
Theoretical Computer Science 690 (2017) 91–103
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Parameterized complexity of the MINCCA problem on graphs

of bounded decomposability ✩

Didem Gözüpek a, Sibel Özkan b, Christophe Paul c, Ignasi Sau c,∗,
Mordechai Shalom d,e,1

a Department of Computer Engineering, Gebze Technical University, Kocaeli, Turkey
b Department of Mathematics, Gebze Technical University, Kocaeli, Turkey
c CNRS, LIRMM, Université de Montpellier, Montpellier, France
d TelHai College, Upper Galilee, 12210, Israel
e Department of Industrial Engineering, Boğaziçi University, Istanbul, Turkey

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 August 2016
Received in revised form 19 May 2017
Accepted 19 June 2017
Available online 27 June 2017
Communicated by F.V. Fomin

Keywords:
Minimum changeover cost arborescence
Parameterized complexity
FPT algorithm
Treewidth
Tree-cutwidth
Planar graph

In an edge-colored graph, the cost incurred at a vertex on a path when two incident
edges with different colors are traversed is called reload or changeover cost. The Minimum
Changeover Cost Arborescence (MinCCA) problem consists in finding an arborescence with a
given root vertex such that the total changeover cost of the internal vertices is minimized.
It has been recently proved by Gözüpek et al. (2016) that the MinCCA problem when
parameterized by the treewidth and the maximum degree of the input graph is in FPT. In
this article we present the following hardness results for MinCCA:

• the problem is W[1]-hard when parameterized by the vertex cover number of the
input graph, even on graphs of degeneracy at most 3. In particular, it is W[1]-hard
parameterized by the treewidth of the input graph, which answers the main open
problem in the work of Gözüpek et al. (2016);

• it is W[1]-hard on multigraphs parameterized by the tree-cutwidth of the input
multigraph; and

• it remains NP-hard on planar graphs even when restricted to instances with at most 6
colors and 0/1 symmetric costs, or when restricted to instances with at most 8 colors,
maximum degree bounded by 4, and 0/1 symmetric costs.

© 2017 Elsevier B.V. All rights reserved.

✩ An extended abstract of this article appeared in the Proceedings of the 42nd International Workshop on Graph-Theoretic Concepts in Computer Science (WG),
volume 9941 of LNCS, pages 195–206, Istanbul, Turkey, June 2016. This work was supported by the bilateral research program of CNRS and TUBITAK under grant
no. 114E731.

* Corresponding author.
E-mail addresses: didem.gozupek@gtu.edu.tr (D. Gözüpek), s.ozkan@gtu.edu.tr (S. Özkan), paul@lirmm.fr (C. Paul), sau@lirmm.fr (I. Sau),

cmshalom@telhai.ac.il (M. Shalom).
1 The work of this author is supported in part by the TUBITAK 2221 Programme.
http://dx.doi.org/10.1016/j.tcs.2017.06.013
0304-3975/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2017.06.013
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:didem.gozupek@gtu.edu.tr
mailto:s.ozkan@gtu.edu.tr
mailto:paul@lirmm.fr
mailto:sau@lirmm.fr
mailto:cmshalom@telhai.ac.il
http://dx.doi.org/10.1016/j.tcs.2017.06.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2017.06.013&domain=pdf

92 D. Gözüpek et al. / Theoretical Computer Science 690 (2017) 91–103
1. Introduction

Numerous network optimization problems can be modeled by edge-colored graphs. A path in an edge-colored graph
may incur at every internal vertex a cost that depends on the colors of the two incident edges. In the literature, this cost is
referred to as reload cost or changeover cost. Although the reload cost concept has important applications in numerous areas
such as transportation networks, energy distribution networks, and cognitive radio networks, it has received little attention
in the literature. In particular, reload/changeover cost problems have been investigated very little from the perspective of
parameterized complexity; the only previous work we are aware of is by Gözüpek et al. [14].

In heterogeneous telecommunications networks, transiting from a technology such as 3G (third generation) to another
technology such as wireless local area network (WLAN) has an overhead in terms of delay, power consumption etc., de-
pending on the particular setting. This cost has gained increasing importance due to the recently popular concept of vertical
handover [5], which is a technique that allows a mobile user to stay connected to the Internet (without a connection loss)
by switching to a different wireless network when necessary. Likewise, switching between different service providers even
if they have the same technology has a non-negligible cost. Recently, cognitive radio networks (CRN) have gained increasing
attention in the communication networks research community. Unlike other wireless technologies, CRNs are envisioned to
operate in a wide range of frequencies. Therefore, switching from one frequency band to another frequency band in a CRN
has a significant cost in terms of delay and power consumption [1,13]. This concept has applications in other areas as well.
For instance, the cost of transferring cargo from one mode of transportation to another has a significant cost that, in some
cases, outweighs even the cost of transporting the cargo from one place to another using a single mode of transporta-
tion [20]. In energy distribution networks, transferring energy from one type of carrier to another has an important cost
corresponding to reload costs [8].

The reload cost concept was introduced by Wirth and Steffan [20] that considered the problem of finding an arborescence
having minimum diameter with respect to reload cost. The same problem was considered later by Galbiati et al. [8]. The
work of Galbiati et al. [10] focused on the minimum reload cost cycle cover problem, which is to find a set of vertex-disjoint
cycles spanning all vertices with minimum total reload cost. Gourvès et al. [12] studied the problems of finding a path, trail
or walk connecting two given vertices with minimum total reload cost.

