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SUMMARY

The proliferation of wireless technologies and services has intensified the demand for the radio spectrum.
However, the currently existing fixed spectrum assignment policy leads to an inefficient and unevenly
distributed spectrum utilization. Cognitive radio paradigm has been proposed to alleviate these drawbacks
by employing dynamic spectrum access (DSA) methodology. Federal Communications Commission (FCC)
has proposed the interference temperature model, which enables the unlicensed users to utilize the licensed
frequencies simultaneously with the licensed users as long as they conform to the interference temperature
constraints. Recently, throughput and delay optimal schedulers that meet the interference temperature
constraints in cognitive radio networks have been formulated in the literature. However, these schedulers
have high computational complexity. In this paper, we propose genetic algorithm (GA)-based suboptimal
methods addressing these throughput and delay optimal scheduling problems. The simulation results
corroborate that our GA-based approach yields very close performance to the optimal solutions and
operates with much lower complexity. Copyright � 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The explosive growth in wireless technologies has escalated the demand for the radio spectrum.
Per contra, recent studies exhibit that spectrum usage is concentrated on certain portions of the
spectrum, while a significant amount of the spectrum remains unutilized [1]. This situation implies
that there is a problem with the spectrum management and allocation methodology, rather than
the true scarcity of the spectrum. Dynamic spectrum access (DSA) methods enable the devices to
opportunistically access the licensed frequency bands, and thereby enhance the utilization of the
existing wireless spectrum. Cognitive radios are smart devices that can sense and autonomously
reason about their environment, and adapt their communication parameters in response to the
changing conditions. They are the next evolution of adaptive/aware radios through the addition of
a layer of intelligence providing the ability to realize the DSA concept [2].

The nodes in a cognitive radio network can be classified as primary user (PU) and secondary
user (SU). A PU is a licensed user that has paid for the spectrum, and hence has exclusive rights
to access it. A SU is an unlicensed user that can utilize the temporarily unused licensed spectrum
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bands opportunistically, as long as it vacates them as soon as a PU appears [3]. PUs are oblivious
to the SUs and do not have cognitive capabilities. In the remainder of this paper, we use the terms
cognitive users and SUs interchangeably.

In our previous work [4], we have formulated throughput and delay optimal schedulers for
cognitive radio networks under interference temperature constraints. However, the formulated
optimal schedulers have high computational complexity. To this end, suboptimal schedulers referred
to as Maximum Frequency Selection (MFS) and Probabilistic Frequency Selection (PFS) have also
been proposed in [4]. Although the computational complexity of the MFS and PFS schedulers is
low, their throughput and delay performance are not satisfactory. Consequently, we have called
for the design of better performing, yet computationally efficient suboptimal schedulers in [4]. In
this paper, we address this open research issue identified by Gözüpek and Alagöz [4], and propose
two GA-based suboptimal schedulers that yield very close performance to the optimal schedulers.
To the best of our knowledge, the use of GAs for scheduling in cognitive radio networks has not
previously been explored.

The remainder of the paper is structured as follows: Section 2 describes the related work, whereas
Section 3 provides the relevant background information with respect to the throughput and delay
optimal scheduling problems. Section 4 introduces our proposed GA-based suboptimal solutions
to these problems, and Section 5 discusses the simulation results. Finally, Section 6 concludes the
paper.

2. RELATED WORK

The usage of GAs has been proven to be quite successful for channel assignment schemes in cellular
networks [5, 6]. In cognitive radio networks context, on the other hand, the studies about the usage
of GAs mainly revolve around the configuration of various cognitive radio parameters such as pulse
shape, symbol rate, and modulation. The authors in [7] present GA-based adaptive component of
the cognitive radio engine developed at the Virginia Tech Center for Wireless Telecommunications
(CWT). They first formulate a multi-objective optimization problem, and then evaluate the fitness
function for this overall problem as the weighted sum of the fitness values of each objective. In
line with this formulation, they define the chromosome structure as consisting of power, frequency,
pulse shape, symbol rate, and modulation.

The cognitive radio software testbed discussed in [8] includes a cognitive radio engine based
on GAs. The engine executes two separate GAs to select the channel and transmission parameters,
each of which is a multi-objective problem similar to the one in [7].

The authors in [9] formulate the channel assignment problem specific to cognitive radio networks
and propose an island GA, in which the population is divided into sub-populations called islands,
and the chromosomes interact through migration to other islands. The channel assignment problem
that they consider determines which channel (frequency) to assign for which communication link;
hence, it is a static one-shot assignment procedure. In this paper, in contrast, we focus on the
scheduling problem rather than the channel assignment problem. Therefore, unlike the work in [9],
we also have a time aspect; i.e. the problems we focus on determine both the frequencies and the
time slots to assign to the SUs.

The population adaptation technique introduced in [10] again considers cognitive radio
engines, and devises a method to expedite the convergence of the GAs. Its method is based on
having the cognitive engine to utilize the information about the wireless environment learned
in the previous cognition cycles and seeding the initial generation of the GA with high scoring
chromosomes from the previous run. Its results demonstrate that this approach performs quite
well in slowly varying wireless environments but yields poor results when the conditions are
changing fast.

The essential issues in scheduling, on the other hand, have been widely studied in the conventional
networks [11–14]. Nonetheless, cognitive radio paradigm brings this topic into the focus of research
again. Cognitive radio concept presents new challenges to the scheduling mechanisms because the
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altering channel availability owing to the coexistence of primary and SUs mandates the cognitive
users to determine when and on which channel they should tune to in order to communicate with
their neighbors.

Formulation of throughput maximization under signal-to-noise ratio (SNR) and interference
conditions has previously been considered in the wireless networking literature [15, 16], where
graph theoretical approaches are usually adopted. The scheduling problem considered in this paper
can be distinguished from these works by its cognitive radio specific nature; i.e. it accommodates
the usage of different frequencies, where not only the availability but also the maximum allowable
transmission rates of the frequency bands are time-varying.

