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Let γ(G) and γt(G) denote the domination number and the total domination number, respectively, of a graph G with

no isolated vertices. It is well-known that γt(G) ≤ 2γ(G). We provide a characterization of a large family of graphs

(including chordal graphs) satisfying γt(G) = 2γ(G), strictly generalizing the results of Henning (2001) and Hou

and Xu (2010), and partially answering an open question of Henning (2009).
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1 Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). The neighborhood of a vertex v ∈
V (G), denoted by N(v), is the set of vertices adjacent to v. For any subset S ⊆ V (G), the neighborhood

of S is ∪v∈SN(v) and is denoted by N(S). The closed neighborhood of a subset S ⊆ V (G), denoted by

N [S], is N(S) ∪ S. In particular, the closed neighborhood of a vertex v is denoted by N [v].
A set S ⊆ V (G) of vertices is called a dominating set of G if every vertex of V (G)\S is adjacent to

a member of S, that is, N [S] = V (G). The domination number γ(G) is the minimum cardinality of a

dominating set of G. If G has no isolated vertices, a subset S ⊆ V (G) is called a total dominating set of

G if every vertex of V (G) is adjacent to a member of S, i.e., N(S) = V (G). In other words, S is a total

dominating set if S is a dominating set and the subgraph of G induced by S has no isolated vertices. The

total domination number of G with no isolated vertices, denoted by γt(G), is the minimum size of a total

dominating set of G. A minimum dominating set is called a γ-set of G and a minimum total dominating

set is called a γt-set of G.

Obtaining bounds on total domination number in terms of other graph parameters and classifying graphs

whose total domination number attains an upper or lower bound are studied by many authors (see, Chapter

2 in Henning and Yeo (2013)). For example, Cockayne and Hedetniemi (1980) showed that if G is a

connected graph with order at least 3, then γt(G) ≤ 2|V (G)|/3. Moreover, Brigham and Vitray (2000)

proved that a connected graph G satisfies γt(G) = 2|V (G)|/3 if and only if G is a cycle of length 3 or
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Fig. 1: In the given graph, N [v1] = {v1, v2, v3, v4, v5, v6}, T (v1) = {v1, v2}, D(v1) = {v3, v4} and M(v1) =
{v5, v6}. Since none of N(v5) = {v1, v2, v4, v7} and N(v6) = {v1, v2, v3, v8} includes D(v1) = {v3, v4}, we see

that v1 is a special vertex. Note also that v1 and v2 are the only special vertices in this graph.

6, or H ◦ P2 for some connected graph H , where P2 is a path of length 2 and H ◦ P2 is obtained by

identifying each vertex of H by an end vertex of a copy of P2.

As every γt-set is a dominating set as well, we have γ(G) ≤ γt(G). For any γ-set S, one can extend

S to a total dominating set of cardinality at most 2γ(G) by including a neighbor of each vertex of S, and

therefore we get γ(G) ≤ γt(G) ≤ 2γ(G), which is first observed by Bollobás and Cockayne (1979). In

this paper, motivated by an open problem in Henning (2009), we study graphs satisfying the upper bound

for total domination number, γt(G) = 2γ(G), and refer to them as (γt, 2γ)-graphs.

Henning (2001) provided a constructive characterization of (γt, 2γ)-trees, whereas Hou and Xu (2010)

generalized it to block graphs and gave a characterization of (γt, 2γ)-block graphs. We extend the results

in Hou and Xu (2010) to a larger family of graphs and partially solve the open problem (characterizing all

(γt, 2γ)-graphs) in Henning (2009).

The rest of this paper is organized as follows: Section 2 provides the main theorem and its applications.

The proof of the main theorem is given in Section 3. Section 4 presents previous results on (γt, 2γ)-graphs

and their verifications by using our main theorem. Discussion and conclusions are provided in Section 5.

