
This is shown by the following example.

Example 4.5. Let G be the 5-vertex path with vertices g1 g2 g3 g4 g5 along the path and let H be the

3-vertex path with vertices h1 h2 h3 along the path. Let D = {(g2, h2), (g3, h1), (g4, h2)}. Then D is a

dominating set in G[H ]. Moreover, we have pG(D) = {g2, g3, g4} and the set pG(D) is an irreducible

dominating set in G. It follows that condition (i) from Theorem 4.3 holds. Observe that every vertex from

pG(D) is totally dominated by pG(D). It is now easy to see that condition (ii) from Theorem 4.3 holds.

However, it is not difficult to verify that D′ = {(g2, h2), (g4, h2)}, which is a proper subset of D, is also

a dominating set in G[H ]. We conclude that D is not a minimal dominating set in G[H ], but satisfies

conditions (i) and (ii) from Theorem 4.3.

For later use, we establish in the following proposition a lower bound on the upper domination number

Γ of the lexicographic product of two graphs.

Proposition 4.6. For every two graphs G and H , it holds that Γ(G[H ]) ≥ α(G)Γ(H).

Proof: Let S be a maximum independent set in G, let A be a minimal dominating set in H of size Γ(H),
and let D = S × A. Since |S| = α(G) and |A| = Γ(H), Theorem 4.3 implies that D is a minimal

dominating set in G[H ] of size α(G)Γ(H). This shows that Γ(G[H ]) ≥ α(G)Γ(H).

Remark 4.7. The value of Γ(G[H ]) cannot be bounded from above by any function of the product

α(G)Γ(H). For example, let G be the graph obtained from two copies of Kn (for n ≥ 4) joined by

a perfect matching and let H = C4. Then Γ(G[H ]) = n and α(G)Γ(H) = 2 · 2 = 4.

5 Well-dominated lexicographic product graphs

In this section we characterize well-dominated nontrivial lexicographic product graphs. Recall that a graph

is well-dominated if all of its minimal dominating sets are of the same size. A lexicographic product graph

G[H ] is connected if and only if G is connected (see, e.g., Corollary 5.14 in Hammack et al. (2011)). In

particular, if G has components G1, . . . , Gk, then the components of G[H ] are G1[H ], . . . , Gk[H ]. It is

not difficult to see that a graph is well-dominated if and only if all of its components are well-dominated.

Therefore, when characterizing nontrivial lexicographic product graphs that are well-dominated, we may

without loss of generality restrict our attention to the case of nontrivial products G[H ] such that G is

connected. The following theorem states the corresponding characterization.
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Theorem 5.1. A nontrivial lexicographic product, G[H ], of a connected graph G and a graph H is

well-dominated if and only if one of the following conditions holds:

(i) G is well-dominated and H is complete, or

(ii) G is complete and H is well-dominated with γ(H) = 2.

Proof: We start by establishing the simpler direction, namely that each of the two conditions is sufficient

for the product graph to be well-dominated. Suppose first that G is a connected well-dominated graph

and H is complete. Let D be a minimal dominating set in G[H ]. Since H is complete, conditions (i)
and (ii) of Theorem 4.3 imply that pG(D) is an irreducible dominating set in G such that for each vertex

x ∈ pG(D), we have |pH,x(D)| = 1. Consequently, |D| = |pG(D)|. We claim that pG(D) is in fact a

minimal dominating set in G. If this were not the case, then pG(D) would contain a pG(D)-redundant

vertex, say x. By condition (iii) of Theorem 4.3, vertex x is adjacent to a pG(D)-leaf y such that the set

pH,y(D) is not dominating in H . However, this contradicts the fact that pH,y(D) is a non-empty set in

a complete graph. It follows that no vertex in pG(D) is pG(D)-redundant; hence, pG(D) is a minimal

dominating set. LetD′ be another minimal dominating set inG[H ]. Then, by the same arguments, pG(D
′)

is also a minimal dominating set in G, and |D′| = |pG(D′)|. Since G is well-dominated, it follows that

|pG(D)| = |pG(D′)| and consequently |D| = |D′|. This shows that any two minimal dominating sets in

G[H ] are of the same size; hence G[H ] is a well-dominated graph.

