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The reload cost concept refers to the cost that occurs at a vertex along a path on an
edge-colored graph when it traverses an internal vertex between two edges of different
colors. This cost depends only on the colors of the traversed edges. Reload costs arise in
various applications such as transportation networks, energy distribution networks, and
telecommunications. Previous work on reload costs focuses on two problems of finding a
spanning tree with minimum cost with respect to two different cost measures. In both
problems the cost is associated with a set of paths from a given vertex r to all the
leaves of the constructed tree. The first cost measure is the sum of the reload costs of
all paths from r to the leaves. The second cost measure is the changeover cost, in which
the cost of traversing a vertex by using two specific incident edges is paid only once
regardless of the number of paths traversing it. The first problem is inapproximable within
any polynomial time computable function of the input size [1], and the second problem
is inapproximable within n1−ε for any ε > 0 [2]. In this paper we show that the first
hardness result holds also for the second problem. Given this strong inapproximability
result, we study the complexity and approximability properties of numerous special cases
of this second problem. We mainly focus on bounded costs, and consider both directed
and undirected graphs, bounded and unbounded number of colors, and both bounded
and unbounded degree graphs. We also present polynomial time exact algorithms and an
approximation algorithm for some special case. To the best of our knowledge, these are
the first algorithms with a provable performance guarantee for the problem. Moreover, our
approximation algorithm shows a tight bound on the approximability of the problem for a
specific family of instances.
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1. Introduction

1.1. Background

Various network optimization problems can be modeled using edge-colored graphs. In these graphs we focus on the
reload costs, which are associated with the cost incurred while traversing a vertex via two consecutive edges of different
colors. The cost associated with the traversal of a vertex depends on the colors of the incident traversed edges. Two models
are under concern, the reload cost model and the changeover cost model. The difference between the two models is that
in the reload cost model, the cost is proportional to the amount of commodity flowing through the arcs, whereas in the
changeover cost model the cost is fixed. Although these costs have important applications in many areas such as transporta-
tion networks, energy distribution networks and telecommunications, they have received little attention in the literature.

Each carrier in an intermodal cargo transportation network can be represented by a color. The cost of transferring cargo
from one carrier to another can be modeled by reload costs. In energy distribution networks, transfer of energy from
one type of carrier to another has a reload cost. In telecommunications, reload costs arise in many different settings. In
heterogeneous networks, routing may necessitate switching from one technology (such as a cellular network) to another
(such as a wireless local area network) and this switching cost can be modeled by using the reload cost or changeover
cost concept, depending on the specific setting. Even within the same technology, switching between networks of different
service providers has different costs corresponding to reload costs [1,3]. Recently, dynamic spectrum access (DSA) networks
have been studied in the wireless networking literature [4,5]. Assigned frequency bands in an ad hoc DSA network can
be significantly far away from one another. Hence, unlike other wireless networks, switching from one frequency band to
another in a DSA network can have a significant cost in terms of delay and power consumption [6]. We observe that this
frequency switching cost can be modeled using changeover costs, and in this work we investigate this model.

1.2. Related work

The reload cost concept is introduced in [3] where the focus is on the problem of finding a spanning tree in an edge
colored undirected graph having minimum diameter with respect to reload costs. It is proven that, in its most general case,
the problem is hard to approximate within any polynomial-time computable function f (n), and is hard to approximate
within any constant factor less than 3 even when the instance is restricted to graphs of maximum degree 5. A polynomial
time algorithm for graphs with maximum degree at most 3 is also provided. In [7] the authors study the minimum diameter
reload cost spanning tree problem for graphs with maximum degree 4. In particular, it is proved that if reload costs are
unrestricted, the problem cannot be approximated within any constant c < 2, and it cannot be approximated within any
constant c < 5/3 if reload costs satisfy the triangle inequality.

[8] focuses on the minimum reload cost cycle cover problem, aiming to span the vertices of an edge-colored graph by a
set of vertex-disjoint cycles.

[9] studies the problems of finding a path, trail or walk connecting two given vertices s, t with minimum total reload
cost. It focuses on cases where reload costs are symmetric/asymmetric and do/do not satisfy the triangle inequality. The
work in [9] provides a rather complete characterization of polynomial vs. Np-Hard cases. The case of walks is shown to be
polynomial as was already pointed out in [3]. Actually this fact is re-proved later, this time for digraphs, in [1].

In all the above problems, the concept of reload cost is closely related to the concept of changeover cost, as will be made
more precise in Section 2.

In [10] integer programming formulation is used to find a spanning tree that minimizes the sum of the reload costs of
all paths between all pairs of vertices.

Works [1,2] are more closely related to our work. [1] presents numerous path, tour, and flow problems concerning reload
costs. In particular, it focuses on the Minimum Reload Cost Path-Tree (MinRCPT) problem, which is to find a spanning tree that
minimizes the total reload cost from a source vertex to all other vertices. It is shown that, in a directed graph, the problem
is inapproximable within any polynomial-time computable function.

In [2] the authors study the Minimum Changeover Cost Arborescence problem, which is to find a spanning tree that min-
imizes the sum of the costs of traversing all pairs of edges. This sum does not depend on the amount of commodity
traversing each pair. The authors studied directed graphs and proved that unless P = NP, even on graphs with bounded
degree and reload costs satisfying the triangle inequality, the problem is not approximable within a) β log log n, for some

β > 0, when the number of colors is 2, b) n
1
3 −ε , for any ε > 0 when the number of colors is 3.

1.3. Our contribution

In this work we study the Minimum Changeover Cost Arborescence problem, which is to find a spanning tree that mini-
mizes the sum of the costs of traversing paths from r to all nodes. This sum does not depend on the amount of commodity
traversing each pair. We refer to the Minimum Changeover Cost Arborescence problem on undirected and directed graphs
as MinCCA and MinDirectedCCA, respectively. We first observe that the hardness result in [1] obtained for the Minimum
Reload Cost Path-Tree Problem on Directed Graphs (MinDirectedRCPT) holds also for our problem; i.e., when no restrictions are
imposed on the individual costs, MinDirectedCCA is inapproximable within any polynomial-time computable function f (n)
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Table 1
Summary of results.