2 Main Results

We first provide some definitions required for the statement of the main theorem. Two vertices u and v
in G are called true twins whenever N [u] = N [v], i.e., in a pair of vertices a vertex is a true twin of the

other one if they have the same closed neighborhood. For each vertex v, we partition N [v] into three sets,

namely T (v), D(v) and M(v). T (v) consists of v and its true twins. A neighbor u of v is in D(v) if N [u]
is a proper subset of N [v]. That is, u ∈ D(v) if and only if u and v are adjacent, u is not a true twin of v,

and every neighbor of u other than v is also a neighbor of v. All other neighbors of v are in M(v), i.e., a

neighbor of v is in M(v) if and only if it has a neighbor which is not adjacent to v.

We say that a vertex v is special if there is no u ∈ M(v) such that D(v) ⊆ N(u). Isolated vertices

are considered to be non special. Note that if D(v) = ∅ and M(v) 6= ∅, then v is not special. Moreover,

notice that if a vertex is special, then all of its true twins are special as well. See Figure 1 for an example

of a special vertex.

Partition the set of special vertices of G in such a way that two vertices are in the same part if and only

if they are true twins. A set obtained by picking exactly one vertex from each part is called an S(G)-set.

Hence, for any special vertex v, every S(G)-set contains exactly one element from T (v).
A graph is called (G1, . . . , Gk)-free if it contains none of G1, . . . , Gk as an induced subgraph. Let H1

and H2 be the graphs shown in Figure 2 and Ck denote a cycle of length k. A subset S ⊆ V (G) is called



Graphs with Large Total Domination Number 3

H1 H2

Fig. 2: The graphs H1 and H2.

a packing in G if N [u] ∩N [v] = ∅ for every distinct vertices u and v in S.

Theorem 2.1 (Main Theorem). Let G be an (H1, H2, C6)-free graph and S be an S(G)-set. Then, G is

a (γt, 2γ)-graph if and only if S is both a packing and a dominating set of G.

Since a chordal graph has no H1, H2 and C6 as induced subgraphs, we have the following result as a

corollary of Theorem 2.1.

Corollary 2.2. Let G be a chordal graph and S be an S(G)-set. Then, γt(G) = 2γ(G) if and only if S is

a packing and a dominating set of G.

For chordal graphs, both of the problems of finding the domination number and finding the total dom-

ination number are NP-complete (see, Booth and Johnson (1982) and Laskar and Hedetniemi (1984),

respectively.) However, constructing an S(G)-set and checking whether it is a packing and a dominating

set can be easily done by an algorithm with polynomial time complexity. Therefore, the problem of de-

termining γt(G) = 2γ(G) for an (H1, H2, C6)-free (in particular, for a chordal graph) G is polynomial

time solvable.

By using the results of Theorem 2.1, we next provide a characterization of another family of graphs G
with γt(G) = 2γ(G). A leaf of a graph is a vertex with degree 1, while a support vertex of graph is a

vertex adjacent to a leaf. For the graph K2, we assume that one vertex is leaf and the other one is support

vertex. Let sup(G) denote the set of all support vertices in the graph G.

Theorem 2.3. Let G be a (C3, C6)-free graph. Then, γt(G) = 2γ(G) if and only if sup(G) is a packing

and a dominating set of G.

Proof: As both H1 and H2 contain C3 as a subgraph, by Theorem 2.1 it suffices to show that sup(G) is

an S(G)-set. When G = K2, the claim is trivial. Suppose G 6= K2. Let v be a leaf of G and u be the

support vertex adjacent to v. Then, D(v) = ∅ and M(v) = {u}; therefore, v is not special. Now let v
be a vertex with at least two neighbors. Then, since G has no C3, neighbors of v form an independent set

and v has no true twin. Therefore, T (v) = {v} and any neighbor of v is either a leaf or has a neighbor

which is not adjacent to v. Thus, D(v) is the set of leaves adjacent to v. If D(v) = ∅, then v is not special

since M(v) 6= ∅. If D(v) is nonempty (i.e., v is a support vertex), then v is special since v is the unique

neighbor of a leaf in D(v). Then, clearly we see that v is special if and only if v is a support vertex and

therefore, sup(G) is the unique S(G)-set.