Second, suppose that G is complete and H is well-dominated with γ(H) = 2. We claim that all

minimal dominating sets in G[H ] are of size 2. Let D be a minimal dominating set in G[H ]. Then by

Theorem 4.4 the set pG(D) is an irreducible dominating set in G. Since G is complete, any irreducible

dominating set in G is of size one or two. Suppose first that |pG(D)| = 1 and let pG(D) = {x}.

By Theorem 4.4, the set pH,x(D) is a minimal dominating set in H . Since H is well-dominated with

γ(H) = 2, it follows that |pH,x(D)| = 2, and therefore |D| = 2. Suppose now that |pG(D)| = 2 and let

pG(D) = {x, y}. Then x and y are both totally dominated by pG(D) and therefore, again by Theorem 4.4,

|pH,x(D)| = |pH,y(D)| = 1. We conclude that |D| = 2. This shows that all minimal dominating sets in

G[H ] are of size 2, as claimed. Therefore, G[H ] is well-dominated with γ(H) = 2.

It remains to show that the disjunction of the two conditions is also necessary for the product graph

to be well-dominated. Suppose that the product G[H ] is well-dominated. First, we show that H is well-

dominated. Suppose this is not the case and let D1 and D2 be two minimal dominating sets of H with

|D1| 6= |D2|. Let S be a maximal independent set in G. We claim that S ×D1 and S ×D2 are minimal

dominating sets of G[H ]. Observe that pG(S × Di) = S for i ∈ {1, 2}, and since S is a maximal

independent set, it is also a minimal dominating set in G, and hence S is an irreducible dominating set

in G. Moreover, since S is minimal dominating set, it follows that there are no S-redundant vertices.

Observe that for every x ∈ S we have pH,x(S × Di) = Di. Hence, Theorem 4.3 implies that S × D1

and S × D2 are minimal dominating sets in G[H ]. The fact that S × D1 and S × D2 are of different

cardinalities now contradicts the assumption that G[H ] is well-dominated.

We consider three cases depending on the value of γ(H). Suppose first that γ(H) = 1. Since H is

well-dominated, all minimal dominating sets in H are of size 1; hence, H is a complete graph. We claim

that G is well-dominated (and thus condition (i) will hold). Let D1 and D2 be two minimal dominating

sets in G. The minimality of D1 and D2 implies that G contains no D1-redundant (resp. D2-redundant)

vertices. Let h be an arbitrary vertex of H . By Theorem 4.3, the sets D1×{h} and D2×{h} are minimal
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dominating sets in G[H ]. Since all minimal dominating sets in G[H ] are of the same size, it follows that

|D1| = |D2|; hence, G is well-dominated, as claimed.

Suppose now that γ(H) = 2. We claim that in this case G is complete (and thus condition (ii) will

hold). Suppose, to the contrary, that G is not complete. Then, since G is connected, it contains a pair

of vertices, say x and y, at distance two. Let u be a common neighbor of x and y. Let S be a maximal

independent set in G containing x and y and let A be a minimum dominating set in H . Since S is a

maximal independent set in G, it follows that S is a minimal dominating set in G. Moreover, as there are

no edges between vertices inside S, it follows that every vertex of S is barely dominated by S. Thus, we

can apply Theorem 4.4 to infer that S ×A is a minimal dominating set in G[H ]; its size is 2|S|. Clearly,

the set S ∪ {u} is a dominating set in G. Now, let S′ be an inclusion-minimal subset of S ∪ {u} such

that N [S′] = N [S ∪ {u}] (that is, S′ is dominating in G) and N(S′) = N(S ∪ {u}). Since u is the only