In their work [9], Galbiati et al. introduced the Minimum Changeover Cost Arborescence (MinCCA) problem which is the
focus of this work. Given a root vertex, the MinCCA problem consists in finding an arborescence with minimum total
changeover cost starting from the root vertex. They proved that even on graphs with bounded degree and reload costs
adhering to the triangle inequality, MinCCA on directed graphs is inapproximable within β log log(n) for β > 0 when there
are two colors, and within n1/3−ε for any ε > 0 when there are three colors. The work of Gözüpek et al. [15] investigated
several special cases of the problem such as bounded cost values, bounded degree, and bounded number of colors. In that
work inapproximability results as well as a polynomial-time algorithms and approximation algorithms are presented for
special cases.

In this paper, we study the MinCCA problem from the perspective of parameterized complexity; see the books [2,4,7,
19] for an introduction to the domain. Unlike the classical complexity theory, parameterized complexity theory takes into
account not only the total input size n, but also other aspects of the problem encoded in a parameter k. It mainly aims to
find an exact resolution of NP-complete problems. A problem is called fixed-parameter tractable if it can be solved in time
f (k) · p(n), where f (k) is a function depending solely on k and p(n) is a polynomial in n. An algorithm constituting such a
solution is called an FPT algorithm for the problem. The class of all fixed-parameter tractable problems is denoted as FPT.
Analogously to NP-completeness in classical complexity, the theory of W[1]-hardness can be used to show that a problem
is unlikely to be in FPT.

The parameterized complexity of reload cost problems is largely unexplored in the literature. To the best of our knowl-
edge, the work of Gözüpek et al. [14] is the only one that focuses on this issue by studying the MinCCA problem on bounded
treewidth graphs. In particular, Gözüpek et al. [14] showed that the MinCCA problem is in XP when parameterized by the
treewidth of the input graph and it is FPT when parameterized by the treewidth and the maximum degree of the input
graph. We would like to note that these parameters have practical importance in communication networks. Indeed, for
instance, many networks that model real-life situations appear to have small treewidth [16,18].

In this article we prove that the MinCCA problem is W[1]-hard parameterized by the vertex cover number of the input
graph, even on graphs of degeneracy at most 3. In particular, it is W[1]-hard parameterized by the treewidth of the input
graph. This answers the main open issue pointed out by Gözüpek et al. [14], and is also interesting since most problems
are known to be in FPT when parameterized by the treewidth of their input graph.

In view of the above results, it makes sense to study the parameterized complexity of the MinCCA problem for parame-
ters that lie in between treewidth and treewidth plus maximum degree. A natural candidate is tree-cut width (see Fig. 1),
a width parameter recently introduced by Wollan [21] that plays a fundamental role in the structure of graphs not admit-
ting a fixed immersion (see Section 2 for the precise definition). In this direction, we prove that MinCCA is W[1]-hard on
multigraphs parameterized by the tree-cutwidth of the input multigraph.

We also prove that MinCCA is NP-hard on planar graphs, which are also graphs of bounded decomposability, even when
restricted to instances with at most 6 colors and 0/1 symmetric costs. In addition, we prove that it remains NP-hard on
planar graphs even when restricted to instances with at most 8 colors, maximum degree bounded by 4, and 0/1 symmetric
costs.

D. Gözüpek et al. / Theoretical Computer Science 690 (2017) 91–103 93
The rest of this paper is organized as follows. In Section 2 we introduce some basic definitions and preliminaries, as
well as a formal definition of the MinCCA problem. Our main result is in Section 3, where we prove that the problem is
W[1]-hard parameterized by the vertex cover number of the input graph, even if the input graph has degeneracy at most 3.
In Section 4 we prove that the problem is W[1]-hard on multigraphs parameterized by the tree-cutwidth of the input graph.
In Section 5 we prove that the problem remains NP-hard on planar graphs. Finally, Section 6 concludes the paper.

2. Preliminaries

For a set A and an element x, we use A + x (resp., A − x) as a shorthand for A ∪ {x} (resp., A \ {x}). We denote by [i, k]
the set of all integers between i and k inclusive, and [k] = [1, k].

Graphs, digraphs, trees, and forests Given an undirected (multi)graph G and a subset U ⊆ V (G) of the vertices of G , δG(U) :={{u, u′} ∈ E(G) | u ∈ U , u′ /∈ U
}

is the cut of G determined by U , i.e., the set of edges of G that have exactly one end in U .
In particular, δG(v) denotes the set of edges incident to v in G , and dG (v) := |δG(v)| is the degree of v in G . We denote by
NG(U) the open neighborhood of U in G . NG (U) is the set of vertices of V (G) \ U that are adjacent to a vertex of U . When
there is no ambiguity about the graph G we omit it from the subscripts. For a subset of vertices U ⊆ V (G), G[U] denotes
the subgraph of G induced by U . For a subset U of vertices of G , and a subset F of its edges we denote by G[U ∪ F] the
graph induced by these vertices and edges, that is obtained by adding to G[U] the edges of F and their endpoints. Formally,
G[U ∪ F] := (U ∪ V (F), F ∪ E(G) ∩ U × U). The degeneracy of a graph G is the smallest number k such that every induced
subgraph of G has a vertex of degree at most k. A vertex cover of a graph G is a subset S ⊆ V (G) such that G − S is an
independent set. The minimum cardinality of a vertex cover of a graph G is called the vertex cover number of G and denoted
by vc(G).