The authors in [17] focus on a radio resource allocation scheme for OFDMA-based cognitive
radio networks. They propose an improved water-filling power allocation algorithm as well as an
uplink subcarrier allocation algorithm. The authors estimate the water-filling level and also provide
a lower bound on the stability of this estimation via an asymptotic performance analysis.

The adaptive downlink packet scheduling algorithm for cognitive radio networks proposed
in [18] encompasses quality of service and spectrum variation awareness capability. The authors
first calculate the priority values for the traffic queues in conformity with a priority function with
channel adaptive coefficient. Subsequently, they decide on the best available channel among the
channels that have free time slots and then allocate the time slots. Since they select the best
available channel among the free channels, their scheme does not enable true coexistence of PUs
and SUs.

The authors in [19] devise opportunistic scheduling policies that maximize the throughput of SUs
subject to the maximum collision constraints with the PUs. They use the Lyapunov optimization
technique in designing their algorithms. They assume that a collision occurs if an SU attempts to
transmit in a channel that is already occupied by a PU; hence, their scheme also does not enable
the true coexistence of PUs and SUs.

The authors in [20] formulate an integer linear programming (ILP) problem for the MAC-layer
scheduling. Their scheme minimizes the schedule length in multi-hop cognitive radio networks.
Moreover, they also propose a distributed heuristic to determine the channels and time slots for the
cognitive nodes. However, they consider the interference to the PUs neither in their optimization
formulation nor in their suboptimal heuristic. Therefore, the scheduling problem we focus on in
this paper is distinct in principle from the work in [20].

The interference temperature model [21] proposed by FCC prescribes true coexistence of licensed
and unlicensed users. In this model, SUs are allowed to simultaneously operate on the same
frequencies as the PUs as long as they can quantify and bound the additional interference exposed to
the PUs. The interference temperature threshold for a particular frequency quantifies the maximum
aggregate interference that can occur at a PU in that frequency. Our work in this paper is based on our
previous work in [4], which focuses on scheduling in cognitive radio networks under interference
temperature constraints. In [4], we had formulated the problems of throughput maximization and
delay minimization as optimization problems. We had also proposed suboptimal schedulers with
low complexity at the expense of poor throughput and delay performance. Hence, an open research
issue about the design of better performing suboptimal schedulers with reasonable complexity has
been pointed out in [4]. In this paper, we address this research issue and propose a GA-based
suboptimal solution to these optimization problems. We demonstrate the efficacy of our approach
through extensive simulations.

3. BACKGROUND INFORMATION ON THROUGHPUT AND DELAY
OPTIMAL SCHEDULING PROBLEMS

A time-slotted IEEE 802.22 system [22], where the cognitive base station (CBS) controls
and guides the SUs is considered. Figure 1 illustrates the pertinent network architecture. The
scheduler is at the CBS and determines how many packets and with which frequency each SU
will transmit in each time slot. The goal of the throughput optimal scheduler is to maximize
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Figure 1. IEEE 802.22 cell.

the total throughput of the SUs in the cell, whereas the goal of the delay optimal scheduler is
to minimize the total scheduling delay of the SUs in the cell. Both schedulers ensure that the
interference temperature perceived by the PUs in the cell is within the interference temperature
limits, reliable communication between the CBS and the SUs is achieved, and collisions among
the SUs are avoided [4].

A two-step solution is proposed by Gözüpek and Alagöz [4] to both throughput and delay
optimal schedulers. In the first step of both schedulers, each SU i calculates for every frequency f
the value for Ui f , which is the maximum number of packets that it can transmit for frequency f in
a time slot. The calculation procedure for Ui f values guarantees that the interference temperature
perceived by the PUs is within the predetermined limits. The CBS then constitutes a matrix called
U= [Ui f ]. This matrix is utilized in the second step, which is a different binary integer program
for both schedulers [4].

Throughput optimal scheduler: The CBS executes the following binary ILP in the second step
of the throughput optimal scheduler:

max

(
N∑

i=1

F∑
f =1

T∑
t=1

Ui f Xi f t

T

)
(1)

s.t.
F∑

f =1

T∑
t=1

Xi f t�1 ∀i ∈{1, . . . , N }, (2)

Xi f t + Xi ′ f t�1, ∀i, i ′ ∈{1, . . . , N }, i �= i ′, ∀ f, ∀t, (3)

where N is the total number of SUs, F is the total number of frequencies, T is the total number
of time slots in the schedule, and Xi f t is a binary variable such that Xi f t =1 if user i transmits
with frequency f in time slot t and 0 otherwise. Here, (2) guarantees that at least one time slot is
assigned to each SU, whereas (3) makes certain that at most one user can transmit in a particular
time slot and frequency combination, and consequently preventing collisions among the cognitive
nodes. Moreover, the schedule length T is the time period in which the spectral and networking
environment changes slowly enough so that the Ui f values are not affected. For example, the TV
bands used by an IEEE 802.22 network constitute a slowly altering spectral environment, and
hence enable T to be quite large [4].

Delay optimal scheduler: The CBS executes the following binary integer program in the second
step of the delay optimal scheduler:

min

(∑N
i=1

∑F
f =1

∑T
t=1 tUi f Xi f t∑N

i=1
∑F

f =1
∑T

t=1 Ui f Xi f t

)
(4)

s.t.
N∑

i=1

F∑
f =1

T∑
t=1

Ui f Xi f t >0. (5)

(2) and (3)
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The objective function in (4) minimizes the scheduling delay in terms of time slots experienced
per packet. Furthermore, (5) obviates the case where the scheduler constantly chooses the
frequencies with which the nodes can send at most zero packets in order to decrease the average
scheduling delay. In other words, (5) avoids the situation of zero throughput [4].