neighbor of x in S ∪ {u}, we infer that u ∈ S′. Moreover, since u ∈ N(S ∪ {u}), we have u ∈ N(S′). It

follows that S′ ∩N [u] contains u and at least one neighbor of u. Take any vertex h ∈ V (H) and consider

the set D defined with D = ((S′ ∩N [u])×{h})∪ ((S′ \N [u])×A). Since every vertex in S′ ∩N [u] is

totally dominated by S′ and every vertex in S′ \N [u] is barely dominated by S′, Theorem 4.4 implies that

D is a minimal dominating set in G[H ]. Since G[H ] is well-dominated, the cardinality of D must be equal

to that of S×A. Therefore, |N [u]∩S′|+2|S′\N [u]| = 2|S|, or, equivalently, 2|S′| = 2|S|+ |N [u]∩S′|.
Since |N [u] ∩ S′| ≥ 2 and |S′| ≤ |S|+ 1, we obtain 2|S′| ≤ 2(|S|+ 1) ≤ 2|S|+ |N [u] ∩ S′| = 2|S′|,
therefore equalities must hold throughout. It follows that |N [u] ∩ S′| = 2 and |S′| = |S| + 1, which

implies that S′ = S ∪ {u} and therefore 3 = |{u, x, y}| ≤ |N [u] ∩ S′|, a contradiction.

Finally, suppose that γ(H) ≥ 3. Since γt(G) ≤ 2γ(G) (see, e.g., Bollobás and Cockayne (1979)) and

γ(G) ≤ α(G), we have γt(G) ≤ 2α(G). In addition, Theorem 2.1 gives γ(G[H ]) = γt(G); therefore,

γ(G[H ]) ≤ 2α(G). Moreover, by Proposition 4.6 it follows that Γ(G[H ]) ≥ α(G)Γ(H) ≥ 3α(G). Since

G[H ] is well-dominated, it follows that Γ(G[H ]) = γ(G[H ]). We obtain that

γt(G) = γ(G[H ]) = Γ(G[H ]) ≥ 3α(G),

a contradiction with γt(G) ≤ 2α(G). We conclude that G[H ] is not well-dominated whenever γ(H) ≥ 3.

This completes the proof.

6 Well-dominated graphs with small domination number

Theorem 5.1 motivates the following question: What are the well-dominated graphs with domination

number two? We address this question by giving a characterization of such graphs. We first recall some

basic terminology. A clique in a graph is a set of pairwise adjacent vertices. A clique is maximal if it is

not contained in any larger clique. A triangle in a graph G is a clique of size three. A graph is said to be

triangle-free if it has no triangles.

Since every maximal independent set in a graph is a minimal dominating set, a well-dominated graph

with γ(G) = 2 is also well-covered with α(G) = 2. The following simple lemma characterizes well-

covered graphs with α(G) = 2.

Lemma 6.1. A graph G is well-covered with α(G) = 2 if and only if its complement, G, is a triangle-free

graph without isolated vertices.

Proof: A graph G is well-covered with α(G) = 2 if and only if all maximal cliques of G are of size two.

This condition is equivalent to G being triangle-free and without isolated vertices.
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To state the characterization of well-dominated graphs with γ = 2, we need to introduce some more

notation. For a subset X of the vertex set of a graph G, we denote by N [X ] the set V (G) \ N [X ]. For

two graphs G and H , we say that a set S ⊆ V (G) induces an H if the subgraph of G induced by S is

isomorphic to H .

Theorem 6.2. A graph G is well-dominated with γ(G) = 2 if and only if the following conditions hold:

(i) G is a triangle-free graph without isolated vertices.

(ii) For every two triangles T and T ′ in G such that T ∪ T ′ induces a C6, the set T ∪ N [T ′] is not a

dominating set in G.