Directed graphs Bounded degree Apx-Hard for 2 colors
Unbounded degree log -Apx-Hard for 2 colors

log -Apx-Complete for directed acyclic graphs without crossing free
traversals

Undirected graphs Bounded degree Apx-Hard for 2 colors
Unbounded degree log -Apx-Hard

Polynomial time solvable if all biconnected components are monochromatic
Polynomial time solvable for the special case of cactus graphs where the
number of cycles that each edge can belong to is bounded by a constant

where n is the size of the input. Given this strong inapproximability result, a natural research direction is to investigate
special cases, especially bounded reload cost values. We explore the complexity of MinCCA and MinDirectedCCA under
bounded reload costs and depending on parameters such as bounded vs. unbounded vertex degrees and bounded vs. un-
bounded number of colors. We also present polynomial time exact algorithms and an approximation algorithm for some
special cases. The approximation algorithm shows a tight bound on the approximability of the problem for a specific family
of instances. Table 1 summarizes these results.

In Section 2 we introduce some preliminaries including notation, definitions and problem statements. Section 3 presents
our inapproximability results for directed graphs, while Section 4 focuses on hardness results for undirected graphs. In
Section 5 we present our algorithms for special cases. Finally, in Section 6 we discuss further research directions.

2. Preliminaries

Notations and problem statements: Given an undirected graph G = (V (G), E(G)) and a vertex v ∈ V (G), δG(v) denotes the

set of edges incident to v in G , and dG(v)
def= |δG(v)| is the degree of v in G . The minimum and maximum degrees of G

are defined as δ(G)
def= min{dG(v) | v ∈ V (G)} and �(G)

def= max{dG(v) | v ∈ V (G)} respectively. When there is no ambiguity
about the graph G we omit it from the notation and write V , E, δ(v),d(v), δ and �, respectively. Given a subset V̄ of V (G),
G[V̄ ] denotes the subgraph of G induced by V̄ . Given a tree T and two vertices v1, v2 ∈ V (T ), we denote by P T (v1, v2)

the path between v1 and v2 in T . We use the same notation for digraphs wherever applicable. The degree of a vertex in a
digraph is its degree in the underlying graph. A digraph is directed acyclic (also known as Dag) if it does not contain directed
circuits. A digraph is a rooted tree or arborescence if its underlying graph is a tree and it contains a root vertex, such that
there is a directed path from it to every other vertex. Note that a rooted tree is a Dag. Given two graphs G and G ′ , their

union is G ∪ G ′ def= (V (G) ∪ V (G ′), E(G) ∪ E(G ′)). For a set A and an element x, we use A + x (resp. A − x) as a shorthand
for A ∪ {x} (resp. A \ {x}).

We follow the notation of [3] where the concept of reload cost was defined. We consider edge colored graphs G , where
the colors are taken from a set X and χ : E(G) → X is the coloring function. Given a coloring function χ , we denote by Eχ

x ,
or simply by Ex the set of edges of E colored x, and Gx = (V (G), E(G)x) is the subgraph of G having the same vertex set
as G , but only the edges colored x.

The costs are given by a non-negative function c : X2 →R
+ satisfying

• (i) c(x1, x2) = c(x2, x1) for every x1, x2 ∈ X .
• (ii) c(x, x) = 0 for every x ∈ X .

We assume w.l.o.g. that the minimum possible non-zero reload cost value is 1. We denote the maximum cost value as

Cmax
def= maxx1,x2∈X c(x1, x2). The cost of traversing two adjacent edges e1, e2 is c(e1, e2)

def= c(χ(e1),χ(e2)). We say that the
instance satisfies the triangle inequality if

• (iii) c(e1, e3)� c(e1, e2) + c(e2, e3) whenever e1, e2 and e3 are incident to the same vertex.

Depending on the problem, the cost function will be interpreted as a reload cost or changeover cost.

The changeover cost of a path P = e1, e2, . . . , e� of length � is c(P )
def= ∑�

i=2 c(ei−1, ei). Note that c(P ) = 0 whenever � � 1.
We extend this definition to trees as follows: Given a directed tree T rooted at r, (resp. an undirected tree T and a vertex

r ∈ V (T )), for every edge e going out of r (resp. incident to r) we define prev(e) = e, and for every other edge, prev(e) is the

edge before e on the path from r to e. The changeover cost of T with respect to r is c(T , r)
def= ∑

e∈E(T ) c(prev(e), e).
A pair of edges (e1, e2) incident to the same vertex v is a free traversal of v , if c(χ(e1),χ(e2)) = 0. In digraphs, we use

the same terminology when e1 is an incoming edge of v and e2 is an outgoing edge of v . Two such free traversals (e1, e2)

and (e′ , e′ ) are crossing if they both traverse the same vertex v and {e1, e2} ∩ {e′ , e′ } = ∅.
1 2 1 2
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Fig. 1. Example graphs.

MinCCA and MinDirectedCCA problems aim to find a spanning tree rooted at r with minimum changeover cost [2].
Formally,

MinCCA (G, X,χ, r, c)
Input: A graph G = (V , E) with an edge coloring function χ : E → X , a vertex r ∈ V and a reload cost function
c : X2 →R

+ .
Output: A spanning tree T of G .
Objective: Minimize c(T , r).

MinDirectedCCA(G, X,χ, r, c)
Input: A digraph G = (V , E) with an edge coloring function χ : E → X , a vertex r ∈ V and a reload cost function
c : X2 →R

+ .
Output: A directed spanning tree T of G rooted at r.
Objective: Minimize c(T , r).

Both problems have feasible solutions whenever all the vertices of G are reachable from r. As this can be verified easily
in polynomial time using any traversal algorithm such as DFS or BFS, we assume without loss of generality that all instances
are feasible. Moreover, we assume that every solution has a cost strictly greater than zero, as otherwise an optimal solution
can be found in polynomial time, for instance, by traversing the graph Gx for every color x.

Another cost measure for a rooted tree is the reload cost, defined as cRL(T , r)
def= ∑

v∈V (T ) c(P T (r, v)). Problem MinDi-

rectedRCPT is the counterpart of MinDirectedCCA, where the objective function is replaced by cRL(T , r) [1]. When there is
no ambiguity about the vertex r, we denote cRL(T , r) and c(T , r) by cRL(T ) and c(T ), respectively.

Example 1. Consider the digraph G = (V , E) in Fig. 1(a) with X = {x1, x2} and the cost function c with c(x1, x2) =
c(x2, x1) = 1. The changeover cost of the spanning tree T1 (Fig. 1(b)) is c(T1, r) = 2, whereas its reload cost is cRL(T1, r) = 9.
On the other hand, the changeover cost of the spanning tree T2 of G (Fig. 1(c)) is c(T2, r) = 3, whereas its reload cost
is cRL(T2, r) = 6. Actually the tree T1 (resp. T2) is an optimum for problem MinDirectedCCA (resp. MinDirectedRCPT),
showing that the two problems may lead to different optima.

Approximation algorithms: Let Π be a minimization problem and ρ � 1. A (feasible) solution S of an instance I of Π

is a ρ-approximation if its objective function value O Π(I, S) is at most ρ times the optimal objective function value
O ∗

Π(I). An algorithm ALG is said to be a ρ-approximation algorithm for an optimization problem Π if ALG returns a
ρ-approximation ALG(I) for every instance I of Π . A problem Π is said to be ρ-approximable if there is a polynomial-time
ρ-approximation algorithm for it. Π is said to be ρ-inapproximable if there is no polynomial-time ρ-approximation algo-
rithm for it unless P = NP. Given a real function f , Π is said to be in f -Apx-Hard if there is a constant c > 0 such that Π

is (c · f (|I|))-inapproximable where |I| is the size of the instance I , and Π is said to be in f -Apx if there is a constant c > 0
such that Π is (c · f (|I|))-approximable. If Π is both in f -Apx-Hard and f -Apx, then it is said to be in f -Apx-Complete.
When f is a constant, these complexity classes are called simply Apx-Hard, Apx and Apx-Complete, respectively. Polynomial
reductions are the main tools using to prove inapproximability results. An approximation preserving reduction of a problem Π

to a problem Π ′ , is a polynomial reduction that shows that a ρ-approximation to problem π ′ implies a ρ-approximation to
problem π . A polynomial time approximation scheme (PTAS) is an infinite family of algorithms {ALGε | ε > 0} such that ALGε

is a (1 + ε)-approximation algorithm with running time O (|I| f (ε)) for some function f . A problem Π is said to be in Ptas

if there is a PTAS for it [11]. We note that, unless P = NP, a problem is in Apx-Hard if and only if it does not admit a PTAS.
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The minimum set cover problem: An instance of the MinWeightSetCover problem is a triplet (U ,S, w), where U =
{u1, u2, . . . , un} is a finite ground set of elements, S = {S1, S2, . . . , Sm} is a collection of subsets of U , and w : S → R

is a non-negative real weight function on the sets. Given such an instance, one has to find a subset C ⊆ S that covers U ,

i.e.
⋃

C def= ⋃
Si∈C Si = U . The goal is to minimize w(C)

def= ∑
Si∈C w(Si). The special case in which all weights are 1 (thus

w(C) = |C|) is referred to as the MinCardSetCover problem and we denote its instances as (U ,S). The greedy algorithm
of [12] is an Hn-approximation to both problems, where Hn = ∑n

i=1
1
i is the n-th harmonic number. It is also shown in [13]

that it is hard to approximate MinCardSetCover within a factor o(log n).

Biconnected components and block trees: An articulation point, a cut vertex or a separation vertex in a connected graph is
a vertex whose removal, along with its incident edges, disconnects the remaining vertices. A bridge in a connected graph
is an edge whose removal disconnects the graph. A graph with no articulation points is called biconnected or nonseparable.
A maximal biconnected subgraph of a graph is called a biconnected component or a block [14,15]. For any connected graph G
we can construct in linear time a tree whose vertices are the biconnected components of G and its articulation points, and
the edges join every articulation point to the blocks to which it belongs. This tree is termed the block tree or superstructure
of the graph [16,17].

Cactus graphs: A cactus graph is a connected graph in which any two simple cycles have at most one vertex in common.
Every edge in a cactus graph belongs to at most one simple cycle. Furthermore, every block in a cactus graph is either an
edge or a cycle [18].

3. Lower bounds for directed acyclic graphs

In this section we provide hardness results for digraphs. We first observe that MinDirectedCCA is inapproximable within
any polynomial time computable function f (n), even if G is a directed acyclic graph-Dag. This hardness result relies heavily
on unbounded reload cost values. In view of this result, in the subsequent subsections we focus on bounded reload costs
and the case where G is a Dag. We consider the simplest case of two colors with all non-zero reload costs equal to 1, i.e.
|X | = 2 and Cmax = 1. For these instances we show a lower bound of Ω(log |V |) when the degrees can be arbitrarily large,
and that the problem is Apx-Hard even when the degrees are bounded. In Section 5.2 we provide an algorithm matching
the bound for the unbounded degree case, showing that the bound is tight.

3.1. Unbounded costs

We first observe that the gap proven for MinDirectedRCPT in Theorem 2 of [1] is valid also for the MinDirectedCCA

problem, as follows:

Proposition 1. MinDirectedCCA cannot be approximated within any polynomial time computable function f (n) even for instances
where G is a Dag.

Proof. We note that for every tree T and root r ∈ V (T ), we have c(T , r) � cRL(T , r). This is because for every edge e,
(prev(e), e) is included in some path P T (r, v). Moreover, equality holds if T is such that c(prev(e), e) > 0 only if e enters a
leaf of T .

The rest of the proof is closely related to the proof of Theorem 2 in [1]. (The reader is advised to consult that work for
further details.) We observe the following facts about the trees used in the proof:

• If the Set Cover instance is a YES instance: Any optimal tree TYES satisfies c(TYES, r) = cRL(TYES, r) because whenever
c(e) > 0, e enters a leaf of TYES .

• If the Set Cover instance is a NO instance: It is said that any solution TNO satisfies cRC(TNO) � c − h + M . We observe
that c(TNO) � c − h + M holds, too.

Therefore, the gap proven for MinDirectedRCPT in [1] is valid also for the MinDirectedCCA problem. �
3.2. Bounded costs, unbounded vertex degrees

Theorem 1. There is a constant ρ > 0, such that MinDirectedCCA is (ρ · log |V |)-inapproximable even when G is a Dag without
crossing free traversals, |X | = 2, and Cmax = 1.

Proof. We provide an approximation preserving reduction from MinCardSetCover to MinDirectedCCA. It is known
(see [19]) that there is a constant ρ ′ > 0 such that MinCardSetCover is (ρ ′ · log |U |)-inapproximable even if we restrict
the problem to instances in which the number of sets is polynomial in the number of elements,1 i.e. |S| � |U |k for some

1 This is slight abuse of notation, because the result presented in [19] is valid under the assumption NP 
= DTIME(nO (log log n)), an assumption stronger
than P 
= NP. The result is not stated explicitly, but it follows from the proof presented therein.
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Fig. 2. Digraph G corresponding to an instance of MinCardSetCover with S1 = {u2, u3, u5, u6}, S2 = {u1, u3, u4}, S3 = {u2, u6}, S4 = {u3, u5}. Bold arcs
indicate the spanning tree T (C∗) corresponding to the optimal set cover C∗ = {S1, S2}.

fixed k > 0. Given an instance (U ,S) of MinCardSetCover we construct an instance (G, X,χ, r, c) of MinDirectedCCA (see
Fig. 2).

G = (V , E) is a Dag where V = {r} ∪ S ∪ S ′ ∪ U , S ′ = {S ′
i | Si ∈ S}. E = E1 ∪ E2 ∪ E3 ∪ E4 where E1 = {(r, Si) | Si ∈ S},

E2 = {(r, S ′
i) | Si ∈ S}, E3 = {(Si, S ′

i) | Si ∈ S}, E4 = {(S ′
i, u j)|u j ∈ Si, Si ∈ S}.

X = {x1, x2} and the cost function c is such that c(x1, x2) = c(x2, x1) = 1. Recall that c(x1, x1) = c(x2, x2) = 0, by definition.
Also

χ(e) =
{

x1 if e ∈ E1 ∪ E2
x2 otherwise.

Note that only vertices of S ′ have free traversals (namely between edges colored x2), however all such traversals of the
same vertex have a common edge. Therefore there are no crossing free traversals.

Let C∗ be an optimal set cover, and without loss of generality assume C∗ = {S1, S2, . . . , S�}. Consider the spanning tree
T (C∗) of G rooted at r with the arcs E(T (C∗)) = E1 ∪ E∗

2 ∪ E∗
3 ∪ E∗

4 where E∗
2 = {(r, S ′

i) ∈ E2 | i > �}, E∗
3 = {(Si, S ′

i) ∈ E3 | 1 �
i � �}, and E∗

4 ⊆ E4 is such that each u j has exactly one incoming arc (S ′
i, u j) in E∗

4 and also 1 � i � k. Note that there is
always such an arc because there is at least one set in Si ∈ C∗ containing u j as C∗ is a set cover. The changeover costs of
E1 and E∗

2 are zero because prev(e) = e for every edge e ∈ E1 ∪ E∗
2. The changeover cost of an edge e ∈ E∗

3 is 1 and the
changeover cost of an edge e ∈ E∗

4 is zero because χ(e) = χ(prev(e)) = x2. Therefore, c(T (C∗)) = |E∗
3| = � = |C∗|. The cost c∗

of an optimal solution of (G, X,χ, r, c) is at most c(T (C∗)), therefore

c∗ �
∣∣C∗∣∣.

Let T = (V , ET ) be a spanning tree of G rooted at r constituting a ρ̄-approximation to the constructed instance
(G, X,χ, r, c) of MinDirectedCCA. Note that E1 ⊆ ET , because otherwise some vertex Si ∈ S is not reachable from r in T .
Furthermore, for every i, exactly one of {(r, S ′

i), (Si, S ′
i)} is in ET because otherwise T is not a directed tree rooted at r.

Let Q ⊆ S ′ be the set of vertices S ′
i such that (r, S ′

i) /∈ ET and (Si, S ′
i) ∈ ET . Then Q

def= S ′ \ Q is the set of vertices S ′
i such

that (r, S ′
i) ∈ ET and (Si, S ′

i) /∈ ET . Let U Q be the set of vertices of U that are reachable from Q in T , and U Q
def= U \ U Q .

Then the vertices of U Q are reachable from Q in T .
We now construct a solution T ′ = (V , ET ′ ) with c(T ′) � c(T ) and U Q = ∅. Consider a vertex u j ∈ U Q and let S ′

i ∈ Q ) be
its parent vertex in T . Now consider the subtree of T containing the arcs (r, Si), (r, S ′

i) and all the arcs going from S ′
i to its

children. The changeover cost of this subtree is equal to the number of children of S ′
i , thus at least 1. On the other hand, the

subtree obtained by removing the arc (r, S ′
i) and adding the arc (Si, S ′

i) has changeover cost exactly 1. In the new subtree
S ′

i ∈ Q , and all the children of S ′
i are in U Q . We can proceed with this transformation until U Q = ∅ to get a solution T ′ as

claimed. Now U Q = U and thus Q is a set cover. It can be easily verified that c(T ′) = |Q |. We conclude

|Q | = c
(
T ′) � c(T ) � ρ̄ · c∗ � ρ · ∣∣C∗∣∣.

Thus, Q constitutes a ρ̄-approximation to MinCardSetCover.
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Fig. 3. Graph G corresponding to an instance of MinCardSetCover having S1 = {u3, u4}, S2 = {u1, u3, u4}, S3 = {u2, u6}, S4 = {u3, u5}, S5 = {u3}. Bold arcs
indicate the spanning tree T (C∗) corresponding to the optimum set cover C∗ = {S2, S3, S4}.

Finally, we note that |V | = |U | + 2|S| + 1 � 4|U |k , thus log |V | � k log |U | + 2. Let ρ ′ be a constant for which MinCard-

SetCover is (ρ ′ · log |U |)-inapproximable, and let ρ < ρ ′/k. Assume that there is a (ρ · log |V |)-approximation algorithm for
MinDirectedCCA. Then we can use it to find a (ρ ′ · log |U | + O (1))-approximation to MinCardSetCover, a contradiction. �

A similar reduction has been presented independently in [2]. Though, our result is stronger (O (log |V |) vs. O (log log |V |)
inapproximability).

3.3. Bounded costs and bounded vertex degrees

Theorem 2. For any integer constant B � 5, MinDirectedCCA is in Apx-Hard even when G is a Dag without crossing free traversals,
�(G) = B, |X | = 2, and Cmax = 1.

Proof. It was shown in [20] that for every k � 3, MinCardSetCover is in Apx-Hard even for instances where the sets are
of cardinality at most k and each element appears in at most 2 sets. Given such an instance (U ,S) of MinCardSetCover

we construct an instance (G, X,χ, r, c) of MinDirectedCCA in two steps. In the first step, we construct an instance of
MinDirectedCCA as we did in the proof of Theorem 1 (see Fig. 2). In the second step we replace the tree induced by {r}∪S
with a directed tree rooted at r with edges colored x1, out-degree at most 2, whose leaves are S (for example, see the tree
induced by the vertices {r, r11, r12, r13} ∪ S in Fig. 3). We do the same transformation to the tree induced by {r} ∪ S ′ . Note
that this does not change the changeover costs of the original edges. Furthermore, the changeover costs of the new edges
are zero, i.e. same as the changeover costs of the removed edges. By the choice of the instance (U ,S), every vertex in U
has in-degree at most 2. Moreover, the degree of every vertex in S ′ is at most k + 2, the degree of r is at most 4, and the
degree of all the other vertices is at most 3. Therefore �(G) � k + 2. As the changeover costs did not change, using the
same proof as in Theorem 1 we can show that a ρ-approximation to MinDirectedCCA implies a ρ-approximation to the
instance under consideration of MinCardSetCover.

Assume, by way of contradiction, that for some B � 5, there exists a PTAS for the MinDirectedCCA problem on graphs
with �(G) � B . Using our reduction, this implies a PTAS for MinCardSetCover instances for which the sets have at most
B − 2 � 3 elements and every element appears in at most 2 sets, a contradiction. �
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4. Lower bounds for undirected graphs

4.1. Bounded number of colors

Theorem 3. For any integer constant B � 5, MinCCA is in Apx-Hard even when �(G) = B, |X | = 2, Cmax = 1, and G1 and G2 are
forests.

Proof. Let B � 5 an integer constant and let k = B − 2 � 3. We recall that for every k � 3, MinCardSetCover is in Apx-Hard
even for instances where the sets are of cardinality at most k and each element appears in at most 2 sets [20]. Given such
an instance (U ,S) of MinCardSetCover we construct an instance (G, X,χ, r, c) of MinCCA as follows (see Fig. 3):

G = (V , E) is a graph where V = {r} ∪ R1 ∪ R2 ∪ S ∪ S ′ ∪ Y ∪ U , S ′ = {S ′
i | Si ∈ S}, and Y = {yij |Si ∈ S, u j ∈ Si}. E =

E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5. R1, R2, E1, and E2 are constructed such that the subgraph ({r} ∪ R1 ∪S, E1) of G is a directed binary
tree with root r leaves S; and R2 and E2 are such that the subgraph ({r} ∪ R2 ∪S ′, E2) of G is a tree with root r, leaves S ′ ,
and out-degree 2. E3 = {{Si, S ′

i} | Si ∈ S}, E4 = {{S ′
i, yij} | u j ∈ Si, Si ∈ S}, and E5 = {{yij, u j} | u j ∈ Si, Si ∈ S}. Note that

�(G) � B and this maximum is attained for vertices of S ′ corresponding to sets with k elements. X = {x1, x2} and the cost
function c is such that c(x1, x2) = c(x2, x1) = 1. Also

χ(e) =
{

x1 if e ∈ E1 ∪ E2 ∪ E5
x2 otherwise.

To see that the above construction can be performed in polynomial time, we note that a binary tree with k leaves has 2k −1
vertices and can be easily constructed in time linear in k.

Let C∗ be an optimal set cover, and without loss of generality assume C∗ = {S1, S2, . . . , S�}. Consider the spanning tree
T (C∗) of G with the edges E(T (C∗)) = E1 ∪ E∗

2 ∪ E∗
3 ∪ E∗

4 ∪ E5 where E∗
2 = E2 \ {{r2, S ′

i} ∈ E2 | i � k, r2 ∈ R2}, E∗
3 = {{Si, S ′

i} ∈
E3 | 1 � i � �}, and E∗

4 ⊆ E4 is such that for each u j there is exactly one edge {S ′
i, yij} in E∗

4 and also 1 � i � �. Note that
there is always such an edge because there is at least one set in Si ∈ C∗ containing u j as C∗ is a set cover. Whenever an
element is covered more then once we choose an edge to E∗

4 arbitrarily. The changeover costs of E1 and E∗
2 are zero because

for every edge e ∈ E1 ∪ E∗
2 either prev(e) = e or χ(prev(e)) = χ(e) = x1. The changeover cost of an edge e ∈ E∗

3 is 1, the
changeover cost of an edge e ∈ E∗

4 is zero because χ(e) = χ(prev(e)) = x2, and finally the changeover cost of an edge of E5
is 1 if it is incident to an edge in E∗

4 and zero otherwise. Therefore, c(T (C∗)) = |E∗
3| + |E∗

4| = � + |U | = |C∗| + |U |. The cost
c∗ of an optimal solution of (G, X,χ, r, c) is at most c(T (C∗)), therefore

c∗ �
∣∣C∗∣∣ + |U |.

In the following claim a subtree of T means a tree of the forest obtained by the removal of {r} ∪ R1 ∪ R2 from T .

Claim 1. Every solution of T of (G, X,χ, r, c) can be transformed in polynomial time to a solution T ′ with c(T ′)� c(T ) satisfying:

• (i) Every subtree of T ′ contains at most one vertex of S ′ .
• (ii) E5 ⊆ E(T ′).
• (iii) If there is a path between r and S ′

i in T ′ that does not traverse Si then S ′
i is a leaf of T ′ .

Proof. Suppose that T has a subtree containing more than one vertex of S ′ . Assume without loss of generality that S ′
1 and

S ′
2 are the closest and second closest, respectively, to r among these vertices. The path between these two vertices in T

does not use {r} ∪ R1 ∪ R2 because they are in the same subtree, therefore it must use some vertex u j ∈ U . We conclude
that there is a path r − · · · − S1 − y1 j − u j − y2 j − S2 in T (with possibly the vertex S1 and vertices of R1 ∪ R2 between
r and S ′

1). We consider two cases: (a) {S2, S ′
2} /∈ E(T ). In this case we replace {y2 j, S ′

2} by {S2, S ′
2} to obtain a new tree

with the same cost and less S ′ vertices sharing a subtree. (b) {S2, S ′
2} ∈ E(T ). In this case we replace {y2 j, S ′

2} by an edge
{r1, S2} where r1 ∈ {r} ∪ R1 to obtain a tree with at most the same changeover cost and less S ′ vertices sharing a subtree.
By applying this procedure as long as there are S ′ vertices sharing a subtree, we get a tree having the same changeover
cost or less, and satisfying (i).

Suppose that there is an edge {yij, u j} ∈ E5 \ E(T ). Then {S ′
i, yij} ∈ E(T ), because otherwise yij is isolated. By removing

this edge and adding the edge {yij, u j} we obtain a tree with at most the same cost and containing one more edge of E5.
By applying this transformation as long as there are edges in E5 \ E(T ) we obtain a tree with at most the same changeover
cost, satisfying (ii). Note that this transformation does not violate (i).

Suppose that there is a path P between r and S ′
i in T that does not traverse Si , and that S ′

i is not a leaf. If S ′
i has k � 1

adjacent Y vertices in T , then by removing the edge of P adjacent to S ′
i from E(T ) and adding the missing edge among

{{r, Si}, {Si, S ′
i}} we can reduce the changeover cost by at least k − 1 � 0 and get a tree with one less path violating (iii). If

S ′
i has no adjacent Y vertices in T , then it is adjacent to Si , because otherwise it is a leaf of T . By removing {Si, S ′

i} and
adding an edge {r1, Si} where r1 ∈ R1 we get a tree with smaller cost and one less edge of R1 × S ′ violating (iii). Clearly,
these transformations violate neither (i) nor (ii), and applying them as long as T contains violating edges we get a tree T ′
as claimed. �
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Fig. 4. Graph G corresponding to an instance of MinCardSetCover having S1 = {u3, u5}, S2 = {u1, u3, u4}, S3 = {u2, u6}, S4 = {u2, u3, u5, u6}. Bold arcs
indicate the spanning tree T (C∗) corresponding to the optimum set cover C∗ = {S2, S4}.

We proceed with the proof of the theorem. Let T = (V , E T ) be a spanning tree of G rooted at r constituting a
ρ-approximation to the constructed instance (G, X,χ, r, c) of MinCCA. By the above claim, it can be transformed in polyno-
mial time into a ρ-approximation T ′ = (V , ET ′ ) satisfying conditions (i, ii, iii). In such a solution, all the E2 edges connect
r to a leaf S ′

i , thus do not incur any changeover cost. E1 edges connect r to vertices Si , some of which are leaves of T ′ .
Let Q ⊆ S be the set of vertices Si such that there is an edge {r1, Si} ∈ ET ′ for some r1 ∈ R1 and Si is not a leaf of T ′ .
Every vertex Si ∈ Q is connected to S ′

i in T ′ by an edge with a changeover cost of 1. Thus, the changeover cost of these
edges is |Q |. All the vertices u j ∈ U are distributed among the subtrees rooted at a vertex of Q . By (i), every S ′

i is unique
in its subtree, thus the u j vertices in each subtree are connected to S ′

i by a path S ′
i − yij − u j of length 2. Therefore

u j ∈ Si . We conclude that Q constitutes a set cover of (U ,S). The cost of each such path is 1, incurring a total changeover
cost of |U |. The remaining E5 edges do not incur a changeover cost because their previous edges are also in E5. Therefore
c(T ′) = |Q | + |U |. We conclude

|Q | = c
(
T ′) − |U | � c(T ) − |U | � ρ · c∗ − |U |

� ρ
(∣∣C∗∣∣ + |U |) − |U | = (ρ − 1)|U | + ρ · ∣∣C∗∣∣

� (ρ − 1)k
∣∣C∗∣∣ + ρ · ∣∣C∗∣∣ = (

(k + 1)ρ − k
)∣∣C∗∣∣

(in the last line we used the fact that each set contains at most k elements). Therefore, Q constitutes a ((k + 1)ρ −
k)-approximation to the MinCardSetCover problem, which is known to be in Apx-Hard. Let ρ ′ > 1 be a constant such that
MinCardSetCover is ρ ′-inapproximable. Then (k +1)ρ −k > ρ ′ and ρ > (ρ ′ +k)/(k +1), implying that for ρ = (ρ ′ +k)/(k +
1) > 1 MinCCA is ρ-inapproximable. �
4.2. Unbounded number of colors

Theorem 4. There is a constant ρ > 0 such that MinCCA is (ρ · log |V |)-inapproximable even when Cmax = 1.

Proof. Similar to Theorem 1, we provide an approximation preserving reduction from MinCardSetCover to MinCCA. We
show the reduction for the case where all nonzero costs are equal to 1. Given an instance (U ,S) of MinCardSetCover, we
build an instance (G, X,χ, r, c) of MinCCA. Consult Fig. 4 for the construction.

The construction is the same as in Theorem 1 except that each edge {S ′
i, u j} ∈ E4 is colored with xi+2. The cost function

is

c(xi, x j) =
⎧⎨
⎩

0 if i = j
0 if min(i, j) = 2 and max(i, j) > 2
1 otherwise.

The impact of having directed edges between {S ′
i, u j} in Fig. 2 is achieved in Fig. 4 by having undirected edges with different

colors, between which the cost is 1. Hence, the same reduction in Theorem 1 can be applied here. �
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Algorithm 1 Algorithm for monochromatic biconnected components.
Require: For every biconnected component B of G , the edges E(B) are colored with the same color.

1: Calculate the set B of biconnected components of G .
2: Let Br the set of biconnected components of G that contain r
3: for all B ∈ B \Br do
4: v B ← the (unique) vertex in B closest to r
5: T̄ B ← a spanning tree of B \ {v B }
6: Connect v B to T̄ B as a leaf
7: end for
8: for all B ∈ Br do
9: T̄ B ← a spanning tree of B

10: end for
11: T̄ ← ⋃

B∈B T̄ B

12: return T̄ .

5. Upper bounds

In the previous sections we presented inapproximability results. An interesting question is to characterize the in-
stances that admit polynomial time algorithms. Though we do not have such a characterization, we provide in this section
polynomial-time optimal algorithms for two special cases of the MinCCA problem. In the first case the graph is arbitrary
but we impose a restriction on the coloring χ . In the second case χ is arbitrary and we impose restrictions on G . Finally,
we provide a (Cmax · log |V |)-approximation algorithm for MinDirectedCCA, which matches the lower bound we proved in
Section 3.2.

5.1. Polynomial cases for undirected graphs

Theorem 5. MinCCA is solvable in polynomial time for graphs whose biconnected components are monochromatic.

Proof. Algorithm 1 starts by decomposing the graph into its biconnected components in Line 1. For each biconnected
component B that does not contain r the algorithm finds a spanning tree of B such that the vertex of B closest to r is a leaf
(note that this vertex is unique and it is the only cut vertex in B that separates the rest of B from r). For each component
that contains r it finds an arbitrary spanning tree. Finally, it returns the union of all these trees.

The running time of the Algorithm 1 is polynomial because (a) Step 1 can be performed in linear time [16], (b) the
number of iterations of the loops is sublinear, and (c) a spanning tree can be calculated in polynomial time. In the sequel we
show that the graph T̄ returned by the algorithm is a tree and its cost is minimum whenever the biconnected components
are monochromatic. In this discussion we use the same symbol to denote both a biconnected component and its vertex set.

T̄ is a spanning tree because it is the union of spanning trees of biconnected components. To see that such a graph is
connected we note that for any vertices u, v ∈ V (G) such that u ∈ Bu, v ∈ B v for biconnected components Bu, B v . The path
in the block tree from Bu to B v can be used to find a path between u and v in G . A cycle in this graph spans at least two
biconnected components because in each biconnected component we have tree. The sequence of articulation points in this
cycle imply a cycle in the block tree, a contradiction.

Let T be any spanning tree of G , and B a biconnected component of G . Then the induced subgraph T [B] is a tree.
Clearly T [B] is acyclic, because T is acyclic. Assume, by contradiction, that T [B] is not connected. Then there are two
vertices u, v ∈ V (B) such that pT (u, v) contains vertices not in B . Then the sequence of articulation points of the path
pT (u, v) implies a cycle in the block tree of G , a contradiction.

Consider the block tree of G . Let Br be the set of biconnected components containing r. Note that |Br | > 1 if r is an
articulation point. In this case all the biconnected components of Br are adjacent in the block tree. A biconnected component
B of G that does not contain r, has exactly one vertex v B closest to r. Moreover, v B is the articulation point adjacent to
B on the path from B to any vertex of Br in the block tree. Let prev(B) be the third vertex (i.e. adjacent to v B ) on this
path. As we consider monochromatic biconnected components, we denote by χ(B) the common color of all the edges of B .
Consider a spanning tree T of G rooted at r. Only the first edges of every subtree T [B] incur a changeover cost. The number
of such edges is dT [B](v B) and the cost of each one is c(χ(prev(B)),χ(B)). Therefore,

c(T , r) =
∑
B /∈Br

dT [B](v B) · c
(
χ

(
prev(B)

)
,χ(B)

)
�

∑
B /∈Br

c
(
χ

(
prev(B)

)
,χ(B)

)
.

For the tree T̄ returned by the algorithm, T̄ [B] is a tree where v B is a leaf. Therefore

c(T̄ , r) =
∑
B /∈Br

c
(
χ

(
prev(B)

)
,χ(B)

)
.

We conclude that T̄ is optimal. �
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Algorithm 2 Algorithm for a subfamily of cactus graphs.
Require: G is a Cactus Graph with every vertex in at most one simple cycle.

1: ET ← {e ∈ E | e is a bridge}
2: for all cycles C of G do
3: vC ← the vertex of C that is closest to r
4: if vC = r then
5: v ′

C ← r
6: else
7: v ′

C ← the neighbor of vC that is not in C
8: end if
9: bridgesC ← {{u, v} ∈ E | u ∈ V (C), v /∈ V (C)}

10: cc ← ∞
11: for all e ∈ E(C) do
12: T ′ ← C ∪ bridgesC − e
13: cce ← c(T ′, v ′

C )

14: if cce < cc then
15: e′

C ← e
16: cc ← cce

17: end if
18: end for
19: ET ← ET ∪ E(C) − e′

C
20: end for
21: return T = (V , ET )

Theorem 6. MinCCA is solvable in polynomial time for the special case of cactus graphs in which every vertex belongs to at most one
simple cycle.

Proof. We claim that Algorithm 2 solves in polynomial time the special case of cactus graphs in which every vertex belongs
to at most one simple cycle. Step 1 adds all the bridges to the MinCCA solution because they have to be in any spanning tree
of G . The remaining graph consists of disjoint cycles. In order to find a spanning tree, exactly one edge has to be removed
from each cycle. The crucial point is that for any two such cycles C1 and C2, the decision of the edges to be removed can
be taken independently of each other. Lines 3–19 find this edge by exhaustive search. �
5.2. Approximation algorithm for directed acyclic graphs

In this section we present a (Cmax · log |V |)-approximation algorithm for Dags without crossing free traversals, proving
that the bound of Theorem 1 is tight up to a constant factor.

Given a digraph G = (V , E) with a coloring function χ on its arcs, a cost function c, and an arc e = (u, v) ∈ E directed
from u to v , R(e) is the set of all vertices of G reachable from v at a cost of zero. Note that this set can be calculated in
polynomial time. The balloon B(e) is the subgraph G[R(e)] + e of G . A balloon is maximal if it is not contained in any other
balloon. Note that for the arc e = (u, v) ∈ E we have (i) u, v ∈ V (B(e)), (ii) v ∈ R(e), (iii) u /∈ R(e) (because otherwise there
is a directed circuit in G).