A digraph T is a rooted tree or arborescence if its underlying graph is a tree and it contains a root vertex with a directed
path from every other vertex to it. Every non-root vertex v of T has a parent in T , and v is a child of its parent.

A rooted forest is the disjoint union of rooted trees, that is, each connected component of it has a root, which will be
called a sink of the forest.

Tree decompositions and treewidth A tree decomposition of a graph G = (V (G), E(G)) is a tree T , where V (T) = {B1, B2, . . .}
is a set of subsets (called bags) of V (G) such that the following three conditions are met:

1.
⋃

V (T) = V (G).
2. For every edge uv ∈ E(G), u, v ∈ Bi for some bag Bi ∈ V (T).
3. For every Bi, B j, Bk ∈ V (T) such that Bk is on the path PT (Bi, B j), Bi ∩ B j ⊆ Bk .

The width ω(T) of a tree decomposition T is defined as the size of its largest bag minus 1, i.e., ω(T) =
max {|B| | B ∈ V (T)} − 1. The treewidth of a graph G , denoted as tw(G), is defined as the minimum width among all
tree decompositions of G .

Tree-cutwidth We now explain the concept of tree-cutwidth and follow the notation of Ganian et al. [11]. A tree-cut decom-
position of a graph G is a pair (T , X) where T is a rooted tree and X is a near-partition of V (G) (that is, empty sets are
allowed) where each set Xt of the partition is associated with a node t of T . That is, X = {Xt ⊆ V (G) : t ∈ V (T)}. The set Xt

is termed the bag associated with the node t . For a node t of T we denote by Yt the union of all the bags associated with t
and its descendants, and Gt = G[Yt], and by cut(t) = δ(Yt) the set of all edges with exactly one endpoint in Yt .

The adhesion adh(t) of t is |cut(t)|. The torso of t is the graph Ht obtained from G as follows. Let t1, . . . , t� be the children
of t , Yi = Yti for i ∈ [�] and Y0 = V (G) \ (Xt ∪ ⋃�

i=1 Yi). We first contract each set Yi to a single vertex yi for every i ∈ [0, �]
by possibly creating parallel edges. We then remove every vertex yi of degree 1 (with its incident edge), and finally suppress
every vertex yi of degree 2 having 2 neighbors, by connecting its two neighbors with an edge and removing yi .

The torso size tor(t) of t is the number of vertices in Ht . The width of a tree-cut decomposition (T , X) of G is
max{adh(t), tor(t) | t ∈ V (T)}. The tree-cutwidth of G , or tcw(G) in short, is the minimum width of (T , X) over all tree-
cut decompositions (T , X) of G .

Fig. 1 shows the relationship between the graph parameters that we consider in this article. As depicted in Fig. 1, tree-
cutwidth provides an intermediate measurement which allows either to push the boundary of fixed-parameter tractability
or strengthen W[1]-hardness results (cf. [11,17,21]). Furthermore, the vertex cover number and tree-cutwidth are not related
to each other, i.e., in general none of them bounds the other one.

Reload and changeover costs We follow the notation and terminology of Wirth and Steffan [20] where the concept of reload
cost was defined. We consider edge-colored graphs G , where the colors are taken from a finite set X and χ : E(G) → X is
the coloring function. Given a coloring function χ , and a color x ∈ X , we denote by Eχ

x , or simply by Ex the set of edges of
E colored x, and Gx = (V (G), E(G)x) is the subgraph of G having the same vertex set as G , but only the edges colored x.
The costs are given by a non-negative function cc : X2 →N0 satisfying

94 D. Gözüpek et al. / Theoretical Computer Science 690 (2017) 91–103
Fig. 1. Relationships between the graph parameters considered in this paper. In the figure, A being a child of B (drawn beneath B) means that every graph
class with bounded A has also bounded B , but the converse is not necessarily true [11].

1. cc(x1, x2) = cc(x2, x1) for every x1, x2 ∈ X .
2. cc(x, x) = 0 for every x ∈ X .

The cost of traversing two incident edges e1, e2 is cc(e1, e2) := cc(χ(e1), χ(e2)).
We say that an instance satisfies the triangle inequality, if (in addition to the above) the cost function satisfies cc(e1, e3) ≤

cc(e1, e2) + cc(e2, e3) whenever e1, e2 and e3 are incident to the same vertex.
The changeover cost of a path P of length � ≥ 2 with edges e1, e2, . . . , e� is cc(P) := ∑�

i=2 cc(ei−1, ei). We define
cc(P) = 0 whenever � ≤ 1.

We extend this definition to trees as follows: Given a directed tree T rooted at r, (resp., an undirected tree T and a vertex
r ∈ V (T)), for every outgoing edge e of r (resp., incident to r) we define prev(e) = e, and for every other edge prev(e) is the
edge preceding e on the path from r to e. The changeover cost of T with respect to r is cc(T , r) := ∑

e∈E(T) cc(prev(e), e).
When there is no ambiguity about the vertex r, we denote cc(T , r) by cc(T).