The two optimization problems formulated as throughput and delay optimal schedulers are
binary integer programming problems, which are known to have high computational complexity.
In other words, the high complexity of both problems stems from the second step. Our GA-based
algorithms take the Ui f values resulting from the first step as input, and operate as a second step
in the solution procedure.

4. PROPOSED GA-BASED SCHEDULERS

4.1. Overview of GAs

A GA is a biologically inspired heuristic search technique appropriate for problems with large
search spaces. It operates by emulating natural processes such as reproduction, evolution, and
survival. In nature, populations of individuals compete for resources, and the best suited for
competition survive, whereas the weakest tends to die out. This phenomenon is referred to as
‘survival of the fittest’ in evolution. These ideas were first incorporated into a problem solving
algorithm by Holland [23] and they are now used in a multitude of problems.

A GA operates by evolving a population of solutions called chromosomes. A chromosome is
a binary string that represents one sample in the solution space of the problem. The bits of the
string are regarded as the genes of the chromosome. The fitness value assigned to a chromosome
exhibits the extent to which the chromosome satisfies the problem requirements. A GA takes a
group of chromosomes from a population using a genetic operation called selection, and mixes
the genes of these chromosomes using crossover to produce offspring. These offspring solutions
may be further randomly altered using a genetic operation called mutation.

The fact that GAs operate on a population of solutions rather than a single solution implies
that the algorithm makes parallel searches in the search space. The selection operation, on the
other hand, serves the purpose of eliminating the relatively bad solution candidates and focusing
the search operation on a relatively good portion of the solution space. Crossover operation is
based on the idea that if two solution candidates that are both good but for different reasons (for
instance the first half of the bits in one candidate have desirable qualities, like not violating any
problem constraints, and the second half of the bits in the other candidate have good features
in a similar way), then we can obtain an even better solution if we take the good parts of
both solutions and combine them. Mutation, on the other hand, is like introducing some noise
with little magnitude into the system in order to take the search procedure out of a locally
optimal region, and enable the search process to possibly delve into a better region of the search
space.

Our motivation for utilizing GAs in designing suboptimal schedulers for the throughput and
delay optimal scheduling problems is manifold. First, GAs are proper for problems with large
search spaces. They are equipped with many tools to reduce computational complexity and produce
a diverse set of solutions, since they can quickly center in a specific solution and diversify search to
develop wide range of solutions to address unknown environments. Considering that the solution
space in the throughput and delay optimal scheduling problems is enormous (even for 5 nodes, 3
frequencies, and 5 time slots, the size of the solution space for the throughput optimal scheduler
is 275), GAs seem to be a suitable tool. Second, GAs can be implemented on semiconductor
devices and enable rapid integration with wireless technologies and leverage economies of scale.
Rapid prototyping is possible using digital signal processors (DSPs) or field programmable gate
arrays (FPGAs). Third, as also pointed out by Gözüpek and Alagöz [4], the binary decision
variables Xi f t can be easily encoded to a binary string, and therefore, GAs can be conveniently
implemented.
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4.2. GA-based suboptimal schedulers

Figure 2 illustrates the flowchart of our proposed GA-based algorithm for both throughput and
delay optimal scheduling schemes.

4.2.1. Chromosome representation (encoding). We use binary encoded chromosomes, which
contain Xi f t values. Thus, the chromosome size is equal to N × F ×T . The order used in decoding
the possible Xi f t values has an impact on the performance of the algorithm, since this order
affects the gene pattern that can survive in the subsequent generations. In our analysis, we
evaluate the impact of the following two encoding methods. In Encoding Type-1, the chromosome
structure is [X111, X211, X311, X112, X212, . . . , X123, X223, X323], whereas in Encoding Type-2,

Figure 2. Block diagram for our proposed GA-based algorithm.
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the chromosome structure is [X111, X112, X113, X121, X122, . . . , X322, X323] for N =3, F =2, and
T =3.

4.2.2. Initial population creation. The most common way to generate the initial population is to
employ uniformly random generation for each bit of the chromosomes. We call this approach Rand
in this paper. Another alternative, which we refer to as RandComp, is to randomly generate half of
the chromosomes, and then take the complement of the first half to generate the second half [24].
This approach ensures diversity by requiring every bit to assume both a one and a zero within the
population. In both of our suboptimal schedulers, we assess the impact of both approaches on the
performance of the algorithm.

4.2.3. Fitness function evaluation. The extent to which a chromosome satisfies the problem require-
ments depends on two factors. The first one is how much it maximizes or minimizes the objective
function, and the second one is how many of the problem constraints it violates. We represent the
former by a primary fitness value and the latter by a secondary fitness value. If any constraint is
violated, the primary fitness Fp equals zero and the secondary fitness Fs is nonzero. Likewise,
if no constraint is violated, Fs equals zero and Fp is nonzero. More formally, we formulate the
fitness values for the throughput maximizing scheduler as follows:

Fp =

⎧⎪⎨
⎪⎩

0 if V1 +V2 >0,

N∑
i=1

F∑
f =1

T∑
t=1

Ui f Xi f t

T
otherwise (if V1 +V2 =0),

(6)

Fs =
⎧⎨
⎩

0 if V1 +V2 =0,

1

V1 +V2
otherwise (if V1 +V2 >0),

(7)

where V1 is the number of violations of constraint (2), and V2 is the number of violations of
constraint (3). If V1 +V2 >0, then it means that some constraint is violated. If V1 +V2 =0, on the
other hand, it means that none of the constraints are violated.