The girth of a graph G, denoted by g(G), is the length of a shortest cycle (if any) in G. Acyclic graphs

(forests) are considered to have infinite girth. Since sup(G) = ∅ for a graph G with minimum degree at

least 2, Theorem 2.3 implies the following result.
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Corollary 2.4. Let G be a (γt, 2γ)-graph with δ(G) ≥ 2. Then G contains an induced C3 or C6 and

hence, g(G) ≤ 6.

3 Proof of the Main Theorem

We first present a simple but useful observation which is also partially given in Hou and Xu (2010).

Lemma 3.1. Let G be a (γt, 2γ)-graph and S be a subset of V (G). Then, S is a γ-set of G if and only if

S is a packing and a dominating set of G.

Proof: Let S = {v1, . . . , vk} be a γ-set in G. Then, note that γt(G) = 2γ(G) = 2k and it suffices to

show that S is a packing. Suppose that S is not a packing in G. Then, without loss of generality, we may

assume that N [v1] and N [v2] have a common vertex, say w. Let wi ∈ N(vi) for i = 3, . . . , k. It is easy

to verify that S ∪ {w,w3, . . . , wk} is a total dominating set of G, and therefore, by definition of γt, we

get γt(G) ≤ 2k − 1, which contradicts with γt(G) = 2k.

Now let S = {v1, . . . , vk} be both a packing and a dominating set of G. Then, we have γ(G) ≤ k
since S is a dominating set. On the other hand, every dominating set of G contains at least one vertex in

N [vi] for i = 1, . . . , k and hence, we get γ(G) ≥ k, which implies that γ(G) = k. Therefore, S is a

γ-set. Therefore, in every minimum dominating set of a graph G with γt(G) = 2γ(G), any pair of

vertices are nonadjacent and have no common neighbor.

We next provide a sufficient condition on a graph G to satisfy γt(G) = 2γ(G).

Lemma 3.2. Let G be a graph and S be an S(G)-set. If S is both a packing and a dominating set of G,

then G is a (γt, 2γ)-graph.

Proof: Suppose that the S(G)-set S = {v1, . . . , vk} is a packing and a dominating set of G. Then,

N [v1], . . . , N [vk] is a partition of V (G). Notice that every dominating set of G should include at least

one vertex from N [vi] and hence, we get γ(G) ≥ k. On the other hand, S is a dominating set with

cardinality k and therefore, γ(G) = k.

Let A be a total dominating set of G. Since A dominates vi, at least one member of N(vi) is in A and

hence, |A ∩ N [vi]| ≥ 1 for i = 1, . . . , k. Assume that A ∩ N [vi] = {u} for some u and i. If u is in

T (vi)∪D(vi), then there is no element in A adjacent to u, contradiction. Thus, u is in M(vi). Since vi is

special, D(vi) is nonempty and u is not adjacent to all the vertices in D(vi) and hence, at least one vertex

in D(vi) is not dominated by A, contradiction. Consequently, we get |A ∩ N [vi]| ≥ 2 for i = 1, . . . , k
and therefore, |A| ≥ 2k, which implies that γt(G) ≥ 2k = 2γ(G). However, as γt(G) ≤ 2γ(G) for any

graph with no isolated vertices, we obtain that γt(G) = 2γ(G).

However, the converse of the result in Lemma 3.2 does not hold for every graph G and hence, extra

conditions on G are required to make the condition on S necessary.

Proposition 3.3. Let G be an (H1, H2, C6)-free graph and S be an S(G)-set. If γt(G) = 2γ(G), then S
is both a packing and a dominating set of G.