Statement of the problem As defined by Galbiati et al. [9], the MinCCA problem aims to find an arborescence rooted at r
with minimum changeover cost. Formally,

MinCCA

Input: A graph G = (V , E) with an edge coloring function χ : E → X , a vertex r ∈ V and a changeover cost
function cc : X2 → N0.
Output: An arborescence T of G minimizing cc(T , r).

3. W[1]-hardness with parameter vertex cover

Before stating our main result, we need to define the following parameterized problem.

Multicolored k-Clique

Input: A graph G , a coloring function c : V (G) → {1, . . . , k}, and a positive integer k.
Parameter: k.
Question: Does G contain a clique on k vertices with one vertex from each color class?

Multicolored k-Clique is known to be W[1]-hard on general graphs, even in the special case where all color classes
have the same number of vertices [6], and therefore we may make this assumption as well.

Theorem 1. The MinCCA problem is W[1]-hard when parameterized either by the vertex cover number of the input graph, even when
its degeneracy is 3.

Proof. We reduce from Multicolored k-Clique, where we may assume that k is odd. Indeed, given an instance (G, c, k) of
Multicolored k-Clique, we can trivially reduce the problem to itself as follows. If k is odd, we do nothing. Otherwise, we
output (G ′, c′, k + 1), where G ′ is obtained from G by adding a universal vertex v , and c′ : V (G ′) → {1, . . . , k + 1} is such
that its restriction to G equals c, and c(v) = k + 1.

Given an instance (G, c, k) of Multicolored k-Clique with k odd, we proceed to construct an instance (H, X, χ, r, cc)
of MinCCA. Let V (G) = V 1 � V 2 � · · · � Vk , where the vertices of V i are colored i for 1 ≤ i ≤ k. Let W be an Eulerian
circuit of the complete graph Kk on the vertex set V (Kk) = {v1, . . . , vk} that starts by visiting, in this order, the vertices

D. Gözüpek et al. / Theoretical Computer Science 690 (2017) 91–103 95
Fig. 2. The complete graph Kk and an Eulerian circuit W in Kk starting with v1, v2, . . . , vk, v1 and ending with v3, v1. A k-colored graph G is also
illustrated.

Fig. 3. The graph F .

Fig. 4. The graph H and a solution arborescence T drawn in solid lines. The path Q is drawn in thicker lines.

v1, v2, . . . , vk, v1, and ends by visiting v3 and finally v1
2; see Fig. 2. Note that W always exists since whenever k > 3 we

can construct the k + 1 cycle v1 v2 · · · vk v3 v1 and combine it with any Eulerian circuit of the remaining graph to get W .
For every edge {vi, v j} of W , we add to H a vertex si, j . These vertices are called the selector vertices of H . For every two
consecutive edges {vi, v j}, {v j, v�} of W , we add to H a vertex vi,�

j and we make it adjacent to both si, j and s j,� . We also
add to H a new vertex v0,2

1 adjacent to s1,2, a new vertex v3,0
1 adjacent to s3,1, and a new vertex r adjacent to v0,2

1 , which
will be the root of H . Note that the graph constructed so far is a simple path P on 2

(k
2

) + 2 vertices. We say that the
vertices of the form vi,�

j are occurrences of vertex v j ∈ V (Kk). For 2 ≤ j ≤ k, we add an edge between the root r and the
first occurrence of vertex v j in P (note that the edge between r and the first occurrence of v1 already exists).

The first k selector vertices, namely s1,2, s2,3, . . . , sk−1,k, sk,1 will play a special role that will become apparent later. To
this end, for 1 ≤ i ≤ k, we add an edge between the selector vertex si,i (mod k)+1 and each of the occurrences of vi that
appear after si,i (mod k)+1 in P . These edges will be called the jumping edges of H .

Let us denote by F the graph constructed so far; see Fig. 3. Finally, in order to construct H , we replace each vertex of
the form vi,�

j in F with a whole copy of the vertex set V j of G and make each of these new vertices adjacent to all the
neighbors of vi,�

j in F . This completes the construction of H ; see Fig. 4.

At this point we note that the vertex cover number of H is at most
(k

2

) + 1, since the selector vertices and r constitute
a vertex cover of H . The degeneracy of H is 3 since every induced subgraph of H that contains a non-selector vertex v has
minimum degree at most 3, and every induced subgraph that does not contain such a vertex has minimum degree 0.

We now proceed to describe the color palette X , the coloring function χ , and the cost function cc, which altogether will
encode the edges of G and will ensure the desired properties of the reduction. For simplicity, we associate a distinct color
with each edge of H , and thus, with slight abuse of notation, it is enough to describe the cost function cc for every ordered
pair of incident edges of H . We will use just three different costs: 0, 1, and B , where B = (k

2

) + 1. For each ordered pair of
incident edges e1, e2 of H , we define

2 This assumption is not crucial for the construction, but helps in making it conceptually and notationally easier.

96 D. Gözüpek et al. / Theoretical Computer Science 690 (2017) 91–103
cc(e1, e2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if e1 = {x̂, si, j} and e2 = {si, j, ŷ} is a jumping edge such that
x̂, ŷ are copies of vertices x, y ∈ V i , respectively, with x �= y, or

if e1 = {r, x̂} and e2 = {x̂, s1,2}, where x̂ is a copy of a vertex
x ∈ V 1, or

if e1 = {x̂, si, j} and e2 = {si,�, x̂} are the two edges that connect a
vertex in a copy of a color class V j to a selector vertex.