Specifically, we can express V1 and V2 as follows:

V1 =
N∑

i=1
V i

1 where V i
1 =

⎧⎪⎨
⎪⎩

1 if
F∑

f =1

T∑
t=1

Xi f t <1 for i ∈{1, . . . , N },

0 otherwise,

(8)

V2 =
N∑

i=1

N∑
i ′=i+1

F∑
f =1

T∑
t=1

V ii ′ f t
2 , (9)

V ii ′ f t
2 =

{
1 if Xi f t + Xi ′ f t >1,

0 otherwise.
(10)

Besides, we define the fitness functions for the delay minimizing scheduler as follows:

Fp =

⎧⎪⎪⎨
⎪⎪⎩

0 if V1 +V2 +V3 >0,∑N
i=1

∑F
f =1

∑T
t=1 Ui f Xi f t∑N

i=1
∑F

f =1
∑T

t=1 tUi f Xi f t
otherwise (if V1 +V2 +V3 =0),

(11)

Fs =
⎧⎨
⎩

0 if V1 +V2 +V3 =0,

1

V1 +V2 +V3
otherwise (if V1 +V2 +V3 >0),

(12)
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V3 =

⎧⎪⎨
⎪⎩

0 if
N∑

i=1

F∑
f =1

T∑
t=1

Ui f Xi f t >0,

1 otherwise,

(13)

where V3 is the number of violations of constraint (5), and V1 and V2 are the same as in the
throughput maximizing scheduler.

We demonstrate in Table I the method we employ for the overall fitness comparison of two

chromosomes � and � having primary fitness F�
p , F�

p and secondary fitness F�
s , F�

s . The primary
fitness values have high priority in the comparison procedure; that is to say, the chromosome that
has higher primary fitness value than the other chromosome is declared to have the higher fitness
value. The reason for this is that a chromosome that does not violate any constraints and hence
has positive primary fitness value is fitter than the one that violates some constraint and therefore
having a primary fitness value of zero. Likewise, when comparing two chromosomes that both have
a positive primary fitness value (i.e. none of them violate any constraint), the one that better satisfies
the objective function has the higher fitness value. If both chromosomes have zero primary fitness
value; i.e. both chromosomes violate some problem constraint, then the chromosome that violates
less number of problem constraints and hence has higher secondary fitness value is declared to
have the higher fitness value.

One of the possible approaches employed when handling constraint-based problems using GAs
is to penalize a constraint violating chromosome by setting its fitness value to zero, and hence
basically nullifying its chance to survive to the next generation [7, 25]. Nevertheless, in our scheme,
since the probability that constraint (3) is violated in a randomly generated population is quite high
(will be discussed in detail in Section 5), nullifying the fitness values of the constraint violating
chromosomes would not be sensible. Some gene pattern might violate a constraint, but another part
of the chromosome might be fit in terms of the primary fitness value. Preventing this chromosome
from surviving in the subsequent generations would decrease the diversity. Diversity helps to
prevent the algorithm from getting stuck in a local optimum. Therefore, we adopt the mechanisms
outlined in (6)–(13) for the fitness function evaluation.

4.2.4. Selection. After the population is sorted by comparison of the fitness values according to
Table I, the top Npop × Rselect number of chromosomes are included in the mating pool, where Npop
is the population size and Rselect is the selection rate, which was chosen to be 0.5 in our work.
The mother and father chromosomes are selected from this pool and mated through crossover
mechanisms (explained in detail in Section 4.2.5). Each crossover generates two offsprings, which
replace two chromosomes from the bottom of the population that is not in the mating pool. These
two at a time replacement process continue until all the chromosomes that are not in the mating
pool are replaced. This way, the chromosomes that have high fitness, i.e. the ones in the mating

Table I. Pseudocode for fitness comparison.

procedure CompareFitness (F�
p ,F�

p ,F�
s ,F�

s )
// Return the chromosome having higher fitness value, return 0 if equal

if F�
p > F�

p then
Return �

else if F�
p < F�

p then
Return �

else if F�
s > F�

s then
Return �

else if F�
s < F�

s then
Return �

else
Return 0

end if
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pool, survive in the subsequent generations. In contrast, the chromosomes that have low fitness,
i.e. the ones that are not in the mating pool, do not survive and are replaced by the offspring of
the mating pool, which potentially has higher fitness.

We evaluate the performance of two different selection schemes. The first one is Roulette
Wheel Selection, also referred to as Proportional Selection or Weighted Random Pairing with Cost
Weighting [24], whereas the second one is Tournament Selection.

Roulette wheel selection is a way of choosing mother and father chromosomes from
the population in a way that is proportional to their fitness. We have made pertinent modifications
to the general Roulette wheel selection framework to accommodate our fitness function evaluation
and comparison techniques. In our version of Roulette wheel selection scheme, we choose the
mother chromosome according to the algorithm outlined in Table II, where Np is the number of
chromosomes in the mating pool that have nonzero primary fitness value (that do not violate any
problem constraint), and Ns denotes the number of chromosomes in the mating pool that have
nonzero secondary fitness value (that violate some problem constraint). Furthermore, F�

p and F�′
p

denote the primary fitness values of the chromosomes � and �′, respectively. Likewise, F�
s and

F�′
s denote the secondary fitness values of the chromosomes � and �′, respectively. In order to

create more diversity, we do not allow the mating of a chromosome with itself. Hence, we select
the father chromosome in the same way as the mother, but from a population that excludes the
mother.

Tournament selection approach picks a small subset of chromosomes (two or three in general,
three in our case) from the mating pool in a uniformly random manner. The chromosome with the
highest fitness in this subset becomes a parent, where the fitness values of the chromosomes are
compared with each other according to our proposed algorithm outlined in Table I. The tournament
repeats for every parent needed. It is computationally simpler than Roulette wheel selection because
the population does not need to be sorted [24].

4.2.5. Crossover. Crossover is a genetic operator analogous to reproduction and biological
crossover. It is used to vary the programming of chromosomes from one generation to the next. In
this paper, we evaluate the performance of three crossover types, namely, single-point crossover,
two-point crossover, and uniform crossover.

In single-point crossover, a single crossover point on both parents’ strings is selected. All data
beyond that point in either organism string are swapped between the two parent organisms. The
resulting organisms are the offspring. Two-point crossover requires that two points are selected
on the parent organism strings. Everything between the two points is swapped between the parent
organisms, rendering two child organisms. In the uniform crossover scheme, individual bits in
the string are compared between two parents. The bits are swapped with a fixed probability [24],
which we selected as 0.5.

4.2.6. Mutation. A bit within a chromosome is inverted with probability equal to the mutation rate,
denoted as �m. In our scheme, we mutate every chromosome of the population except for the best

Table II. Pseudocode for Roulette wheel selection.

procedure RouletteWheel (population)
if Np >0 then

// Select among the chromosomes having
Fp >0

Return � with probability F�
p /
∑Np

�′=1 F�′
p

else
// Select among the chromosomes having
Fp =0

Return � with probability F�
s /
∑Ns

�′=1 F�′
s

end if
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chromosome. The exclusion of the best chromosome in mutations is a common practice in GAs,
since the best chromosomes are designated as elite solutions destined to propagate unchanged [24].

4.2.7. Stopping criteria. We stop the execution of the GA when any of the two following conditions
are met: Either the same best solution has been found for Nbest number of iterations or the maximum
number of iterations, Nmax, has been reached.

5. NUMERICAL EVALUATION

We simulated the first stages of all the schedulers and acquired the Ui f values in OPNET Modeler
14.0 [26]. In the second stages, we implemented the GA-based suboptimal schedulers in OPNET,
whereas we solved the optimization problems in CPLEX [27]. Additive white Gaussian noise
(AWGN) channels are considered. The bandwidth, noise variance, path loss, and PU activity models
are as in [4]. In all the simulations, each SU has three primary neighbors in its interference range.
There are three frequencies with interference temperature thresholds of 1000, 2000, and 3000K.
For the GA-based schedulers, the selection rate Rselect =0.5 and Nmax =5000. The average values
in all of the results were obtained using 10 different seeds and 10 000 schedules for each seed.

The methodology we employ for both throughput maximizing and delay minimizing GA-based
suboptimal schedulers is first to evaluate the impact of numerous methods outlined in Table III in a
relatively small cognitive radio network consisting of N =5 cognitive nodes. This first evaluation
equips us with the knowledge about which set of methods outlined in Table III suits best for our
problem. We then evaluate the performance of the schedulers using these determined methods
for varying number of cognitive nodes; i.e. N =5,10, . . . ,30. This sequential experimental design
method of employing a series of smaller experiments each with a specific objective is a common
method in experimental design [28] because the experimenter can quickly learn crucial information
from a small group of runs that can be used to plan the next experiment. Employing a very
large experiment directly in the first steps is usually considered to be a waste of time [28]. In
line with this design approach, we initially make a series of experiments using N =5 SUs and
observe the impact of different method combinations, and then evaluate the scalability of the
system with N =5,10, . . . ,30 SUs using the methods that were found to yield better results in the
initial experiments.

First, we consider five nodes with Npop =100, Nbest =50, �m =0.01, and single-point crossover.
We evaluate the performance of parameter sets defined in Table III. For the throughput maximizing
GA-based suboptimal schedulers, the achieved average network throughput and the average number
of iterations are stated in Table IV.

First of all, when we compare the results of GA-based solutions (Cases 1–4), we see that all of
our GA-based solutions yield almost twice better results than the MFS and PFS schedulers proposed
in [4], at the same time being very close to the throughput optimal scheduler’s performance.

When we compare the results of Cases 1 and 4, where only the initial population creation method
is different, we observe that Case 1 has a slightly larger throughput at the expense of a slightly
higher number of iterations, leading to the conclusion that either scheme might be preferred. Since
the resulting throughput of both schemes are very close to the optimal one, we prefer to select
Case 4 as our candidate parameter set.

When we examine the results of Case 2 and Case 4, where only the encoding type is different,
we observe that Case 4 achieves higher throughput as well as a significantly reduced average

Table III. Test case parameters.

Case Initial population creation Encoding Selection

1 RandComp Type-1 Roulette wheel
2 Rand Type-2 Roulette wheel
3 Rand Type-1 Tournament
4 Rand Type-1 Roulette wheel
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Table IV. Results for throughput maximizing GA scheduler. N =5, Npop =100, Nbest =50,
�m =0.01, and single-point crossover.

Case Average network throughput Average number of iterations

1 26.58 155.27
2 26.23 171.24
3 26.43 132.77
4 26.57 154.24
Throughput optimal 27.41 —
MFS 14.33 —
PFS 13.74 —

number of iterations. In order to investigate the reason for the superior performance of Encoding
Type-1 over Encoding Type-2, note that Encoding Type-1 has the ability to recognize a gene
pattern that does not violate constraint (3) because the genes that correspond to the same time
slot and frequency pair are next to each other in this representation. For instance, if a chro-
mosome starts with the bit string [010100...], then X111 =0, X211 =1, X311 =0, and X112 =1,
X212 =0, X312 =0 for N =5, F =3, and T =5. This gene pattern does not violate constraint
(3) and hence has higher fitness value. In consequence, Encoding Type-1 enables this kind of
a gene pattern to prevail and produce better individuals in the subsequent generations through
crossover. Similarly, Encoding Type-2 is capable of preserving gene patterns that do not violate
constraint (2).

Let Pnv−1, where nv stands for ‘not violate’, denote the probability that constraint (3) is not
violated in a randomly generated chromosome for N nodes, F frequencies, and T time slots.
If we consider the entire binary string of the chromosome as the concatenation of F ×T string
groups, each with N strings encoded according to Encoding Type-1, and denote the probability
that constraint (3) is not violated in a group by Pgnv−1, where gnv stands for ‘group not violate’,
then Pnv−1 = (Pgnv−1)F×T . Besides, probability that constraint (3) is not violated in a group equals
the probability that bit ‘1’ occurs at most once in a randomly generated string of length N , which
in turn equals 0.5N +(N ×0.5N )= (N +1)/2N . Thus, Pnv−1 = ((N +1)/2N )F×T .

Likewise, let Pnv−2 denote the probability that constraint (2) is not violated in a randomly gener-
ated chromosome of length N × F ×T . If we consider the whole binary string as the concatenation
of N string groups each with F ×T strings encoded according to Encoding Type-2 and denote
the probability that constraint (2) is not violated in a group by Pgnv−2, then Pnv−2 = (Pgnv−2)N .
Note that Pgnv−2 equals the probability that bit ‘1’ occurs at least once in a randomly generated
string of length F ×T . Therefore, Pgnv−2 =1−(0.5)F×T and Pnv−2 = (1−(0.5)F×T )N . Even for
N =5, F =3, and T =5, Pnv−1 =1.24×10−11, whereas Pnv−2 =0.99. Therefore, we can conclude
that the probability that constraint (3) is violated in a randomly generated chromosome is much
higher than the probability that constraint (2) is violated. Whenever (3) is violated, it will drive the
primary fitness value of the chromosome to zero; therefore, being able to recognize and track a
nonviolating pattern will enable this gene pattern with good traits to prevail in the next generations
and thus conduce better fitness values as well as faster convergence. For this reason, Encoding
Type-1 yields superior performance compared with Encoding Type-2.

Finally, when we compare the performance of Case 3 and Case 4 in Table IV, where only the
selection type differs, we observe that the average number of iterations of tournament selection is
less than one of Roulette wheel selection at the expense of a little decrease in average network
throughput. Since the difference in throughput is slight, we conclude that faster convergence is
more important and hence Case 3 is superior to Case 4. Therefore, in the following simulations,
we evaluate Case 3 with different crossover types.

Table V presents the average network throughput and average number of iteration values for
Case 3 with single-point, two-point, and uniform crossover, where N =5, Npop =100, Nbest =50,
and �m =0.01. We observe that uniform crossover outperforms the other two schemes both in
terms of average network throughput and average number of iterations. Therefore, in the following,
we use Case 3 with uniform crossover.
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Figure 3 presents the average throughput for the throughput optimal, MFS, and PFS sched-
ulers as well as the throughput maximizing GA-based scheduling scheme with Case 3, uniform
crossover, N =5, Nbest =50, �m =0.01, and varying Npop. Figure 4, on the other hand, presents
the average number of iterations for the throughput maximizing GA-based scheduling scheme with
the same parameters. Increasing the population size decreases the average number of iterations

Table V. Crossover-type comparison for throughput maximizing GA scheduler. Case 3, N =5,
Npop =100, Nbest =50, �m =0.01.

Crossover type Average throughput Average number of iterations

Single point 26.43 132.77
Two point 26.44 130.88
Uniform 26.48 127.20
Throughput optimal 27.41 —
MFS 14.33 —
PFS 13.74 —
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Figure 3. Average network throughput for the GA-based scheduling scheme with Case 3, N =5, Nbest =50,
�m =0.01, uniform crossover, and varying population size.
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Figure 4. Average number of iterations for throughput maximizing GA-based scheduling scheme with
Case 3, N =5, Nbest =50, �m =0.01, uniform crossover, and varying population size.
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and increases the throughput; however, the computational cost of a single iteration increases since
more chromosomes have to be processed at each iteration. Moreover, the performance improve-
ment decreases as the population size increases. The results indicate that setting Npop =100 is a
reasonable decision in terms of both performance criteria. Furthermore, we can also see that our
GA-based approach outperforms the other suboptimal schedulers; i.e. MFS and PFS, with several
orders of magnitude, while at the same time yielding a very close performance to the throughput
optimal scheduler.

Figure 5 shows the average network throughput for the throughput optimal, MFS, and PFS
schedulers as well as the throughput maximizing GA-based scheduling scheme with Case 3,
uniform crossover, N =5, Npop =100, �m =0.01, and varying Nbest. Figure 6, on the other hand,
displays the average number of iterations for the throughput maximizing GA-based scheduling
scheme with the same parameters. As Nbest increases, the rate of increase in throughput decreases
after some point, whereas the average number of iterations increases linearly with increasing Nbest.
The results point out that setting Nbest =50 is feasible when we take both performance criteria
into account.
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Figure 5. Average network throughput for the GA-based scheduling scheme with Case 3, N =5, Npop =100,
�m =0.01, uniform crossover, and varying Nbest.
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Figure 6. Average number of iterations for the GA-based throughput maximizing scheduling scheme with
Case 3, N =5, Npop =100, �m =0.01, uniform crossover, and varying Nbest.
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Figure 7 exhibits the average network throughput for the throughput optimal, MFS, and PFS
schedulers as well as the throughput maximizing GA-based scheduling scheme with Case 3,
uniform crossover, N =5, Npop =100, Nbest =50, and varying �m. Figure 8 shows the average
number of iterations for the throughput maximizing GA-based scheduling scheme with the same
parameters. Both average throughput and average number of iterations initially increase as �m
increases; however, they decrease after some point. Setting �m to a too high value can result in
the introduction of unnecessarily large noise to the current solution; hence, the solution space can
even get further away from the good solution area while trying to get out of the local optimum, and
thereby yielding even worse performance than the MFS and PFS schedulers. The results indicate
that �m =0.01 yields throughput very close to the optimal value with a reasonable number of
iterations.

Besides, the parameters Npop, Nbest, and �m influence the performance depending on the number
of cognitive nodes N . In Table VI, we have outlined the values for these parameters that we
empirically found to yield near optimal results for varying values of N . We have used Case 3 and
uniform crossover in the simulations of the throughput maximizing GA-based scheduling scheme
in Table VI. We can see that our GA-based scheduling scheme yields much better performance
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Figure 7. Average network throughput for the GA-based scheduling scheme with N =5,
Npop =100, Nbest =50, and varying �m.
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Figure 8. Average number of iterations for the GA-based scheduling scheme with N =5, Npop =100,
Nbest =50, and varying �m.
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than the MFS and PFS schedulers, and very close performance to the optimal scheduler for all
N =5,10, . . . ,30. Note that the parameters in this table are set so that the suboptimal scheduler
gives very close results to the optimal one. If less number of iterations are desired at the expense
of reduced throughput, then the Npop, Nbest, and �m parameters can be adjusted depending on the
number of SUs N , with Table VI serving as a baseline.

We have also evaluated the performance of the GA-based suboptimal scheduler that minimizes
the scheduling delay. Initially, we evaluated the performance of the parameter sets defined in
Table III. The resulting average scheduling delay and the average number of iteration values of
the delay minimizing GA scheduler for N =5, Npop =100, Nbest =75, �m =0.01, and single-point
crossover are shown in Table VII. The results indicate that the GA-based schedulers yield much
better scheduling delay performance than the MFS and the PFS schedulers, while at the same
time providing close to optimal performance. Furthermore, the results also indicate that Case 3
conduces the least scheduling delay and the least number of iterations. Hence, we employ Case 3
in the subsequent simulations.

Table VIII presents the average scheduling delay and the average number of iteration values for
N =5, Npop =100, Nbest =75, �m =0.01 with Case 3 and single-point, two-point, as well as uniform
crossovers. The results show that the GA-based schedulers again have far better performance than
the MFS and the PFS schedulers, at the same time having very close to optimal performance. The
results also reveal that uniform crossover outperforms the other two schemes both in terms of the
average scheduling delay and the average number of iterations. Therefore, in the sequel, we use
Case 3 with uniform crossover.

Table VI. Parameter settings for throughput maximizing GA scheduler with
varying number of cognitive nodes.

N 5 10 15 20 25 30

Npop 100 150 200 300 400 500
Nbest 50 75 200 300 400 500
�m 0.01 0.01 0.01 0.001 0.001 0.001
Average throughput 26.48 26.87 25.61 25.89 26.12 25.99
Average number of iterations 127.20 330.99 885.22 1954.77 3076.82 5084.88
Throughput optimal 27.41 27.55 26.29 26.46 26.81 26.68
MFS 14.33 15.16 16.06 16.81 16.76 16.51
PFS 13.74 14.50 15.97 16.01 16.46 16.47

Table VII. Results for delay minimizing GA scheduler for N =5, Npop =100, Nbest =75, �m =0.01.

Case Average scheduling delay Average number of iterations

1 0.039 94.43
2 0.038 92.55
3 0.023 87.24
4 0.040 92.29
Delay optimal 0.00095 —
MFS 0.60 —
PFS 0.55 —

Table VIII. Crossover-type comparison for delay minimizing GA scheduler for N =5, Npop =100,
Nbest =75, �m =0.01 with Case 3.

Crossover type Average delay Average number of iterations

Single point 0.023 87.24
Two point 0.022 86.68
Uniform 0.0099 82.38
Delay optimal 0.00095 —
MFS 0.60 —
PFS 0.55 —
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Table IX presents the average scheduling delay for the delay optimal, MFS, and PFS schedulers as
well as the delay minimizing GA-based scheduling scheme with Case 3, uniform crossover, N =5,
Nbest =75, �m =0.01, and varying Npop. The table also shows the average number of iterations
for the GA-based schemes. The results indicate that the GA-based scheduling scheme results in
much better performance than the MFS and the PFS schedulers, even with a low population size.
Moreover, the scheduling delay and the average number of iterations decrease as Npop increases;
however, the computational cost of a single generation also increases. Furthermore, the rate of
decrease in the average number of iterations decreases as Npop increases, whereas the average
scheduling delay values diminish almost linearly. The results point out that setting Npop =100 is
a reasonable decision in terms of both performance criteria.

Table X shows the average scheduling delay for the delay optimal, MFS, and PFS schedulers
as well as the delay minimizing GA-based scheduling scheme with Case 3, uniform crossover,
N =5, Npop =100, �m =0.01, and varying Nbest. The table also shows the average number of
iterations for the GA-based schemes. The results reveal that the GA-based scheduling scheme
yields far better scheduling delay performance than the MFS and the PFS schedulers even with
small values of Nbest. We can also see that the scheduling delay decreases as Nbest increases. We
can also see in Table X that the average number of iterations increases as Nbest increases. As
in the throughput maximizing GA scheduler, the increase in the average number of iterations is
linear as Nbest increases. The results point out that setting Nbest =75 is feasible when we take both
performance criteria into account.

Table XI shows the average scheduling delay for the delay optimal, MFS, and PFS schedulers as
well as the delay minimizing GA-based scheduling scheme with Case 3, uniform crossover, N =5,
Npop =100, Nbest =75 and varying �m. Again, the results show that the scheduling delay perfor-
mance of the GA-based scheme is much better than the ones of MFS and PFS, while at the same time
being close to the optimal delay performance. Table XI also shows the average number of iterations
for the GA-based scheme with the same parameters. We can see that both the average scheduling
delay and the average number of iterations initially decrease as �m increases; nevertheless, they

Table IX. Average scheduling delay and average number of iterations for the GA-based scheme with
Case 3, uniform crossover, N =5, Nbest =75, �m =0.01, and varying population size.

Scheduler type Average delay Average number of iterations

Delay minimizing GA, Npop =20 0.073 242.29
Delay minimizing GA, Npop =40 0.056 93.38
Delay minimizing GA, Npop =60 0.034 88.03
Delay minimizing GA, Npop =80 0.018 85.37
Delay minimizing GA, Npop =100 0.009 82.38
Delay minimizing GA, Npop =120 0.0009 81.51
Delay optimal 0.00095 —
MFS 0.6 —
PFS 0.55 —

Table X. Average scheduling delay and average number of iterations for the GA-based scheduling scheme
with Case 3, uniform crossover, N =5, Npop =100, �m =0.01, and varying Nbest.

Scheduler type Average delay Average number of iterations

Delay minimizing GA, Nbest =15 0.0108 23.89
Delay minimizing GA, Nbest =30 0.0107 39.00
Delay minimizing GA, Nbest =45 0.0106 53.93
Delay minimizing GA, Nbest =60 0.0104 68.98
Delay minimizing GA, Nbest =75 0.0099 84.12
Delay minimizing GA, Nbest =90 0.0096 99.2
Delay optimal 0.00095 —
MFS 0.6 —
PFS 0.55 —
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Table XI. Average scheduling delay and average number of iterations for the GA-based scheduling scheme
with Case 3, uniform crossover, N =5, Npop =100, Nbest =75, and varying �m.

Scheduler type Average delay Average number of iterations

Delay minimizing GA, �m =0.001 0.019 89.82
Delay minimizing GA, �m =0.005 0.015 84.81
Delay minimizing GA, �m =0.01 0.009 84.12
Delay minimizing GA, �m =0.05 0.012 87.74
Delay minimizing GA, �m =0.1 0.02 94.87
Delay minimizing GA, �m =0.2 0.0345 98.24
Delay optimal 0.00095 —
MFS 0.6 —
PFS 0.55 —

Table XII. Parameter settings for delay minimizing GA scheduler with varying number of cognitive nodes.

N 5 10 15 20 25 30

Npop 100 150 200 250 300 350
Nbest 75 100 150 200 250 300
�m 0.01 0.01 0.01 0.001 0.001 0.001
Average delay 0.0099 0.212 0.538 1.11 1.60 2.11
Average number of iterations 84.12 132.27 316.97 613.34 987.14 1112.45
Delay optimal 0.00095 0.203 0.509 1.01 1.51 2.01
MFS 0.60 1.27 1.96 2.66 3.41 4.09
PFS 0.55 1.23 1.87 2.55 3.21 3.94

both increase after some point. The results indicate that �m =0.01 yields reasonable performance
in terms of both criteria when we compare it with the other mutation rates.

Besides, as in the throughput maximizing GA scheduler, the parameters Npop, Nbest, and �m
influence the performance depending on the number of cognitive nodes N . In Table XII, we have
outlined the values for these parameters that we empirically found to yield satisfactory results
with reasonable number of iterations for varying values of N . We have used Case 3 and uniform
crossover in the simulations in Table XII.

All in all, both of our proposed GA-based schedulers achieve very close performance to their
optimal scheduler counterparts while at the same time operating with much lower complexi-
ties. However, the average number of iterations in the simulation results reveal that our GA-
based schedulers are computationally more costly than the MFS and the PFS schedulers in [4].
Nevertheless, when they are compared with respect to the throughput and delay performance,
we can see that our GA-based schedulers are approximately twice better than the MFS and the
PFS schedulers. Moreover, our GA-based schedulers are computationally more efficient than the
classical branch and bound algorithms that are used to solve binary integer programming prob-
lems [29, 30]. Therefore, our GA-based schedulers present a very reasonable tradeoff between
computational complexity and performance, hence addressing the open research issue identified
by Gözüpek and Alagöz [4]. Hence, we can conclude that our GA-based schedulers are more
suitable for slowly varying spectral environments, whereas MFS and PFS schedulers are more
suitable for very swiftly changing spectral environments. Considering that IEEE 802.22 networks
[22] operate on the TV broadcast bands that are slowly varying, we can confidently conclude that
our GA-based schedulers can operate in realistic network settings, and provide useful solutions to
the open research problem pinpointed by Gözüpek and Alagöz [4].

6. CONCLUSION

Recently, throughput and delay optimal schedulers for cognitive radio networks under interference
temperature constraints have been proposed in the literature [4]. The common features of these
schedulers is that they both ensure that the interference temperature constraints of the PUs are
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not violated, no collisions occur among the SUs, and reliable communication of the SUs with
the cognitive base station is achieved. In this paper, we propose genetic algorithm (GA)-based
suboptimal schedulers for the throughput and delay optimal scheduling problems in [4]. Our
proposed GA-based schedulers alleviate the computational complexity drawback of the optimal
schedulers in [4]. Specifically, we formulate GA-based algorithms and chromosome encoding
methods as well as fitness function evaluation and comparison techniques for both schedulers.
We compare the performance of different selections, crossovers, encodings, and initial population
creation techniques, as well as different values of population size (Npop), maximum number of
consequent generations for finding the same best solution in order for convergence to occur (Nbest),
and mutation rate (�m). We also evaluate the scalability of our solution by using feasible parameter
values for different number of cognitive nodes (N ).

The simulation results show that our GA-based throughput maximizing and delay minimizing
schedulers work best with uniformly random generation of each bit of the chromosomes during
initial population creation, tournament selection, and uniform crossover. Furthermore, our proposed
GA-based suboptimal schedulers yield close to optimal performance with a reasonable number of
iterations, while at the same time resulting in much better performance than MFS and PFS, which
are the suboptimal schedulers proposed by Gözüpek and Alagöz [4], to solve the same problems.

Considering that our GA-based schedulers in this paper work best in slowly varying spectral
environments, the design of schedulers whose performance is as good as the GA-based schedulers
while at the same time being suitable for swiftly changing spectral environments is an open research
issue. We are currently investigating graph theory-based solution techniques to address this issue.
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