Proof: Suppose that γt(G) = 2γ(G). Let {v1, . . . , vk} be a γ-set of G (so, γ(G) = k). Then, by Lemma

3.1 we obtain that N [v1], . . . , N [vk] is a partition of V (G). In addition, note that every edge between

N [vi] and N [vj ] has endpoints one from M(vi) and one from M(vj) for every i 6= j.
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v1 v2

y z

ui w2

Fig. 3: The subgraph of G induced by {v1, y, z, v2, w2, ui}. Dashed edges represent possible edges in G.

We show that the set of all special vertices is ∪k
i=1T (vi). Without loss of generality, it suffices to prove

that the set of special vertices in N [v1] is T [v1].

We first show that v1 is a special vertex. Suppose that v1 is not special. Then, the set M(v1) is

nonempty and contains a vertex u such that D(v1) ⊆ N(u). Notice that in the case of D(v1) = ∅ any

member of M(v1) can be chosen to be u. Note also that existence of such a vertex u implies that k ≥ 2.

Let m = maxx∈N(v2) |N(x) ∩ N(v1)|. Then, for some w2 ∈ N(v2) and u1, . . . , um ∈ N(v1), w2 is

adjacent to u1, . . . , um and has no other neighbor in N(v1). In other words, w2 is a neighbor of v2 sharing

the maximum number of neighbors with v1 among N(v2). We claim that if y ∈ N(v1) shares a neighbor

with v2, then y is adjacent to w2. Assume the contrary. Then, y 6= ui for i = 1, . . . ,m and y is adjacent

to some z ∈ N(v2) such that z 6= w2. Now consider the subgraph of G induced by v1, y, z, v2, w2 and ui

for some fixed i (see Figure 3). Note that in this graph v1, y, z, v2, w and ui forms a C6, v1 is adjacent to

only ui and y, v2 is adjacent to only w2 and z, and y is not adjacent to w2. Suppose that z is not adjacent

to ui. Since G has no induced C6, ui and y are adjacent or w2 and z are adjacent. If exactly one of them

occurs, then we have an induced H1, and if both occurs, then we obtain an induced H2. Therefore, in any

of the cases we get a contradiction and hence, z is adjacent to ui. Thus, z is adjacent to each ui together

with y and therefore, z has at least m + 1 neighbors in N(v1), which contradicts the maximality of m.

Thus, any element of M(v1) that is adjacent to a neighbor of v2 is also adjacent to w2. Similarly, define

w3 ∈ N(v3), . . . , wk ∈ N(vk); i.e., wi is a vertex sharing the maximum number of neighbors with v1
among the neighbors of vi. Then, any vertex in M(v1) which has a neighbor in N(vi), where 2 ≤ i ≤ k,

is adjacent to wi. Note that by definition, every vertex in M(v1) has a neighbor in N(vi) for some i ≥ 2,

and therefore, every element in M(v1) is adjacent to at least one vertex in {w2, . . . , wk}. Then, the set

{u, v2, w2, . . . , wk, vk} is a total dominating set of G because u dominates T (v1)∪D(v1), {w2, . . . , wk}
dominates M(v1), and {wi, vi} dominates N [vi] for i = 2, . . . , k. However, this total dominating set has

cardinality 2k − 1, which contradicts the assumption that γt(G) = 2γ(G). Therefore, we conclude that

v1 is special.

We next show that none of the vertices in M(v1) is special. Let u ∈ M(v1). For any x ∈ N(vi) with

i ≥ 2, we have vi ∈ N(x) and vi /∈ N(u) and hence, x is not in D(u). Therefore, D(u) is a subset of

N [v1]\{u}. Moreover, as v1 is special, u is not adjacent to at least one vertex of D(v1). Thus, v1 is not

in D(u) and so, D(u) is a proper subset of N(v1), which yields that u is not special.

We then show that none of the vertices in D(v1) is special. Let u ∈ D(v1). Then, N [u] is a proper

subset of N [v1] and hence, v1 is in neither T (u) nor D(u), that is, v1 ∈ M(u). Therefore, D(u) ⊆
N [u]\{v1} ⊆ N [v1]\{v1} = N(v1) and hence, u is not special. Consequently, we obtain that all special

vertices in N [v1] are members of T (v1).
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v v1 v2

G1 G2

Fig. 4: The graphs G1 and G2. Notice that v is the unique special vertex of G1 and the special vertices in G2 are

only v1 and v2.

By similar arguments for v2, . . . , vk, we see that the set of special vertices is ∪k
i=1T (vi). Then, recall

that an S(G)-set S is equal to {v′1, . . . , v
′

k}, where v′i ∈ T (vi) for i = 1, . . . , k. Since {v1, . . . , vk} is

both a packing and a dominating set of G, so is S and hence, the desired result follows.

By combining the results in Lemma 3.2 and Proposition 3.3, we obtain our main result given in Theorem

2.1.

Remark 3.4. Forbidden graphs H1, H2 and C6 are best possible in the sense that if one allows one of

these three graphs, then the statement in Proposition 3.3 is no longer true. For each case, we have the

following counterexamples. Let G1 and G2 be the graphs presented in Figure 4. Clearly, G1 has an

induced H1 and is (H2, C6)-free, γt(G1) = 2γ(G1) = 4; however, v is the unique special vertex in

G1. Similarly, G2 contains an induced H2 and is (H1, C6)-free, and it is easy to verify that γt(G2) =
2γ(G2) = 6; however, G2 has two special vertices, v1 and v2. Finally, C6 is (H1, H2)-free, γt(C6) =
2γ(C6) = 4; however, C6 has no special vertices.

In the proof of Proposition 3.3 we actually show that if G contains no H1, H2 or C6 as induced sub-

graphs and satisfies γt(G) = 2γ(G), then every γ-set of G is an S(G)-set and every S(G)-set is both a

packing and a dominating set of G. Combining this result with the one in Lemma 3.1 yields the following

corollary.

Corollary 3.5. Let G be an (H1, H2, C6)-free (γt, 2γ)-graph and S be an S(G)-set. Then, the number

of γ-sets of G is the number of S(G)-sets, which is

∏

v∈S

|T (v)|.

In particular, G has a unique γ-set if and only if no special vertex has a true twin.

4 Related Work

Henning (2001) provided a characterization of (γt, 2γ)-trees, which was then updated to the following

result by Henning and Yeo (2013).

Theorem 4.1 (Theorem 4.8 in Henning and Yeo (2013)). A tree T of order at least 3 satisfies γt(T ) =
2γ(T ) if and only if T has a dominating set S such that the following two conditions hold:

(a) Every vertex of S is a support vertex of T .

(b) The set S is a packing in T .
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Note that a subset S ⊆ sup(T ) is a dominating set of T if and only if S = sup(T ). Therefore,

Theorem 4.1 can be restated as follows: T is a (γt, 2γ)-graph if and only if sup(T ) is a dominating set

and a packing of T , which is a corollary of Theorem 2.3 since every tree is (C3, C6)-free.

We next present another classification of (γt, 2γ)-graphs, provided by Hou and Xu (2010), and show

that it is a corollary of Theorem 2.1. Let G be a connected graph with no isolated vertex. A vertex v in G
is called a cut-vertex if removing v from the graph produces a disconnected graph. A maximal connected

subgraph with no cut-vertex is called a block. Note that a block of G is either a maximal 2-connected

subgraph of G or a K2. The graph G is called a block graph if every block of G is a complete graph.

The characterization in Hou and Xu (2010) is based on two sets D1 and D2. D1 is defined to be the set

of cut-vertices which constitute a unique cut-vertex in a block of G, and D2 denotes the set of cut-vertices

that have at least two neighbors which are not cut-vertices and belong to different blocks of G.

Theorem 4.2 (Theorem 4 in Hou and Xu (2010)). Let G be a connected block graph with at least two

blocks. Then γt(G) = 2γ(G) if and only if G satisfies the following three conditions:

(1) G has a unique minimum dominating set D,

(2) D = D1 ∪D2,

(3) D is a packing in G.

We now show that D is the unique S(G)-set, and hence, Theorem 2.1 implies Theorem 4.2. First

note that a vertex is a cut-vertex if and only if it belongs to at least two blocks. Furthermore, since G is

connected and has at least two blocks, every block of G has at least one cut-vertex. Moreover, if v is not

a cut-vertex and u is a cut-vertex in the block containing v, then N [v] is a proper subset of N [u] since

every block in G is a clique. Therefore, any special vertex is a cut-vertex. Now let v be a cut-vertex and

B1, . . . , Bk be the blocks containing v. Let Ai be the set of vertices in Bi which are not cut-vertices of G
for i = 1, . . . , k. It is easy to see that v has no true twin and D(v) = ∪k

i=1Ai. If each Ai is empty, then

clearly v is not special. If only one Ai is nonempty, suppose A1 6= ∅. Then v is special if and only if v
is the unique cut-vertex of B1, i.e., in such a case, v is special if and only if v ∈ D1\D2. Finally, if at

least two of Ais are nonempty (i.e., v ∈ D2), then clearly v is the unique vertex adjacent to every vertex

in D(v) and hence, v is special. Therefore, the set of special vertices is D = D1 ∪D2 and it is the unique

S(G)-set. Consequently, Theorem 4.2 is a corollary of Theorem 2.1. Besides, Theorem 2.1 implies that

in Theorem 4.2, the condition on D being the unique minimum dominating set of G can be replaced by

being a dominating set of G.

5 Discussion and Conclusions

Henning (2009) presents a list of top fundamental problems on total domination in graphs. Motivated by

the problem of characterizing the graphs G satisfying γt(G) = 2γ(G) in his list, we study (H1, H2, C6)-
free graphs and provide a necessary and sufficient condition on them to be (γt, 2γ). Thus, we extend the

previous results on (γt, 2γ)-graphs (particularly, trees in Henning (2001) and block graphs in Hou and Xu

(2010)) to a larger family of graphs including chordal graphs and (C3, C6)-free graphs.

In Lemma 3.2, we provide a sufficient condition for a graph to be a (γt, 2γ)-graph. We show that

for any graph G having an S(G)-set which is both a packing and a dominating set forces G to satisfy

γt(G) = 2γ(G). It also enables one to construct (γt, 2γ)-graphs. For example, let G1, . . . , Gn and G
be pairwise disjoint arbitrary graphs such that G has order n. Let V (G) = {v1, . . . , vn} and u1, . . . , un

be new vertices. Consider the graph H obtained by connecting ui to vi and every vertex in Gi for
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i = 1, . . . , n. It is easy to verify that the set of special vertices of H is {u1, . . . , un}, which is both a

dominating set and a packing of H , and hence, H is a (γt, 2γ)-graph. Notice that if each Gi is a singleton,

then H = G ◦ P2. By Corollary 2.4, we see that if the minimum degree of a (γt, 2γ)-graph is 2, then its

girth is at most 6. However, since g(G ◦ P2) = g(G), there is no bound on the girth of a (γt, 2γ)-graph

containing a leaf.

A (γt, 2γ)-graph does not have to have special vertices (e.g., C6). However, by forbidding the graphs

H1, H2 and C6 in G, we see that the sufficient condition on G to be a (γt, 2γ)-graph is also necessary.

Thus, we obtain a characterization of (H1, H2, C6)-free (γt, 2γ)-graphs, which allows one to solve the

problem of determining whether a given (H1, H2, C6)-free graph is (γt, 2γ) or not in polynomial time.

Recall also that forbidden graphs H1, H2 and C6 are best possible in the sense that allowing one of these

three graphs avoids our main theorem being valid (see, Remark 3.4).

Notice that since the graphs H1 and H2 have triangles, we have the characterization of C6-free (γt, 2γ)-
bipartite graphs. Classifying all (γt, 2γ)-bipartite graphs is a topic of ongoing research. Another potential

research direction is to investigate properties of (γt, 2γ)-graphs in terms of other graph parameters.
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