1, if e1 = {x̂, si, j} and e2 = {si, j, ŷ}, where x̂ is a copy of a vertex
x ∈ V i and ŷ is a copy of a vertex y ∈ V j such that {x, y} ∈ E(G).

B, otherwise.

This completes the construction of (H, X, χ, r, cc), which can be clearly performed in polynomial time.3

We now claim that H contains an arborescence T rooted at r with cost at most
(k

2

)
if and only if G contains a multi-

colored k-clique. Note that the simple path P described above naturally defines a partial left-to-right ordering among the
vertices of H , and hence any arborescence rooted at r contains forward and backward edges defined in an unambiguous
way. Note also that all costs that involve a backward edge are equal to B , and therefore no such edge can be contained in
an arborescence of cost at most

(k
2

)
.

Suppose first that G contains a multicolored k-clique with vertices v1, v2, . . . , vk , where vi ∈ V i for 1 ≤ i ≤ k. Then we
define the edges of the arborescence T of H as follows. The tree T contains the edges of a left-to-right path Q that starts
at the root r, contains all

(k
2

)
selector vertices and connects them, in each occurrence of a set V i , to the copy of vertex vi

defined by the k-clique. Since in Q the selector vertices connect copies of pairwise adjacent vertices of G , the cost incurred
so far by T is exactly

(k
2

)
. For 1 ≤ i ≤ k, we add to Q the edges from r to all vertices in the first occurrence of V i that are not

contained in Q . Note that the addition of these edges to T incurs no additional cost. Finally, we will use the jumping edges
to reach the uncovered vertices of H . Namely, for 1 ≤ i ≤ k, we add to T an edge between the selector vertex si,i (mod k)+1
and all occurrences of the vertices in V i distinct from vi that appear after si,i (mod k)+1; see the solid edges in Fig. 4. Note
that since the jumping edges in T contain copies of vertices distinct from the ones in the k-clique, these edges incur no
additional cost either. Therefore, cc(T , r) = (k

2

)
, as we wanted to prove.

Conversely, suppose now that H has an arborescence T rooted at r with cost at most
(k

2

)
. Clearly, all costs incurred by

the edges in T are either 0 or 1. For a selector vertex si, j , we call the edges joining si, j to the vertices in the occurrence of
V i right before si, j (resp., in the occurrence of V j right after si, j) the left (resp., right) edges of this selector vertex.

Claim 1. The tree T contains exactly one left edge and exactly one right edge of each selector vertex of H.

Proof: Since only forward edges are allowed in T , and T should be a tree, clearly for each selector vertex exactly one of its
left edges belongs to T . Thus, it just remains to prove that T contains exactly one right edge of each selector vertex.

Let si, j and s j,� be two consecutive selector vertices. Let e be the left edge of s j,� in T and let v j be the vertex of the
copy of V j contained in e. Again, since backward edges are not allowed in T , v j needs to be incident with another forward
edge e′ of T . If this edge e′ contains r or if it is a jumping edge, then the cost incurred by T during the traversal from e′
to e would be equal to B , a contradiction to the assumption that cc(T , r) ≤ (k

2

)
< B . Therefore, e′ is necessarily one of the

right edges of si, j , so at least one of the right edges of the selector vertex si, j belongs to T .
As for the right edges of the last selector vertex, namely s3,1, if none of them belonged to T , then there would be a

jumping edge going to the last copy of V 1 such that, together with the left edge of the selector vertex s1,2 that belongs
to T , would incur a cost of B , which is impossible.

We have already proved that exactly one left edge and at least one of the right edges of each selector vertex belong to T .
For each selector vertex si, j , its left edge in T together with each of its right edges in T incur at cost of at least 1. But as
there are

(k
2

)
selector vertices in H , and by hypothesis the cost of T is at most

(k
2

)
, we conclude that exactly one of the right

edges of each selector vertex belongs to T , as we wanted to prove. �
By Claim 1, the tree T contains a path Q ′ that chooses exactly one vertex from each occurrence of a color class of G .

We shall now prove that, thanks to the jumping edges, these choices are consistent, i.e., copies of the same vertex. This will
allow us to extract the desired multicolored k-clique in G .

Claim 2. For every 1 ≤ i ≤ k, the vertices in the copies of color class V i contained in Q ′ all correspond to the same vertex of G, denoted
by vi .

3 If the costs associated with colors are restricted to be strictly positive, we can just replace cost 0 with cost ε, for an arbitrarily small positive real
number ε, and ask for an arborescence in H of cost strictly smaller than (k

2

) + 1.

D. Gözüpek et al. / Theoretical Computer Science 690 (2017) 91–103 97
Fig. 5. The graph F ′ .

Proof: Assume for a contradiction that for some index i, the vertices in the copies of color class V i contained in Q ′
correspond to at least two distinct vertices v ′

i and v ′′
i of G , in such a way that v ′

i is the selected vertex in the first
occurrence of V i , and v ′′

i occurs later, say in the jth occurrence of V i . Therefore, the copy of v ′
i in the jth occurrence

of V i does not belong to path Q ′ , so for this vertex to be contained in T , by construction it is necessarily an endpoint of a
jumping edge e starting at the selector vertex si,i (mod k)+1. But then the cost incurred in T by the edges e′ and e, where e′
is the edge joining the copy of v ′

i in the first occurrence of V i to the selector vertex si,i (mod k)+1, equals B , contradicting
the assumption cc(T , r) < B . �

Finally, we claim that the vertices v1, v2, . . . , vk defined by Claim 2 induce a multicolored k-clique in G . Indeed, assume
for contradiction that there exist two such vertices vi and v j such that {vi, v j} /∈ E(G). Then the cost in T incurred by the
two edges connecting the copies of vi and v j to the selector vertex si, j (by Claim 1, these two edges indeed belong to T)
would be equal to B , contracting again the assumption cc(T , r) < B . �
4. W[1]-hardness on multigraphs with parameter tree-cut width

In the next theorem we prove that the MinCCA problem is W[1]-hard on multigraphs parameterized by the tree-cutwidth
of the input graph. Note that this result does not imply Theorem 1, which applies to graphs without multiple edges.

Theorem 2. The MinCCA problem is W[1]-hard on multigraphs parameterized by the tree-cutwidth of the input multigraph.

Proof. As in Theorem 1, we reduce again from Multicolored k-Clique. Given an instance (G, c, k) of Multicolored k-Clique

with k odd, we proceed to construct an instance (H, X, χ, r, cc) of MinCCA. The first steps of the construction are similar
to those of Theorem 1. Namely, let F be the graph constructed in the proof of Theorem 1 (see Fig. 3), and let F ′ be the
graph constructed from F as follows (see Fig. 5). We delete the last vertex of F , namely v3,0

1 , and all edges incident with
the root r except the edge {r, v0,2

1 }. Finally, for every vertex of F ′ of the form vi, j
� (that is, a vertex that is neither the root

nor a selector vertex), let e1 and e2 be the two edges of the path P incident with vi, j
� , such that e1 is to the left of e2.

Then we contract the edge e2, and we give to the newly created vertex the name of the selector vertex incident with e2.
This completes the construction of F ′ . Note that |V (F ′)| = (k

2

) + 1. Finally, in order to construct H , we proceed as follows.
For every edge e of F ′ which is not a jumping edge, let si, j be its right endpoint. Then we replace e with a multiedge
with multiplicity |V i |, and we associate each of these edges with a distinct vertex in V i ⊆ V (G). These edges are called
the horizontal edges of H . On the other hand, for every 1 ≤ i ≤ k, and for every jumping edge e whose left endpoint is the
selector vertex si,i (mod k)+1, we replace e with a multiedge with multiplicity |V i |, and we subdivide each of these new
edges once. Each of these new vertices x̂ is associated with a distinct vertex in V i ⊆ V (G). Let us call the selector vertices
of the form si,i (mod k)+1 special selector vertices. This completes the construction of H .

Claim 3. The tree-cutwidth of H is at most
(k

2

) + 1.

Proof: We proceed to construct a tree-cut decomposition (T , X) of H of width at most
(k

2

) + 1. Let T be a star with
|V (H)| − (k

2

)− 1 leaves rooted at its center. If t is the center of this star T , then the bag Xt contains the root r of H together
with the

(k
2

)
selector vertices. If t is a leaf of T , then the bag Xt contains a single vertex, in such a way that each of the

remaining |V (H)| −(k
2

)−1 vertices of T is associated with one of the leaves. For every leaf t ∈ V (T), it holds that adh(t) = 2,
as every vertex in H that is neither the root nor a selector vertex has degree exactly 2. Also, for every leaf t of T , clearly
tor(t) ≤ 2, as |Xt | = 1 and t has degree 1 in T . Finally, if t the root of T , then when considering the torso Ht , every vertex
in a leaf-bag gets dissolved, as each such vertex has exactly 2 neighbors in Xt . Therefore, tor(t) ≤ (k

2

) + 1. �
We now proceed to describe the color palette X , the coloring function χ , and the cost function cc, which altogether will

encode the edges of G and will ensure the desired properties of the reduction. For simplicity, as in the proof of Theorem 1,
we again associate a distinct color with every edge of H , and thus, it is enough to describe the cost function cc for every
ordered pair of incident edges of H . In this case, we will use just two different costs: 0 and 1. For every ordered pair of
incident edges e1, e2 of H , we define

98 D. Gözüpek et al. / Theoretical Computer Science 690 (2017) 91–103
Fig. 6. (a)–(b)–(c) The three cases where cc(e1, e2) = 0 in the proof of Theorem 2. (d) Construction in the proof. The vertices vi, v ′
i and v ′′

i correspond to
the vertices in V i that are associated with the corresponding edges or vertices of H .

cc(e1, e2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if e1 = {x, si, j} and e2 = {si, j, y} are two horizontal edges
such that x is to the left of y, and the vertex in V i associated
with e1 is adjacent in G to the vertex in V j associated with e2, or

if e1 = {x, si,i (mod k)+1} and e2 = {si,i (mod k)+1, x̂′
i} are

such that si,i (mod k)+1 is a special selector vertex, edge e1
is horizontal and is associated with a vertex vi ∈ V i , edge e2
arises from the subdivision of a jumping edge such that vertex
x̂′

i is associated with a vertex v ′
i ∈ V i with vi �= v ′

i , or

if e1 = {x, si, j} and e2 = {si, j, x̂′
i} with si, j being a selector

vertex that is not special, edge e1 is horizontal and is associated
with a vertex vi ∈ V i , edge e2 arises from the subdivision of a
jumping edge such that vertex x̂′

i is associated with a vertex
v ′

i ∈ V i with vi = v ′
i .

1, otherwise.

The three different cases above where cc(e1, e2) = 0 are illustrated in Fig. 6(a)–(b)–(c), respectively. This completes
the construction of (H, X, χ, r, cc), which can be clearly performed in polynomial time. We now claim that H contains
an arborescence T rooted at r with cost 0 if and only if G contains a multicolored k-clique. Again, we assume that any
arborescence in H rooted at r contains forward and backward edges defined in an unambiguous way.

Suppose first that G contains a multicolored k-clique with vertices v1, v2, . . . , vk , where vi ∈ V i for 1 ≤ i ≤ k. Then we
define the edges of the arborescence T of H as follows. For each selector vertex si, j , 1 ≤ i, j ≤ k, we add to T its left
horizontal edge associated with the vertex vi that belongs to the clique. For every jumping edge {si,i (mod k)+1, si, j} of T ′ ,
we do the following. Note that this edge has given rise to |V i | paths with two edges in H , and the vertices of H in the
middle of these paths, which we call inner vertices, are associated with the vertices in V i . Then we add to H a forward
edge between si,i (mod k)+1 and each inner vertex x̂ associated with a vertex in V i distinct from the vertex vi that belongs
to the clique. Note that |V i | − 1 edges are added to H in this way. Finally, we add a backward edge between si, j and the
inner vertex x̂ associated with the vertex vi ∈ V i that belongs to the clique. By the definition of the cost function and using
the fact that the vertices v1, v2, . . . , vk are pairwise adjacent in G , it can be easily checked that cc(T , r) = 0, as we wanted
to prove.

Conversely, suppose now that H has an arborescence T rooted at r with cost 0. Clearly, all costs incurred by the edges
in T are necessarily 0. Since the cost incurred by the two edges incident with every inner vertex is equal to 1, necessarily T
contains a path Q starting at the root r and containing all

(k
2

)
selector vertices. Let si, j be an arbitrary selector vertex distinct

from the last one, and let ei and e j be its left and right incident horizontal edges in Q , respectively. Since cc(e1, e2) = 0,
necessarily the vertex vi ∈ V i associated with ei is adjacent in G to the vertex v j ∈ V j associated with e j . We say that the
selector vertex si, j has selected the vertex vi . Our objective is to prove that these selections are coherent, in the sense that
if two distinct selector vertices si, j and si,� have selected vertices vi and v ′

i in V i , respectively, then vi = v ′
i . This property

will be guaranteed by how the inner vertices are covered by H , as we proceed to prove.
By construction of H , each such inner vertex x̂ is adjacent to a special selector vertex, say si,i+1, and to another selector

vertex that is not special, say si, j . Let e1 = {si,i+1, ̂x} and let e2 = {x̂, si, j}. Note that either e1 or e2 belong to T , but not
both, as otherwise these two edges would close a cycle with the path Q . Let also ei (resp., e′

i) be the edge that is to the
left of si,i+1 (resp., si, j) in Q ; see Fig. 6(d) for an illustration. Note that ei (resp., e′

i) is associated with a vertex vi ∈ V i

(resp., v ′
i ∈ V i), and similarly vertex x̂ is associated with another vertex v ′′

i ∈ V i . We distinguish two cases. Assume first that
vi = v ′′

i . In this case, by the definition of the cost function we have that cc(ei, e1) = 1, so e1 cannot belong to T , implying
that e2 belongs to T , which is possible only if cc(e′

i, e2) = 1, and this is true if and only if v ′
i = vi . This implies that the

selections made by the selection vertices are coherent, as we wanted to prove. Otherwise, we have that vi �= v ′′
i . By the

definition of the cost function, it holds that cc(e′
i, e2) = 1, and therefore, as we assume that cc(T , r) = 0, necessarily e1

belongs to T , which is indeed possible as cc(ei, e1) = 0 because vi �= v ′′ .
i

D. Gözüpek et al. / Theoretical Computer Science 690 (2017) 91–103 99
Fig. 7. A monotone rectilinear representation of a planar monotone 3-SAT instance.

By the above discussion, it follows that for each 1 ≤ i ≤ k, all selector vertices of the form si, j , for every 1 ≤ j ≤ k, i �= j,
have selected the same vertex vi ∈ V i . Furthermore, for every 1 ≤ i, j ≤ k, i �= j, it holds that {vi, v j} ∈ E(G). That is, the
selected vertices v1, v2, . . . , vk induce a multicolored k-clique in G , concluding the proof of the theorem. �
5. NP-hardness on planar graphs

In this section we prove that the MinCCA problem remains NP-hard on planar graphs. In order to prove this result, we
need to introduce the Planar Monotone 3-SAT problem. An instance of 3-SAT is called monotone if each clause is monotone,
that is, each clause consists only of positive variables or only of negative variables. We call a clause with only positive (resp.,
negative) variables a positive (resp., negative) clause. Given an instance φ of 3-SAT, we define the bipartite graph Gφ that
has one vertex per each variable and each clause, and has an edge between a variable-vertex and a clause-vertex if and only
if the variable appears (positively or negatively) in the clause. A monotone rectilinear representation of a monotone 3-SAT

instance φ is a planar drawing of Gφ such that all variable-vertices lie on a path, all positive clause-vertices lie above the
path, and all negative clause-vertices lie below the path; see Fig. 7 for an example.

In the Planar Monotone 3-SAT problem, we are given a monotone rectilinear representation of a planar monotone
3-SAT instance φ, and the objective is to determine whether φ is satisfiable. Berg and Khosravi [3] proved that the Planar
Monotone 3-SAT problem is NP-complete.

Theorem 3. The MinCCA problem is NP-hard on planar graphs even when restricted to instances with at most 6 colors and 0/1
symmetric costs.

Proof. We reduce from the Planar Monotone 3-SAT problem. Given a monotone rectilinear representation of a planar
monotone 3-SAT instance φ, we build an instance (H, X, χ, r, f) of MinCCA as follows. The variable-vertices and the clause-
vertices of Gφ are {x1, . . . , xn} and {C1, . . . , Cm}, respectively. Without loss of generality, we assume that the variable-vertices
appear in the order x1, . . . , xn on the path P of Gφ that links the variable-vertices. For every variable-vertex xi of Gφ , we
add to H a gadget consisting of four vertices x�

i , x
r
i , x

+
i , x−

i and five edges {x�
i , x

+
i }, {x+

i , xr
i }, {xr

i , x
−
i }, {x−

i , x�
i }, {x+

i , x−
i }. We

add to H a new vertex r, which we set as the root, and we add the edge {r, x�
1}. For every i ∈ {1, . . . , n − 1}, we add to H

the edge {xr
i , x

�
i+1}. We add to H all clause-vertices C1, . . . , Cm . For every i ∈ {1, . . . , n}, we add an edge between vertex x+

i

and each clause-vertex of Gφ in which variable xi appears positively, and an edge between vertex x−
i and each clause-vertex

of Gφ in which variable xi appears negatively. This completes the construction of H , which is illustrated in Fig. 8. Since Gφ

is planar and all positive (resp., negative) clause-vertices appear above (resp., below) the path P , it is easy to see that the
graph H is planar as well.

We define the color palette as X = {1, 2, 3, 4, 5, 6}. Let us now describe the edge-coloring function χ . For every
clause-vertex C j , we color arbitrarily its three incident edges with the colors {4, 5, 6}, so that each edge incident to C j

gets a different color. For every i ∈ {1, . . . , n}, we define χ({x�
i , x

+
i }) = χ({xr

i , x
−
i }) = 1, χ({x+

i , xr
i }) = χ({x−

i , x�
i }) = 2, and

χ({x+
i , x−

i }) = 3. We set χ({r, x�
1}) = 4 and for every i ∈ {1, . . . , n − 1}, χ({xr

i , x
�
i+1}) = 4. The function χ is also depicted

in Fig. 8. Finally, we define the cost function cc to be symmetric and, for every i ∈ {1, 2, 3, 4, 5, 6}, we set cc(i, i) = 0. We
define cc(1, 2) = 1 and cc(1, 3) = cc(2, 3) = 0. For every i ∈ {4, 5, 6}, we set cc(1, i) = cc(2, i) = 0 and cc(3, i) = 1. Finally,
for every i, j ∈ {4, 5, 6} with i �= j we set cc(i, j) = 1.

We now claim that H contains an arborescence T rooted at r with cost 0 if and only if the formula φ is satisfiable.
Suppose first that φ is satisfiable, and fix a satisfying assignment of φ. We proceed to define an arborescence T rooted

at T with cost 0. T contains the edge {r, x�
1} and, for every i ∈ {1, . . . , n − 1}, the edge {xr

i , x
�
i+1}. For every i ∈ {1, . . . , n}, if

variable xi is set to 1 in the satisfying assignment of φ, we add to T the edges {x�
i , x+

i }, {x+
i , x−

i }, and {x−
i , xr

i }. Otherwise, if
variable xi is set to 0 in the satisfying assignment of φ, we add to T the edges {x�

i , x−
i }, {x−

i , x+
i }, and {x+

i , xr
i }. Finally, for

every j ∈ {1, . . . , m}, let xt (resp., x̄t) be a literal in clause C j that is set to 1 by the satisfying assignment of φ (note that

100 D. Gözüpek et al. / Theoretical Computer Science 690 (2017) 91–103
Fig. 8. The graph H constructed by the reduction in Theorem 3 from the example of Fig. 7, together with the edge-coloring function χ (in green). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

for each clause we consider only one such literal). Then we add to T an edge between vertex C j and vertex x+
t (resp., x−

t).
It can be easily checked that T is an arborescence of H with cost 0.

Conversely, suppose now that H contains an arborescence T rooted at r with cost 0, and let us define a satisfying
assignment of φ. Since for every i, j ∈ {4, 5, 6} with i �= j we have that cc(i, j) = 1, for every clause-vertex C j exactly one of
its incident edges belongs to T . From the structure of H and from the fact that cc(1, 2) = 1, it follows that in order for the
tree T to span all vertices of H , for every i ