
Received: 29 January 2018 Revised: 1 August 2018 Accepted: 12 October 2018

DOI: 10.1002/net.21867

R E S E A R C H A R T I C L E

Complexity of edge coloring with minimum reload/changeover
costs

Didem Gözüpek1 Mordechai Shalom2,3

1Department of Computer Engineering, Gebze

Technical University, Kocaeli, Turkey
2 Department of Computer Science, TelHai

Academic College, Upper Galilee Israel
3Department of Industrial Engineering, Bogazici

University, Istanbul, Turkey

Correspondence
Mordechai Shalom, Department of Computer

Science, TelHai Academic College, Upper Galilee,

12210, Israel.

Email: cmshalom@telhai.ac.il

Funding information
This work was supported by the Scientific and

Technological Research Council of Turkey

(TUBITAK) under grant no.113E567. Dr. Shalom

was also supported by TUBITAK 2221 program.

Abstract
In an edge-colored graph, a traversal cost occurs along a path when consecutive edges
with different colors are traversed. The value of the traversal cost depends only on the
colors of the edges. Two related global cost measures, namely the reload cost and the
changeover cost with applications in telecommunications, transportation networks,
and energy distribution networks have been studied in the literature. Previous work
focused on problems with an edge-colored graph being part of the input. In this paper,
we formulate problems that aim to find an edge coloring of a graph minimizing
the reload and changeover costs. One pair of problems aims to find a proper edge
coloring to minimize the reload/changeover cost of a set of paths. Another pair of
problems aim to find a proper edge coloring and a spanning tree to minimize the
reload/changeover cost. We present several hardness results and polynomial-time
solvable special cases.

KEYWORDS

approximation algorithms, changeover cost, edge coloring, network design, network
optimization, reload cost

1 INTRODUCTION

1.1 Background
In an edge-colored graph, the cost incurred by a path while traversing a vertex via two consecutive edges with different colors
is called traversal cost. This local cost depends only on the colors of the traversed edges, and it yields two different global cost
measures that appeared in the literature under the names of reload cost and changeover cost.

The reload cost concept is defined in Ref. [22] and it received attention only recently, although it has numerous applications.
For instance, a color may represent the mode of transportation in an intermodal cargo transportation network. The traversal
cost corresponds to the cost of transferring cargo from one carrier to another. Another application is in energy distribution
networks, where the energy transfer from one carrier to another one, such as the conversion of natural gas from liquid to gas
state, results in loss of energy. In telecommunications, traversal costs arise in numerous settings. For instance, routing in a
heterogeneous network requires switching among different technologies such as cables, fibers, and satellite links. This switching
cost can be modeled by traversal costs. Even within the same technology, switching between different providers, for instance
switching between different commercial satellite providers in satellite networks, leads to a switching cost. All applications
hitherto mentioned can be modeled using traversal costs where an edge-colored graph is given as input, and this is the focus of
the works in the literature, for example, [6–9, 11, 14, 19, 22].

Given a set of paths in a graph, their reload cost is the sum of the traversal costs of the individual paths. This cost measure
is naturally motivated by any application in which the cost of the traversal proportional to the amount of commodity flowing
through it. In contrast, the changeover cost does not depend on the number of paths traversing a vertex. In this measure, the

Networks. 2018;1–14. wileyonlinelibrary.com/journal/net © 2018 Wiley Periodicals, Inc. 1

http://orcid.org/0000-0001-8450-1897
http://orcid.org/0000-0002-2688-5703

2 GÖZÜPEK AND SHALOM

TABLE 1 Summary of our results

Problem family Instances Complexity

MinRCEC/MINCCEC General Inapproximable within any function f (Theorem 3.1)

Star, costs in {0, 1, 2} NP-Hard (Theorem 3.2)

Bounded degree trees Polynomial (Corollary 4.1)

MINRCPTEC/MinCCAEC DAGs, costs in {0, 1, 2} APX-Hard (Theorem 3.3)

Trees Polynomial (Corollary 4.2)

Bounded degree cut vertices, sparse blocks Polynomial (Theorem 4.3)

traversal cost associated with two incident edges is shared among all paths using this traversal. The motivation of changeover
costs comes from the need to model in a real network the fixed costs for installing, in each node, devices to support the changes
of carrier, that are modeled with the changes of color ([8]).

Various problems about the reload cost and changeover cost concept have been studied in the literature: the minimum reload
cost diameter spanning tree problem [22], the minimum reload cost cycle cover problem [9], the problem of finding a path, trail,
or walk of minimum reload cost between two given vertices [11], the problem of finding a spanning tree that minimizes the sum
of reload costs over the paths between all pairs of vertices [10, 14, 18], the problem of finding a spanning tree that minimizes
the reload cost from a given root vertex to all other vertices, and finally the minimum changeover cost arborescence problem,
which is to find a spanning tree that minimizes the total changeover cost from a given root vertex to all other vertices [8, 13].

1.2 Our contribution
In this paper, we define a new family of problems and focus on proper edge coloring of a given graph such that
the reload/changeover cost of a given set of paths is minimized. An edge coloring is proper if no two incident edges are colored
with the same color.

Problems of finding an edge coloring so as to minimize the reload (or changeover) cost have important applications as
well. For instance, recently, cognitive radio networks (CRNs) have gained increasing attention in the communication networks
research community. Unlike other wireless technologies, CRNs are envisioned to operate in a wide range of frequencies. There-
fore, switching from one frequency band to another frequency band in a CRN has a significant cost in terms of delay and power
consumption [12]. An optimal allocation of frequencies to the wireless links in CRNs so that the switching cost is minimized,
corresponds to a proper edge coloring minimizing the traversal cost. The edge coloring must be proper to avoid interference
that arises if two edges incident to the same node are assigned the same frequency.

Our work is, to the best of our knowledge, the first study focusing on this type of network design problems. Specifically,
we formulate two pairs of such problems. In the first pair of problems (MINRCEC/MINCCEC), given a set of paths comprising
a graph, the goal is to find a proper edge coloring of the graph so that the reload (resp. changeover) cost is minimized. In the
second pair of problems (MINRCPTEC/MINCCAEC), given a graph and a root vertex, the goal is to find proper edge coloring
and a spanning tree of the graph so that the reload (resp. changeover) cost from the root vertex to all other vertices is minimized.
We present hardness results as well as polynomial-time solutions for special cases, all summarized in Table 1.

Possible application scenarios for MINRCEC/MINCCEC and MINRCPTEC/MINCCAEC can be as follows. Routing in a
communication network refers to establishing the routes that data packets take on their way to a particular destination. Various
algorithms and protocols can be used to figure out how to best route data packets and which nodes and links should be used [16,
20]. The routing paths are established before the communication takes place. Once these paths are found in a CRN, frequencies
should be assigned to the links such that the switching cost in terms of delay or power consumption is minimized. This problem of
assigning frequencies to the wireless links in a CRN in order to minimize the switching cost after the routing paths are established
corresponds to the MINRCEC/MINCCEC problem where frequencies are represented by colors and the set of paths comprising
the graph are represented by the union of the paths established as a result of routing. On the other hand, in a communication
network, control traffic refers to the data carrying important information such as the failure of a link or node. This control
information is broadcast to the network from a source node via a spanning tree. Each control traffic flow at each vertex causes an
energy consumption whose value depends on the frequencies of the incident links that are traversed. MINRCPTEC/MINCCAEC
problem corresponds to jointly finding the broadcasting tree, which is a spanning tree, and assigning frequencies to the wireless
links such that interference among incident links is avoided and the total energy consumption due to frequency switching is
minimized.

For MINRCEC and MINCCEC, we show that they are hard to approximate in general, within any polynomial-time com-
putable function of the input length, and that they remain NP-Hard even when the underlying network is a star and the traversal

GÖZÜPEK AND SHALOM 3

costs are chosen from the set {0, 1, 2}. On the positive side, we prove that they are polynomial-time solvable on bounded degree
trees, and also in trees (with unbounded degree) whenever a particular vertex is an endpoint of every path. The latter special
case occurs in practice, for example, in wireless sensor networks, where a particular node called the sink is responsible for data
gathering [1].

As for the second pair of problems, that is, MINRCPTEC and MINCCAEC, we show that they are APX-Hard in directed
acyclic graphs with traversal costs are 0, 1 or 2. On the positive side, we present a polynomial-time algorithm on trees (with
unbounded degrees, and unbounded traversal costs). We extend this algorithm to a family of graphs that are in some sense
close to trees. Namely, these are graphs where the difference between the number of edges and the number of vertices in each
biconnected component is bounded by a constant, and the cut vertices have bounded degree. This special case corresponds to
a network topology that appears frequently in local and metropolitan area networks, namely bounded degree trees of rings [2].

2 PRELIMINARIES

Graphs, trees: Given an undirected graph G= (V (G), E(G)) and a vertex v ∈ V (G), 𝛿G(v) denotes the set of edges incident

to v in G, and dG(v)
def
= |𝛿G(v)| is the degree of v in G. We denote a pair of vertices u, v ∈ V (G) as uv, that is, uv ∈ E(G)

if u and v are adjacent in G. The minimum and maximum degrees of G are defined as 𝛿(G)
def
= min{dG(v)|v ∈ V(G)} and

Δ(G)
def
= max{dG(v) ∶ v ∈ V(G)}. Given a tree T and two vertices v1, v2 ∈ V (T), we denote by PT (v1, v2) the path between v1

and v2 in T . We denote a bipartite graph as a triple (V1, V2, E) where {V1, V2} is the bipartition of its vertices and E is its edge

set. Given two graphs G and G′, their union is G ∪ G′def
= (V(G) ∪ V(G′),E(G) ∪ E(G′)).

The numbers of the inbound and outbound arcs of a vertex in a digraph D are called its in-degree and out-degree, respectively.
We denote the ordered pair (u, v) of vertices of D as uv, that is, uv ∈ E(D) if there is an arc from u to v in D. A digraph T is a
rooted tree or arborescence if its underlying graph is a tree and it contains a unique root vertex denoted by root(T) which has
a directed path to every other vertex of T . Each vertex v≠ root(T) has in-degree 1. In this case we denote by inT (v) the unique
inbound arc of v in T , and by parentT (v) the other endpoint of inT (v). The set chldT (v) is the set of all vertices u of T such that
parentT (u)= v.

Reload and changeover costs: We consider proper edge colorings 𝜒 : E(G)→X of a given graph G where the colors are
taken from a set X and edges incident to the same vertex are assigned different colors. Without loss of generality we assume
X = [n] for some positive integer n where [n] denotes the set of natural numbers less than or equal to n. Since, by Vizing’s
theorem, every graph is Δ(G)+ 1 edge colorable, we assume that |X|≥Δ(G)+ 1 so that G is edge-colorable with colors from X.

The traversal costs are given by a nonnegative function tc : X2 →R+ ∪ {0} satisfying.

i tc(i, j)= tc(j, i) for every i, j ∈ X.
ii tc(i, i)= 0 for every i ∈ X.

We denote as 𝜅 tc the maximum ratio between two positive traversal costs, that is, 𝜅tc
def
= max{tc(i,j)|i,j∈X}

min{tc(i,j)|i,j∈X,tc(i,j)>0}
. Let P= (e1, e2,

…, e𝓁) be a path of length 𝓁 of G. We denote by tr(P)= {(ei, ei+ 1) : 1≤ i<𝓁} the set of traversals of P. The traversal cost

associated with a traversal ti = (ei, ei+ 1) of P with coloring 𝜒 is 𝑡𝑐𝜒 (ti)
def
= 𝑡𝑐(𝜒(ei), 𝜒(ei+1)). The traversal cost associated with P

is 𝑡𝑐𝜒 (P)
def
=
∑

t∈𝑡𝑟(P)𝑡𝑐𝜒 (t). Note that tc𝜒 (P)= 0 whenever the length of P is zero or one, since in these cases tr(P)=∅. Therefore,
we assume that all paths under consideration have length at least 2.

Let  be a set of paths. The set of traversals of  is 𝑡𝑟()
def
= ∪

P∈
𝑡𝑟(P). The reload cost of a set of paths  with coloring 𝜒 is

𝑟𝑐𝜒 ()
∑
P∈

𝑡𝑐𝜒 (P)
def
=

∑
P∈

∑
t∈𝑡𝑟(P)

𝑡𝑐𝜒 (t),

and its changeover cost is

𝑐𝑐𝜒 ()
def
=

∑
t∈𝑡𝑟()

𝑡𝑐𝜒 (t).

Note that the difference between 𝑟𝑐𝜒 () and 𝑐𝑐𝜒 () is that if a traversal occurs more than once, it contributes to 𝑐𝑐𝜒 ()
only once, whereas every occurrence contributes to 𝑟𝑐𝜒 ().

Problem statement: We assume without loss of generality that E(G) = ∪P∈E(P), that is every edge of G is used by at
least one path. We note that whenever every traversal is in at most one path of  , we have 𝑟𝑐𝜒 () = 𝑐𝑐𝜒 (). Observe that, in
particular, this holds when  is a set of distinct paths with length 2. This simple fact will be useful throughout this work.

4 GÖZÜPEK AND SHALOM

The minimum reload (resp. changeover) cost edge coloring (MINRCEC resp. MINCCEC) problem aims to find a proper
edge coloring of G leading to a minimum reload (resp. changeover) cost with respect to  .

MINRCEC/MINCCEC ( ,X, 𝑡𝑐)
Input: A set of paths  comprising a graph G = ∪ , a set X of at least Δ(G)+ 1 colors, a traversal cost function
tc : X2 →R+ ∪ {0}.
Output: A proper edge coloring 𝜒 : E(G)→X.
Objective: Minimize 𝑟𝑐𝜒 ()∕𝑐𝑐𝜒 ()

Given a tree T and a vertex r ∈ V (T), let (T , r)
def
={PT (r, v) ∶ v ∈ V(T)} be the set of all paths with an endpoint in the root

vertex r. The reload and changeover costs of T rooted at r are 𝑟𝑐𝜒 (T , r)
def
= 𝑟𝑐𝜒 ((T , r)) and 𝑐𝑐𝜒 (T , r)

def
= 𝑐𝑐𝜒 ((T , r)), respectively.

Given a graph G and a vertex r of G, the minimum reload cost path tree edge coloring (MINRCPTEC) and minimum changeover
cost arborescence edge coloring (MinCCAEC) problems aim to find a proper edge coloring of G and a spanning tree T rooted
at r with minimum reload and changeover cost, respectively.

MinRCPTEC/MinCCAEC (G, r, X, tc)
Input: A graph G, a vertex r of G, a set X of at least Δ(G)+ 1 colors, a traversal cost function tc : X2 →R+ ∪ {0}
Output: A proper edge coloring 𝜒 : E(G)→ X and a spanning tree T of G rooted at r
Objective: Minimize rc𝜒 (T , r)/cc𝜒 (T , r)

Approximation algorithms, reductions: Let Π be a minimization problem and 𝜌≥ 1. A (feasible) solution S of an instance
I of Π is a 𝜌-approximation if the objective function value of S is at most 𝜌 times the optimum. A polynomial-time algorithm
ALG is a 𝜌-approximation algorithm forΠ if ALG returns a 𝜌-approximation ALG(I) for every instance I ofΠ. A polynomial time
approximation scheme (PTAS) for Π is an infinite family of algorithms {ALG𝜀| 𝜀> 0} such that ALG𝜀 is a (1+ 𝜀)-approximation
algorithm with running time (|I|h(𝜀)) for some function h. PTAS also denotes the class of problems that admit a PTAS. APX
is the class of problems that admit a c-approximation for some constant c.

Given two minimization (resp. maximization) problems Π and Π′ with objective functions cΠ and c∏′ respectively, an
L-reduction from Π to Π′ consists of two polynomial-time computable functions f , g such that (1) f transforms every instance I
of Π to an instance f (I) of Π′, (2) g transforms every solution s′ of f (I) to a solution g(s′) of I, (3) |𝑂𝑃𝑇 Π′(f (I))| ≤ 𝜌⋅|𝑂𝑃𝑇 Π(I)|,
and |𝑂𝑃𝑇 Π(I)− cΠ(g(s′))| ≤ 𝜌′ ⋅ |𝑂𝑃𝑇 Π′(f (I))− cΠ′(s′)| for two constants 𝜌, 𝜌′. A problem is in APX-Hard if every problem in
APX can be reduced to it by an L-reduction. If a problem is in APX-Hard then it does not admit a PTAS unless P=NP. In this
work, we use a different type of reduction that we will term LT-reduction or a Turing type L-reduction. An LT-reduction from
Π to Π′ is a polynomial-time computable sequence of pairs of functions such that at least one of them is an L-reduction from Π
to Π′. Clearly, by returning the best solution implied by the individual reductions, one can get a constant approximation to Π.

Biconnected components and block trees: A cut vertex (articulation point or separation vertex) of a connected graph is a
vertex whose removal (along with its incident edges) disconnects the graph. A graph with no articulation points is biconnected.
A maximal biconnected induced subgraph of a graph is called a biconnected component or a block [3]. Any connected graph
G can be decomposed in linear time into a tree whose vertices are the biconnected components of G and its articulation points.
This tree is termed the block tree (or superstructure) of G. The edges of the block tree join every cut vertex to the blocks it
belongs to Ref. [5] and every block to the cut vertices (of G) contained in it.

Matchings: A matching of a graph G is a subset M ⊆E(G) of pairwise nonadjacent edges. A matching is perfect if V (M)=V
(G). In an edge-weighted graph, minimum weight perfect matching is a perfect matching with minimum total edge weight and
it can be computed in polynomial time.

The k-lightest subgraph problem: The K-LIGHTEST SUBGRAPH problem is to find an induced subgraph H on k vertices,
of a given edge-weighted graph G, with minimum total edge weight. This problem is NP-Hard in the strong sense even on
simple graphs, that is, on a complete graph with edge weights 0 or 1 [21]. This also implies that the problem remains NP-Hard
in the strong sense when the edge weights are 1 or 2.

The minimum set cover problem (MINSC): An instance of this problem is a set system = {S1, S2,… , Sm}, with U
def
=∪ .

Given such an instance, one has to find a subset  ⊆  that covers U, that is, ∪ = U, such that || is minimum. The special
case in which ∀i, |Si|≤ k, and ∀u ∈ U, |{Si ∈  ∶ u ∈ Si}| ≤ 𝓁, for two constants k, 𝓁 > 0 is called the minimum (k, 𝓁)-set cover
problem. The minimum (3, 2)-set cover problem (MIN3SC2) is APX-Hard [4], that is it does not admit a PTAS unless P=NP.

GÖZÜPEK AND SHALOM 5

3 HARDNESS RESULTS

In this section we show that MINCCEC and MINRCEC are inapproximable when the ratio 𝜅 tc of the biggest traversal cost to
the smallest nonzero traversal cost is unbounded. Then, we show that both problems remain NP-Hard in the strong sense even
when 𝜅 tc = 2 and G is a star. We then return to the MINCCAEC and MINRCPTEC problems and show that they are APX-Hard
in directed graphs even when 𝜅 tc = 2.

Theorem 3.1. MINCCEC and MINRCEC are inapproximable within any polynomial-time computable function f (||).
Proof. The proof is by reduction from the chromatic index problem. The chromatic index of a graph G is either Δ(G)
or Δ(G)+ 1. However, it is NP-Complete to decide between these two values [15]. Given a graph G we construct an
instance I = ( ,X, 𝑡𝑐) where  consists of all distinct paths of length 2 of G, |X|=Δ(G)+ 1, and

𝑡𝑐(i, j) =
⎧⎪⎨⎪⎩

0 if i = j
1 if i ≠ j and i, j ≤ Δ(G)
M otherwise

where M = || ⋅ f (||). We recall that since the paths of  are of length 2, we have 𝑟𝑐𝜒 () = 𝑐𝑐𝜒 () for every coloring
𝜒 . Assume, by way of contradiction, that there exists an f (||)-approximation algorithm  for one of the problems.
Then  is an f (||)-approximation algorithm for both problems. If the chromatic index of G is Δ(G), let 𝜒 be a proper
edge coloring of G using the first Δ(G) colors. Then all traversal costs are 1, and 𝑟𝑐𝜒 () = 𝑐𝑐𝜒 () = ||; therefore, the
solution has value at most || ⋅ f (||). On the other hand, if the chromatic index of G is Δ(G)+ 1, then any edge coloring
𝜒 ′ uses Δ(G)+ 1 colors, and we have 𝑟𝑐𝜒 ′ () = 𝑐𝑐𝜒 ′ () ≥ || + M − 1 = || + || ⋅ f (||) − 1 > || ⋅ f (||) since
there is at least one traversal with cost M. Therefore, G is Δ(G) edge-colorable if and only if  returns a solution with
cost at most || ⋅ f (||). ▪

We now show that both problems are NP-Hard in the strong sense even in very simple graphs that are in particular Δ(G)-
edge-colorable, namely stars, and have 𝜅 tc = 2.

Theorem 3.2. MINCCEC and MINRCEC are NP-Hard in the strong sense even when tc(i, j)∈ {0, 1, 2} for every pair i,
j ∈ X and G is a star.

Proof. The proof is by reduction from the K-LIGHTEST SUBGRAPH problem, which is NP-Hard in the strong sense
even on complete graphs with edge weights either 1 or 2 [21]. Given such an instance (K, w) of K-LIGHTEST SUBGRAPH

where K is a complete graph on more than k vertices and w is the edge weight function such that wij is the weight of
the edge between vertices i and j, we build the following instance: G is a star on k + 1 vertices (k leaves),  consists

of the

(
k
2

)
paths between every pair of leaves of G, |X|= |K|, and tc(i, j)= wij. Since all paths have length 2, we have

𝑟𝑐𝜒 () = 𝑐𝑐𝜒 () for every coloring 𝜒 . Moreover, 𝑟𝑐𝜒 () is equal to the total edge weight of a clique on k vertices of K
(corresponding to the set of k colors of X used in 𝜒). ▪

Theorem 3.3. MINCCAEC and MINRCPTEC are APX-Hard in directed acyclic graphs even when tc(i, j)∈ {0, 1, 2} for
every pair i, j ∈ X.

Proof. The proof is by LT-reduction from MIN3SC2, which is known to be APX-Hard. We consider an instance 

of MIN3SC2 with n elements, m ≥ 4 sets and with every set cover consisting of at least 4 sets. Otherwise, an optimal
set cover can be found in polynomial time. Given such an instance and an integer k ≤ m, we construct an instance
fk() = (G, r,X, 𝑡𝑐) as follows (Figure 1). G = (V , E) is a directed acyclic graph with V = {r} ∪  ∪ U where U = ∪ ,
E = E1 ∪ E2, E1 = {𝑟𝑆 i| Si ∈ } and E2 = {Siuj| Si ∈  , uj ∈ Si}. Note that Δ(G)= m. The color set is the disjoint
union X of two color sets Xc and Xe with |Xc|= k and |Xe|=Δ(G)+ 1− k. Finally,

𝑡𝑐(x, y) =
⎧⎪⎨⎪⎩

0 if x = y
1 if x ≠ y and x, y ∈ Xc

2 otherwise.

6 GÖZÜPEK AND SHALOM

r

S1 S2 S3 S4 S5

u1 u2 u3 u4 u5 u6

x1

x2 x3 x4

x5

x2

x3

x4
x3

x1 x4
x1 x2 x5 x6

x1

FIGURE 1 The directed acyclic graph G corresponding to an instance of MINCCAEC with S1 = {u2, u3, u5}, S2 = {u1, u3, u4}, S3 = {u2, u6}, S4 = {u4, u5},

S5 = {u6}, Xc = {x1, x2, x3, x4}, and Xe = {x5, x6}. Bold arcs indicate the spanning tree corresponding to a minimum set cover ∗ = {S1, S2, S3}

We observe that rc𝜒 (T , r)= cc𝜒 (T , r) since every directed path has length at most 2. Therefore, our reduction behaves
in the same way for MINCCAEC and MINRCPTEC. For any feasible solution (T , 𝜒) of fk(), the set of parents of the
vertices U in T is a set cover gk(T , 𝜒). This completes the description of the reduction.

Since f k and gk are polynomial-time computable for every k and k ranges over a polynomial number of values, namely
[m], it remains to show that f k, gk is an L-reduction for some k ∈ [m]. Let ∗ be a minimum set cover of  and k∗ = |∗|.
In the sequel we show that fk∗ , gk∗ is an L-reduction. Consider the subgraph of G induced by the vertices {r} ∪ ∗ ∪ U.
All vertices of this subgraph have degree at most 4, except r whose degree is k* ≥ 4. Then this subgraph is bipartite with
maximum degree k*. Therefore, we can color all the arcs of this subgraph with the k* colors of Xc, and the remaining
arcs (all incident to r) with colors from Xe. The cost of this solution is n, thus 𝑂𝑃𝑇 (fk∗ ()) ≤ n. Finally, a spanning tree
T is built by joining every vertex ui to an arbitrary vertex Sj ∈ ∗ such that ui ∈ Sj and each ui is a leaf of the spanning
tree. We conclude that

𝑂𝑃𝑇 (fk∗ ()) ≤ n ≤ 3 ⋅ 𝑂𝑃𝑇 () (1)

where the last inequality holds since every set can cover at most three elements.
Let (T , 𝜒) be a solution of fk∗ (). We partition gk∗ (T , 𝜒) into two sets c = {Si ∈ gk∗ (T𝜒)| 𝜒(𝑟𝑆 i) ∈ Xc} and

e = {Si ∈ gk∗ (T𝜒)| 𝜒(𝑟𝑆 i) ∈ Xe}. We observe that |c| ≤ k∗ since 𝜒 colors the inbound arcs of c with distinct colors
of Xc (all these arcs are incident to r) and |Xc|= k*. Therefore,|gk∗ (T , 𝜒)| − 𝑂𝑃𝑇 () = |gk∗ (T , 𝜒)| − k∗ = |e| + |c| − k∗ ≤ |e|.

We have that 𝑐𝑐𝜒 (T , r) ≥ n + |e| since the arc leading to ui in T incurs a traversal cost of at least 1 in the parent Sj
of ui and for every Sj ∈ e there is at least one traversal that costs 2. Therefore,|e| ≤ 𝑐𝑐𝜒 (T , r) − n ≤ 𝑐𝑐𝜒 (T , r) − 𝑂𝑃𝑇 (fk∗ ()).

We combine the last two inequalities to get|gk∗ (T , 𝜒)| − 𝑂𝑃𝑇 () ≤ 𝑐𝑐𝜒 (T , r) − 𝑂𝑃𝑇 (fk∗ ()). (2)

By inequalities (1) and (2), fk∗ and gk∗ constitute an L-reduction, as required. ▪

4 POLYNOMIAL-TIME SOLVABLE CASES

In this section we present polynomial-time algorithms for some special cases. We start with the definitions and notations used
in this section. We denote the set of all proper edge colorings of a graph G by G. Two partial functions f , f ′ agree if f (x)= f ’(x)
whenever both f and f ′

are defined on x. We denote this fact by f ∼ f ′.
The following discussion refers to the changeover cost; however, it holds for the reload cost, too. Whenever this is not the

case, the difference between the two costs will be made explicit. For a subgraph H of G we say that a traversal (ei, ej) is within
H if ei, ej ∈ E(H), and we denote by 𝑡𝑟( ,H) the set of traversals of  within H. We define 𝑟𝑐𝜒 ( ,H) and 𝑐𝑐𝜒 ( ,H) similarly
by taking into account only traversals within H. Let H1, H2, …, Hk be subgraphs of G such that every traversal is within exactly
one subgraph Hi. Clearly, 𝑐𝑐𝜒 () =

∑k
i=1 𝑐𝑐𝜒 ( ,Hk).

GÖZÜPEK AND SHALOM 7

vT

1e

e

2e
3e

vS
v

1v 2v 3v
1v

T

FIGURE 2 Notation for Section 4

In the sequel, we analyze the decomposition of a spanning tree T of G (and its cost) by the block tree of G. Let T be a
spanning tree of G rooted at some vertex r. For the MINRCPTEC and MINCCAEC problems, it is convenient to choose the root
as the vertex r given in the instance. Consult Figure 2 for the following discussion. For a non-root vertex v of T , we denote by
Tv the subtree of T rooted at v with the addition of the parent of v and the arc e= inT (v). Let Sv denote the star consisting of v
and its incident edges. Moreover, let chldT (v)= {v1, …, vk} and ei = vvi. Clearly, every traversal within Tv is either within Sv or
within Tvi for some i ∈ [k]. Therefore,

𝑐𝑐𝜒 ( ,Tv) = 𝑐𝑐𝜒 ( , Sv) +
k∑

i=1

𝑐𝑐𝜒 ( ,Tvi). (3)

We denote by 𝑂𝑃𝑇 𝑐𝑐( , v, x) the minimum changeover cost within Tv, among all colorings 𝜒 such that 𝜒(inT (v))= x.
Formally,

𝑂𝑃𝑇 𝑐𝑐( , v, x)
def
= min{𝑐𝑐𝜒 (Tv) ∶ 𝜒 ∈ Tv , 𝜒(inT (v)) = x}. (4)

Since Tv does not contain any traversals whenever v is a leaf, we have

𝑂𝑃𝑇 𝑐𝑐( , v, x) = 0 whenever v is a leaf. (5)

In order to compute 𝑂𝑃𝑇 𝑐𝑐( , v, x) we categorize all proper edge colorings 𝜒 of Tv by the colorings 𝜒v they induce on Sv:

𝛼𝑐𝑐(𝜒v)
def
= min{𝑐𝑐𝜒 (Tv) ∶ 𝜒 ∈ Tv , 𝜒 ∼ 𝜒v},

𝑂𝑃𝑇 𝑐𝑐( , v, x) = min{𝛼𝑐𝑐(𝜒v) ∶ 𝜒v ∈ Sv , 𝜒v(e) = x}. (6)

where 𝛼cc(𝜒v) is the minimum cost within Tv among all colorings that induce the coloring 𝜒v on Sv. We define 𝛼rc similarly.
For a fixed coloring 𝜒v ∈ Sv , we proceed as follows by first using (3):

𝛼𝑐𝑐(𝜒v) = min

{
𝑐𝑐𝜒 (Sv) +

k∑
i=1

𝑐𝑐𝜒 ( ,Tvi) ∶ 𝜒 ∈ Tv , 𝜒 ∼ 𝜒v

}

= 𝑐𝑐𝜒v( , Sv) +
k∑

i=1

min{𝑐𝑐𝜒 ( ,Tvi) ∶ 𝜒 ∈ Tv , 𝜒 ∼ 𝜒v}

= 𝑐𝑐𝜒v( , Sv) +
k∑

i=1

min{𝑐𝑐𝜒 ( ,Tvi) ∶ 𝜒 ∈ Tv , 𝜒(ei) = 𝜒v(ei)}

= 𝑐𝑐𝜒v( , Sv) +
k∑

i=1

O𝑃𝑇 𝑐𝑐( , vi, 𝜒v(ei))

= 𝑐𝑐𝜒v( , Sv) +
∑

v′∈chldT (v)
O𝑃𝑇 𝑐𝑐( , v′, 𝜒v(vv′)), (7)

where the equality second to last holds by (4). In particular, for v= r we obtain the optimum of the instance as:

𝑐𝑐∗() = min{𝛼𝑐𝑐(𝜒r) ∶ 𝜒r ∈ Sr}. (8)

8 GÖZÜPEK AND SHALOM

Equations (5) through (8) imply Algorithm 1, which is a dynamic programming algorithm for the case when G is a tree.
The number of entries 𝑂𝑃𝑇 𝑐𝑐( , v, x) computed by the algorithm is |V(G)| ⋅ |X|, that is, polynomial in the size of the input. In
order to get a polynomial-time algorithm, we have to compute every entry in polynomial time. The value 𝑐𝑐𝜒v( , Sv) can be

computed in time O(||) since every path has at most one traversal in Sv. Therefore, 𝛼cc(𝜒v) can be computed in time
(|| + k) = (|| + Δ(G)). In the sequel, we analyze the computation time of 𝑂𝑃𝑇 𝑐𝑐( , v, x) in various cases.

Theorem 4.1. MINCCEC and MINRCEC can be solved in time

(|V(G)| ⋅ (|| + Δ(G)) ⋅ |X|Δ(G)+1)

whenever G is a tree.

Proof. The number of proper edge colorings 𝜒v of Sv using colors from X such that 𝜒v(e)= x is at most |X|Δ(G).
Therefore, the computation time of 𝑂𝑃𝑇 𝑐𝑐( , v, x) (in Function COMPUTENONLEAF) is at most ((||+Δ(G))|X|Δ(G)).
Since the number of entries to be computed is (|V(G)| ⋅ |X|), we conclude the result. ▪

Corollary 4.1. MINCCEC and MINRCEC are solvable in polynomial time whenever G is a bounded degree tree.

Note that Corollary 4.1 complements Theorem 3.2, which proves that MINCCEC and MINRCEC are NP-Hard for
unbounded degree stars. In the sequel, we show that MINCCEC and MINRCEC are polynomial-time solvable in trees and graphs
having a structure close to a tree, that is, graphs G where |E(G)|− |V(G)| is bounded by some constant.

Theorem 4.2. MINCCEC and MINRCEC are solvable in time

(
√
Δ(G) + |X| ⋅ Δ(G) ⋅ |X|2 ⋅ |V(G)|)

whenever G is a tree and a particular vertex r is an endpoint of every path P ∈  .

Proof. We consider G as rooted at r. We observe that since all paths have an endpoint at r, all traversals within Sv
contain the edge e = inT (v). Therefore, for 𝜒v(e)= x,

𝑐𝑐𝜒v( , Sv) =
k∑

i=1

𝑡𝑐(𝜒v(e), 𝜒v(ei)) =
k∑

i=1

𝑡𝑐(x, 𝜒v(ei))

GÖZÜPEK AND SHALOM 9

and

𝑟𝑐𝜒v( , Sv) =
k∑

i=1

𝑡𝑐(x, 𝜒v(ei))|ei |
where ei is the set of paths of  that contain ei. Substituting in (7) we get

𝛼𝑐𝑐(𝜒v) =
k∑

i=1

(𝑡𝑐(x, 𝜒v(ei)) + 𝑂𝑃𝑇 𝑐𝑐( , vi, 𝜒v(ei))),

and similarly

𝛼𝑟𝑐(𝜒v) =
k∑

i=1

(𝑡𝑐(x, 𝜒v(ei))|ei | + 𝑂𝑃𝑇 𝑟𝑐( , vi, 𝜒v(ei))).

We now observe that these values can be computed in polynomial time by Function COMPUTENONLEAF in Algorithm
2, as described in the sequel. Consider the complete bipartite graph B where the bipartition of the vertices is
{{v1, …, vk}, X − x}. There is a one-to-one correspondence between the proper edge colorings 𝜒v of Sv with 𝜒v(e)= x
and the matchings of B with size k. The matching M𝜒v corresponding to the edge coloring 𝜒v is such that viy ∈ M𝜒v

if and only if 𝜒v(ei)= y. We assign the weight w(viy) = 𝑡𝑐(x, y) + 𝑂𝑃𝑇 𝑐𝑐( , vi, y) to the edge viy for every i ∈ [k] and
y ∈ X − x. Under this setting, the total weight of the matching M𝜒v corresponding to 𝜒v is equal to 𝛼cc(𝜒v). We conclude
that minimizing 𝛼cc(𝜒v) is equivalent to finding a minimum weight matching with k edges on this weighted graph. This
can be computed in polynomial time using Micali-Vazirani algorithm [17]. The running time of this algorithm is

(
√|V(B)| ⋅ |E(B)|) = (

√
Δ(G) + |X| ⋅ Δ(G) ⋅ |X|).

Multiplying this by the number of entries (|V(G)| ⋅ |X|) we conclude the result. ▪

We note that in the special case of MINCCAEC (resp. MINRCPTEC) problem when G is a tree, there is only one spanning
tree; therefore, we get a special case of the MINCCEC (resp. MINRCEC) problem when G is a tree and a particular vertex r of
G is the source vertex of all paths. Therefore,

Corollary 4.2. MINCCAEC and MINRCPTEC are solvable in polynomial time for trees.

Consider an input graph G that is not a tree, but a tree can be obtained by the removal of at most c edges from G where
c is a constant. Then, one can try all of the at most |E|c combinations of the edges to be removed, solve the problem for each
remaining tree in turn, and return the best solution. This implies the following corollary:

Corollary 4.3. MINCCAEC and MINRCPTEC are solvable in polynomial time for graphs G where |E(G)|− |V(G)| is
bounded by some constant.

The following theorem extends this idea for graphs with sparse blocks and bounded degree cut vertices.

Theorem 4.3. MINCCAEC and MINRCPTEC are solvable in time

(|V(G)| ⋅ Δ𝑐𝑢𝑡(G)2 ⋅ |X|Δ𝑐𝑢𝑡(G)+1 ⋅ |E(G)|𝛿block(G)+1)

where Δcut(G) is the maximum degree of a cut vertex of G, and 𝛿block(G) is the maximum of |E(B)|− |V(B)| over all blocks
B of G.

10 GÖZÜPEK AND SHALOM

r’ r

Br

r

B(v)

v

v(B)
u B(u)

B

B*

v*

B(v)* v’

FIGURE 3 Notation regarding the vertices of a block tree

Proof. Block tree notation: Consult Figure 3 for the definitions and notation we introduce in this paragraph. For
simplicity, we modify the instance as follows. We add to G an additional vertex r′ incident only to r, and an additional
color 0 ∉ X that is usable only in the new edge rr′, and tc(0, i)= 0 for every i ∈ X. Moreover, we set r′ as the root of the
modified instance. Clearly, every solution of the new instance contains rr′ and there exists an optimal solution in which
rr′ is colored 0. After this modification, r is a cut vertex of G and Br = {r, r′

} is a block of G. We consider the block tree
 of G as rooted at Br. We recall that the neighbours of a cut vertex (resp. block) in  are blocks (resp. cut vertices). For
a cut vertex v (resp. block B) of G, we denote by B(v) (resp. v(B)) the parent of v (resp. B) in  . For a non-cut vertex u of
G, we denote by B(u) the unique block that contains u. For a block B (resp. cut vertex v), we denote by B* (resp. v*) the
set of all vertices of G contained in the blocks of the subtree of  rooted at B (resp. v). Note that B(v) ∪ v* ⊆B(v)*.

Spanning trees and the block tree: For a set U of vertices of G, we denote by (U) the set of subgraphs of G that
are trees and span U, that is, the set of trees (U, ET) such that ET ⊆E(G). Note that possibly (U) = ∅. In particular,

(G)
def
=(V(G)) is the set of spanning trees of G. Let T be a spanning tree of G rooted at r′. We note that graph T[B]

induced by T on a block B of G is a spanning tree of B rooted at v(B). For a spanning tree T and a cut vertex v of G, we
denote by Tv∗ the subtree of T that contains the vertices v* and the parent of v, that is, Tv∗ = T[v∗ ∪ parentT (v)]. Note that
Tv∗ is a subtree of Tv, but possibly different from Tv since v might have descendants in B(v) and such vertices are not in v*.

Structure of the dynamic programming algorithm: We now present a dynamic programming algorithm for the
problem (see pseudocode in Algorithm 3). We first introduce the values to be computed by the algorithm. For every cut
vertex v of G and a color x ∈ X, the algorithm computes OPTcc(v, x) that denotes the minimum changeover cost within
Tv∗ of a spanning tree T of G and a coloring 𝜒 such that 𝜒(inT (v))= x, that is,

𝑂𝑃𝑇 𝑐𝑐(v, x)
def
= min{𝑐𝑐𝜒 (Tv∗) ∶ T ∈ (G), 𝜒(inT (v)) = x}.

Clearly, the optimum of the instance is OPTcc(r, 0).
Given a block B and a spanning tree T̂ ∈ (B) of it, we consider T̂ as rooted at v(B). For every such block B, spanning

tree T̂ , and every non-root vertex of T̂ (i.e., every vertex v∈B ⧵ {v(B)}) the algorithm computes the value 𝑂𝑃𝑇 𝑐𝑐(v, T̂ , x),
which denotes the minimum changeover cost within Tv of a spanning tree T of G that induces the tree T̂ on B(v) and a
coloring 𝜒 such that 𝜒(inT (v)) = 𝜒(inT̂ (v)) = x, that is

𝑂𝑃𝑇 𝑐𝑐(v, T̂ , x)
def
= min{𝑐𝑐𝜒 (Tv) ∶ T ∈ (G),T[B(v)] = T̂ , 𝜒(inT̂ (v)) = x}

for every v∈V(B) ⧵ {v(B)}, T̂ ∈ (B), and x∈X ⧵ {0}. A spanning tree of B is obtained by removing |E(B)|− |V(B)|+ 1

edges from E(B). Therefore, |(B)| ≤

(|E(B)|
𝛿block + 1

)
≤ |E(B)|𝛿block+1. The total number of values to be computed is

(|V(G)| ⋅ |X| ⋅ |E(G)|𝛿block+1), which is polynomial in the input size. It remains to show (1) how to compute each value
in time polynomial in the input size, and (2) how to compute the optimum once these values are computed.

We perform a bottom-up traversal of  during which we compute, at a block B, the values 𝑂𝑃𝑇 𝑐𝑐(v, T̂ , x), and at a
cut vertex v, the values OPTcc(v, x).

GÖZÜPEK AND SHALOM 11

Algorithm for a block: We start with the description of the computation at a block B. Consult Figure 4 for this
description. Let B be a block of G, T̂ ∈ (B), and T a spanning tree of G such that T[B] = T̂ . We perform a bottom-up
traversal of T̂ . At each non-root vertex v of T̂ , (i.e., v ∈ B − v(B)) we proceed as follows. Let e = inT (v) = inT̂ (v),
chldT (v)= {v1, …, vk}, and ei = vvi for i ∈ [k]. We first assume, for simplicity, that v is not a cut vertex. In this case,
chldT (v)⊆B − v(B), and we can compute 𝑂𝑃𝑇 𝑐𝑐(v, T̂ , x), in the same way that we did in Theorem 4.2, namely by
reducing the problem to finding a minimum weight perfect matching 𝛾(H, w) of the bipartite graph H with bipartition
{X − x, {e1, …, ek}} and weights w(eiy) = 𝑡𝑐(x, y)+𝑂𝑃𝑇 𝑐𝑐(vi, T̂ , y). Now assume that v is a cut vertex, and let {v1,… , vk′ }
be the set of its children in B where k′ < k. In this case, we divide Tv into the subtrees Tv1

,… ,Tvk′ and Tv∗ . We note that
all these trees intersect exactly at v and that cc𝜒 (Tv) is the sum of the costs of these trees with the addition of the traversal
costs from e to each ei. Therefore, the optimum cost can be computed by adding OPTcc(v, x) to 𝛾(H, w). Summarizing,

𝑂𝑃𝑇 𝑐𝑐(v, T̂ , x) = 𝛾(H,w) +

{
𝑂𝑃𝑇 𝑐𝑐(v, x) if v is a cut vertex

0 otherwise,

where 𝛾(H, w) is the minimum weight perfect matching of the complete bipartite graph H with bipartition {X−x, chldT̂ (v)}
and edge weights

w(eiy) = 𝑡𝑐(x, y) + 𝑂𝑃𝑇 𝑐𝑐(vi, T̂ , y).

At this point we note that for the MINRCPTEC problem the weights of H are w(eiy) = 𝑡𝑐(x, y) ⋅ |ei | + 𝑂𝑃𝑇 𝑟𝑐(vi, T̂ , y).
This computation can be carried out in time (

√|X| + Δ𝑐𝑢𝑡(G) ⋅ |X| ⋅ Δ𝑐𝑢𝑡(G)) as in the case of Theorem 4.2. ▪

Algorithm for a cut vertex: We proceed with the description of the computation of the values OPTcc(v, x) for a cut vertex v
of G, with chld (v) = {B1,… ,Bk} (Figure 5). We perform an exhaustive search by guessing (1) the coloring 𝜒v that an optimal

12 GÖZÜPEK AND SHALOM

v

v1

v2

v3

B
1v

T

*v
T

e1

e2

e3

2v
T

3v
T

FIGURE 4 The computation of the value 𝑂𝑃𝑇 𝑐𝑐(v, T̂ , x). The bold arcs depict the arcs of T̂

v

B1
v11

v12

v13

v23 v22
v21

B2

e21

e22
e23

e11

e12

e13

FIGURE 5 The computation of the value OPTcc(v, x) for a cut vertex v

solution 𝜒 induces on the edges incident to v, and (2) the spanning trees T̂i = T[Bi] for every child block Bi of v. Note that v is
the root of all the trees T̂i. Let chldT̂i

(v) = {vi1,… , v𝑖𝑘i} and eij = vvij. Then, recalling that 𝜒(inT (v))= x, we have

𝑐𝑐𝜒 (Tv) =
k∑

i=1

ki∑
j=1

(𝑡𝑐(x, 𝜒v(e𝑖𝑗)) + 𝑐𝑐𝜒 (Tv𝑖𝑗))

=
k∑

i=1

ki∑
j=1

𝑡𝑐(x, 𝜒v(e𝑖𝑗)) +
k∑

i=1

ki∑
j=1

𝑐𝑐𝜒 (Tv𝑖𝑗).

GÖZÜPEK AND SHALOM 13

Given a guess for 𝜒v and T̂i, the first sum is fixed and the trees Tv𝑖𝑗 are pairwise disjoint. Therefore, each term in the second
summation can be minimized independently. Then, the minimum for a given guess is

k∑
i=1

ki∑
j=1

𝑡𝑐(x, 𝜒v(e𝑖𝑗)) +
k∑

i=1

ki∑
j=1

min 𝑐𝑐𝜒 (Tv𝑖𝑗)

=
k∑

i=1

ki∑
j=1

𝑡𝑐(x, 𝜒v(e𝑖𝑗)) +
k∑

i=1

ki∑
j=1

O𝑃𝑇 𝑐𝑐(v𝑖𝑗 , T̂i, 𝜒v(e𝑖𝑗))

=
k∑

i=1

ki∑
j=1

(𝑡𝑐(x, 𝜒v(e𝑖𝑗)) + 𝑂𝑃𝑇 𝑐𝑐(v𝑖𝑗 , T̂i, 𝜒v(e𝑖𝑗))).

For a given guess of 𝜒v, the minimum over all guesses of the subtrees T̂i is∑
B∈chld (v)

min
T̂∈(B)

∑
v′∈chldT̂ (v)

(𝑡𝑐(x, 𝜒v(vv′)) + 𝑂𝑃𝑇 𝑐𝑐(v′, T̂ , 𝜒v(vv′))).

Minimizing over all guesses of 𝜒v we get

𝑂𝑃𝑇 𝑐𝑐(v, x) = min
𝜒v∈ (Sv)

∑
B∈chld (v)

min
T̂∈(B)

∑
v′∈chldT̂ (v)

(𝑡𝑐(x, 𝜒v(vv′)) + 𝑂𝑃𝑇 𝑐𝑐(v′, T̂ , 𝜒v(vv′))), (9)

where  (Sv) is the set of all colorings 𝜒v of the edges incident to v using colors from X with the exception that 𝜒 r(rr′)= 0 ∉ X.
We note that for the MINRCPTEC problem the innermost term on the right hand side becomes 𝑡𝑐(x, 𝜒v(vv′)) ⋅ |vv′ | +
𝑂𝑃𝑇 𝑟𝑐(v′, T̂ , 𝜒v(vv′)).

The number of terms in every summation is at most the degree d(v) of the cut vertex v, that is, at most Δcut(G). The number
of guesses is at most | (Sv)| ⋅ |(Bi)| ≤ |X|d(v) ⋅ |E(G)||E(Bi)|−|V(Bi)|+1 ≤ |X|Δ𝑐𝑢𝑡(G) ⋅ |E(G)|𝛿block(G)+1. Therefore, OPTcc(v, x) can
be computed in time

Δ𝑐𝑢𝑡(G)2|X|Δ𝑐𝑢𝑡(G) ⋅ |E(G)|𝛿block(G)+1.

The theorem follows by observing that the above expression dominates the complexity of the computation for a block, and
multiplying it by the number |V(G)| ⋅ |X| of values to be computed.

5 CONCLUSION

In this work, we introduced a new family of network problems motivated by applications in CRNs. The aim of these problems
is to find a proper edge coloring of a given graph such that the associated reload/changeover cost is minimized. We defined
two pairs of such problems. Namely, (MINRCEC/MINCCEC) that aim to minimize the reload/changeover cost of a given set
of paths, and (MINRCPTEC/MINCCAEC) that aim to jointly find a spanning tree and a proper edge coloring such that the
reload/changeover cost of the spanning tree is minimized.

We presented hardness results and algorithms as a first attempt to understand the classical complexity of these problems.
On the one hand, we have shown that the first pair of problems are NP-Hard even in a star network (Corollary 4.1). On the other
hand, the problems are polynomial-time solvable in trees (of any depth) and graphs having a structure close to a tree, provided
that the degrees of the vertices are bounded (Theorem 3.2). These results suggest that the hardness of these problems lie in the
high degree vertices (at least for tree networks).

In this work, we did not consider parameterized complexity. However, the following results are implied by our study. Ignoring
polynomial factors, the running times proven in Theorem 4.1 and Theorem 4.3 are ∗(|X| − 0.0001𝑝𝑡Δ(G)+1), and ∗(|X| −
0.0001𝑝𝑡Δ𝑐𝑢𝑡(G)+1 ⋅ |E(G)|−0.0001𝑝𝑡𝛿block(G)+1), respectively. These results imply that MINRCEC and MINCCEC are in XP when
the input graph G is a tree and the problem is parameterized by the maximum degree Δ(G). Furthermore, these problems are
in FPT when the input graph G the problem is parameterized by Δ(G)+ |X|, where X is the set of colors. The existence of
FPT algorithms for these problems when G is a tree and the problem is parameterized only by the maximum degree is an
open question. Since the problems are NP-Hard even when G is a star, they are para-NP-Hard when parameterized by the
treewidth of the input graph, by its diameter or both. Similarly, MINCCAEC and MINRCPTEC are in XP when parameterized
by Δcut(G)+ 𝛿block(G) and in FPT when parameterized by Δcut(G)+ 𝛿block(G)+ |X|. The existence of an FPT algorithm when
the parameter is Δcut(G)+ 𝛿block(G) is an open question. Since these problems are polynomial in tree networks, it is natural to
ask whether they are in XP when parameterized by the treewidth of the input graph. At this point it is worth noting that Δcut(G)
is unbounded for cacti that have treewidth 2.

14 GÖZÜPEK AND SHALOM

Another possible research direction is to consider approximation algorithms to obtain polynomial-time algorithms for the
cases in which polynomial-time optimal algorithms are likely impossible.

Finally, most of the reload cost/changeover cost problems studied in the literature, such as minimum diameter spanning tree,
minimum cycle cover can be studied under the network design setting defined in this work.

ACKNOWLEDGMENTS

This work is supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under grant no. 113E567.
Mordechai Shalom is supported in part by the TUBITAK 2221 Programme.

ORCID

Didem Gözüpek http://orcid.org/0000-0001-8450-1897
Mordechai Shalom http://orcid.org/0000-0002-2688-5703

REFERENCES

[1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, Wireless sensor networks: a survey, Comput. Netw. 38(4) (2002), 393–422.
[2] Z. Bian, Q.-P. Gu, and X. Zhao, Wavelength assignment on bounded degree trees of rings, IEEE International Conference on Parallel and

Distributed Systems, 2004, pp. 73–80.
[3] A. Bondy and M.R. Murty, Graph Theory, Springer, New York, 2008.
[4] Rong-chii Duh and M. Fürer. Approximation of k-set cover by semi-local optimization, ACM Symposium on Theory of Computing (STOC),

1997, pp. 256–264.
[5] S. Even, Graph Algorithms, Computer Science Press, Potomac MD, 1979.
[6] A. Fischer, F. Fischer, G. Jäger, J. Keilwagen, P. Molitor and I. Grosse, Exact algorithms and heuristics for the quadratic traveling salesman

problem with an application in bioinformatics, Discrete Appl. Math. 166 (2014), 97–114.
[7] G. Galbiati, The complexity of a minimum reload cost diameter problem, Discrete Appl. Math. 156(18) (2008), 3494–3497.
[8] G. Galbiati, S. Gualandi, and F. Maffioli, On minimum changeover cost arborescences, Experimental Algorithms – 10th International

Symposium (SEA), Kolimpari, Chania, Crete, Greece, 2011, pp. 112–123.
[9] G. Galbiati, S. Gualandi and F. Maffioli, On minimum reload cost cycle cover, Discrete Appl. Math. 164(1) (2014), 112–120.

[10] I. Gamvros, L. Gouveia and S. Raghavan, Reload cost trees and network design, Networks 59(4) (2012), 365–379.
[11] L. Gourvès, A. Lyra, C. Martinhon and J. Monnot, The minimum reload s-t path, trail and walk problems, Discrete Appl. Math. 158(13) (2010),

1404–1417.
[12] D. Gözüpek, S. Buhari and F. Alagöz, A spectrum switching delay-aware scheduling algorithm for centralized cognitive radio networks, IEEE

Trans. Mobile Comput. 12(7) (2013), 1270–1280.
[13] D. Gözüpek, H. Shachnai, M. Shalom and S. Zaks, Constructing minimum changeover cost arborescences in bounded treewidth graphs, Theoret.

Comput. Sci. 621 (2016), 22–36.
[14] D. Gözüpek, S. Özkan, C. Paul, I. Sau and M. Shalom, Parameterized complexity of the mincca problem on graphs of bounded decomposability,

Theoret. Comput. Sci. 690 (2017), 91–103.
[15] I. Holyer, The NP-completeness of edge-coloring, SIAM J. Comput. 10(4) (1981), 718–720.
[16] J.F. Kurose and K.W. Ross, Computer Networking: A Top-Down Approach, vol. 4, Pearson Addison-Wesley, Boston, MA, 2009.
[17] S. Micali and V.V. Vazirani, An o(sqrt(|v|) |e|) algorithm for finding maximum matching in general graphs, 21st Annual Symposium on

Foundations of Computer Science, Syracuse, New York, USA, 13–15 October 1980, 1980, pp. 17–27.
[18] S. Raghavan and M. Sahin, Efficient edge-swapping heuristics for the reload cost spanning tree problem, Networks 65(4) (2015), 380–394.
[19] B. Rostami, F. Malucelli, P. Belotti and S. Gualandi, Lower bounding procedure for the asymmetric quadratic traveling salesman problem, Eur.

J. Oper. Res. 253(3) (2016), 584–592.
[20] A.S. Tanenbaum, Computer Networks, 4th edn, Prentice Hall, Upper Saddle River, NY, 2003.
[21] R. Watrigant, M. Bougeret, and R. Giroudeau, The k-sparsest subgraph problem. Technical report, RR-12019, 2012.
[22] H.-C. Wirth and J. Steffan, Reload cost problems: minimum diameter spanning tree, Discrete Appl. Math. 113(1) (2001), 73–85.

How to cite this article: Gözüpek D, Shalom M. Complexity of edge coloring with minimum reload/changeover costs.
Networks. 2018;1–14. https://doi.org/10.1002/net.21867

http://orcid.org/0000-0001-8450-1897
http://orcid.org/0000-0001-8450-1897
http://orcid.org/0000-0002-2688-5703
http://orcid.org/0000-0002-2688-5703
https://doi.org/10.1002/net.21867