Theorem 7. Algorithm 3 is a (Cmax · log |V |)-approximation algorithm for MinDirectedCCA instances where G is a DAG without
crossing free traversals.

Proof. Consider any solution to MinDirectedCCA, in particular an optimal solution T ∗ . Consider the set of arcs E∗
1

def= {e ∈
E(T ∗) | c(e) > 0}. Clearly, |E∗

1| � c(T ∗). Let E∗
2

def= E∗
1 ∪ δ

(out)
G (r). From every vertex v ∈ V − r, we can find a unique arc e ∈ E∗

2
by following the (reverse) path from v to r until we reach either a vertex that is traversed with a non-zero cost, or r.
Then v is reachable from e with zero cost, i.e. v ∈ R(e). Therefore, the set C∗ = {R(e)|e ∈ E∗

2} is a partition of V − r. We

associate a weight w with each set of this partition such that w(R(e)) = 0 if e ∈ δ
(out)
G (r), and w(R(e)) = 1 otherwise (i.e.

when e ∈ E∗
1). Then the weight w(C∗) associated with C∗ is |E∗

1|. Therefore w(C∗) � c(T ∗). In fact, Algorithm 3 is based on
this observation. Although the observation holds for every instance of MinDirectedCCA, the algorithm works only for DAGs
without crossing free traversals.

In Step 8 we find a set cover C of V − r using maximal sets R(e). Using the greedy algorithm from [12] provides us with
an approximation guarantee of w(C) � w(C∗) · log |V |.

Initially the sets B̄(e) are the balloons associated with C . In Lines 9–21 we transform C to a partition by choosing for
each vertex v exactly one set from C , and modifying the sets B̄(e) appropriately. This step succeeds, i.e. the graphs B̄(e)
remain reachable from e, due to our assumption of free traversals being pairwise non-crossing. Indeed, if v is a sink in some
balloon, then it can be safely removed from it. Assume that v is a non-sink in two balloons B , B ′ . Let e1, e2 (resp. e′

1, e′
2 be

a pair of edges of B (resp. B ′) traversing v . By definition of a balloon, these are free traversals. Moreover, by our assumption,
they are not crossing. Then e1 = e′

1 or e2 = e′
2. In the first case e1 is the only incoming edge of v in both balloons. Then

the set of vertices reachable from v in B and B ′ are the same. In the second case e2 is the only outgoing edge of v in both



D. Gözüpek et al. / Theoretical Computer Science 540–541 (2014) 40–52 51
Algorithm 3 Algorithm for DAGs without crossing free traversals.
Require: G is a Dag.
Require: G does not have crossing free traversals.

1: for all maximal balloons B(e) do
2: if e = (r, v) for some v ∈ V then
3: w(R(e)) = 0
4: else
5: w(R(e)) = 1
6: end if
7: end for
8: C ← a cover of V − r using the sets R(e) with associated weights w(R(e))  Use the greedy algorithm [12].
9: for all R(e) ∈ C do

10: B̄(e) ← B(e)
11: end for
12: for all v ∈ V − r do
13: if v is in k > 1 sets R(e1), . . . , R(ek) ∈ C then
14: if v is a sink in all the graphs B(ei) then
15: i ← 1
16: else
17: Choose i such that v is not a sink in B̄(ei)  i is unique
18: end if
19: Remove v from all the graphs B̄(e) except B̄(ei)

20: end if
21: end for
22: for all R(ei) ∈ C do
23: Convert the B̄(ei) to a tree rooted at the start vertex of ei

24: end for
25: return

⋃
R(ei )∈C B̄(ei)

balloons, and we observe that the claim holds. Therefore, removing v and all the vertices reachable from it, from one of
these balloons is a safe operation, because the vertices remain reachable in the other.

Line 23 transforms each graph B̄(e) to a tree. This is always possible because all the vertices are reachable from e. Finally,
the algorithm returns the union T of all these trees. Every vertex except r is a non-root vertex of exactly one of these trees,
thus has exactly one incoming arc in T , and there are no directed circuits in T , because G is a Dag. Therefore, T is a tree
rooted at r.

In addition, we observe that each tree B̄(e) that is added to the final solution has a reload cost of 0 because it is part
of a balloon. However, adding each B̄(e) when e does not start at r to the solution tree T incurs a changeover cost of at
most Cmax for the arc e, i.e. c(T ) � Cmax · w(C) and therefore we get that Algorithm 3 is a (Cmax · log |V |)-approximation
algorithm. �
Corollary 1. MinDirectedCCA is log -Apx-Complete even when G is a DAG without crossing free traversals, and Cmax is bounded by
some constant.

We note that the number of colors does not affect the hardness of the problem in this case. The lower bound holds for
two colors and it is achievable for any number of colors.

6. Summary and future work

In this paper we studied the complexity and approximability properties of MinCCA and MinDirectedCCAproblems. We
started our investigation by observing that for the general case, in which the costs can be arbitrarily large, MinDirectedCCA

cannot be approximated within any polynomial time computable function f (n). Therefore, we studied special cases of the
problem in directed and undirected graphs. We developed hardness results for cases such as bounded and unbounded vertex
degrees, bounded and unbounded number of colors, and bounded cost values. Our results show that MinCCA and MinDi-

rectedCCA are inherently difficult to approximate even in special cases. We introduced a tight Cmax · log |V |-approximation
algorithm for MinDirectedCCA in the special case of DAGs without crossing free traversals and bounded costs. We showed
that in this case the number of colors does not affect the hardness of the problem.

We also presented two special cases solvable in polynomial time (to the best of our knowledge there are no other
families of instances for which polynomial-time optimal algorithms have been presented): (a) The graph is arbitrary and the
coloring is such that every biconnected component is monochromatic, (b) When the graph is a special case of cactus graphs
and the coloring is arbitrary.

Two main research directions are of interest: developing approximation algorithms for the remaining special cases con-
sidered in this work, and getting hardness results for other cases. In particular, it would be interesting to find approximation
algorithms for more general cases, as well as stronger inapproximability results for directed graphs. Another interesting re-
search direction is to find other families of instances for which the problem is polynomial, beyond the above mentioned
two families.
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