Proof: First, we establish necessity of the two conditions. Let G be a well-dominated graph with γ(G) =
2. Condition (i) follows from Lemma 6.1. Now, consider a pair of triangles T and T ′ in G such that

T ∪ T ′ induces a C6. Suppose for a contradiction that D = T ∪ N [T ′] is a dominating set in G. Then

there exists a minimal dominating set D′ such that D′ ⊆ D. Since the vertices of T ′ cannot be dominated

by N [T ′], they have to be dominated by the vertices of T . However, since T ∪ T ′ induces a C6, no vertex

of T dominates two vertices of T ′, and therefore all the three vertices of T must be in D′. Therefore,

|D′| ≥ 3, contradicting the assumption that G is well-dominated with γ(G) = 2.

Now, we establish sufficiency. Suppose that G is a graph satisfying conditions (i) and (ii). By

Lemma 6.1, condition (i) implies that G is well-covered with α(G) = 2. Since G does not have any

isolated vertices, G does not have any universal vertices, thus γ(G) ≥ 2. This inequality, combined with

the inequality γ(G) ≤ α(G) and α(G) = 2, implies γ(G) = 2. Suppose for a contradiction that G is not

well-dominated. Then, G contains a minimal dominating set D of size at least 3. Let a, b, c ∈ D be three

distinct vertices in D. Since D is minimal, each one of a, b, and c has a D-private closed neighbor, say

a′, b′, and c′, respectively, where the three vertices a′, b′, and c′ are pairwise distinct. Let T = {a, b, c}
and T ′ = {a′, b′, c′}. Note that for every t ∈ T , if its D-private closed neighbor t′ is in T , then t′ = t.

Next, observe that T is a triangle in G since if vertices a and b were non-adjacent (say), then {a, b, c′}
would be an independent set of size 3 in G, contradicting α(G) = 2. The fact that T is a triangle and the

definition of T ′ imply that D ∩ T ′ = ∅; in particular, T ∩ T ′ = ∅. A similar argument as the one applied

earlier to T shows that T ′ is a triangle. Therefore, T ∪ T ′ induces a C6. It now suffices to show that

D ⊆ T ∪N [T ′], as this will imply that T ∪N [T ′] is a dominating set in G and contradict condition (ii).
Let v ∈ D. Clearly, if v ∈ T , then v ∈ T ∪N [T ′]. So let v ∈ D \T . Suppose that v 6∈ (T ∪N [T ′]). Then

v ∈ N(T ′) \T , that is, there exists a vertex in T ′, say (w.l.o.g.) a′, such that a′ is adjacent to v. However,

this is impossible since a′ is a D-private closed neighbor of a, cannot be adjacent to v ∈ D \ {a}. This

completes the proof.

To the best of our knowledge, the computational complexity of recognizing well-dominated graphs is

open. Since conditions (i) and (ii) in Theorem 6.2 are polynomially testable, Theorem 6.2 implies the

following partial result.

Corollary 6.3. The problem of recognizing well-dominated graphs can be solved in polynomial time in

the class of graphs G with γ(G) = 2.

More generally, we now argue that for every fixed k, the problem of recognizing well-dominated graphs

can be solved in polynomial time in the class of graphs {G : γ(G) = k}. We first recall some terminology

related to hypergraphs (see, e.g., Berge (1989)). A hypergraph H is a pair (V, E) where V = V (H) is a
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finite set of vertices and E = E(H) is a set of subsets of V , called hyperedges. A vertex set X ⊆ V is

called a transversal of H if X intersects every hyperedge of H, and it is called a minimal transversal if it

is a transversal that does not properly contain any other transversal. Let H∗ denote the hypergraph with

vertex set V (H) having as hyperedges exactly the minimal transversals of H. A hypergraph is said to be

Sperner (or: a clutter) if no hyperedge of H contains another hyperedge.

The HYPERGRAPH TRANSVERSAL problem is the decision problem that takes as input two Sperner

hypergraphs H and H′ and asks whether H′ = H∗. This is a well studied problem whose computational

complexity status is a notorious open problem. As shown by Fredman and Khachiyan (1996), the problem

admits a quasi-polynomial-time solution (an algorithm running in time no(logn) where n is the total input

size). Moreover, several special cases have been shown to be solvable in polynomial time. For our

purpose, polynomial-time solvability of the following special case will be useful, shown by Eiter and

Gottlob (1995) and by Boros et al. (1998) (in the equivalent context of dualization of monotone Boolean

functions):

Theorem 6.4 (Eiter and Gottlob (1995), Boros et al. (1998)). For every positive integer k, the HYPER-

GRAPH TRANSVERSAL problem is solvable in polynomial time if all hyperedges of one of the two hyper-

graphs H and H′ are of size at most k.

Theorem 6.4 has the following consequence:

Corollary 6.5. For every positive integer k, the following problem is solvable in polynomial time: Given

a Sperner hypergraph H, determine whether all minimal transversals of H are of size k.

Proof: We proceed as follows: first, we generate all O(|V (H)|k) subsets of size k of V (H) and test for

each of them whether it is a minimal transversal of H; this way, we obtain a hypergraphH′. The problem

now becomes that of testing whether H′ = H∗. Since all hyperedges of H′ are of size k, Theorem 6.4

implies that the problem is indeed polynomially solvable.

The announced result about the recognition of well-dominated graphs with small domination number

can now be derived from Corollary 6.5.

Theorem 6.6. For every positive integer k, the problem of recognizing well-dominated graphs can be

solved in polynomial time in the class of graphs G with γ(G) = k.

Proof: Let G = (V,E) be a graph with γ(G) = k. Consider the hypergraph HG = (V, E), where E
contains the inclusion-minimal elements of {N [v] : v ∈ V }. Observe that HG is Sperner and that the

minimal transversals of HG are exactly the minimal dominating sets of G. It follows that G is well-

dominated if and only if all minimal transversals of HG are of size k. By Corollary 6.5, this condition can

be tested in polynomial time.

7 Concluding remarks

We introduced in this paper the notion of an irreducible dominating set, a variant of dominating set gener-

alizing both minimal dominating and minimal total dominating sets. The main application of this notion

was a characterization of the minimal dominating sets in nontrivial lexicographic product graphs, which

led to a complete characterization of nontrivial lexicographic product graphs that are well-dominated.

We believe that the notions studied in this paper deserve to be investigated further. In particular, we feel

it would be interesting to develop a better understanding of the structure of irreducible dominating sets in
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general graphs, which might lead to further applications of this notion. For example, since every minimal

dominating set as well as every minimal total dominating set in a graph G is an irreducible dominating

set, the following problem naturally arises:

Problem 7.1. Characterize the graphs G such that every irreducible dominating set in G is either a

minimal dominating set or a minimal total dominating set.

Another related question is that of determining an expression for the upper domination number (the

maximum size of a minimal dominating set) of a lexicographic product graph in terms of parameters of

its factors. Furthermore, does a similar approach as the one used in this paper lead to characterizations of

minimal “dominating” sets in lexicographic product graphs with respect to other types of domination? For

example, a characterization of minimal total dominating sets in the nontrivial lexicographic product graphs

might lead to a characterization of lexicographic product graphs that are well-totally-dominated, where a

graph without isolated vertices is said to be well-totally-dominated if all its minimal total dominating sets

are of the same size (Hartnell and Rall (1997)).

Problem 7.2. Characterize the nontrivial lexicographic product graphs that are well-totally-dominated.

Finally, let us remark that, to the best of our knowledge, the computational complexity of recognizing

well-dominated graphs is in general still open.
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B. Brešar, P. Dorbec, W. Goddard, B. L. Hartnell, M. A. Henning, S. Klavžar, et al. Vizing’s conjecture:
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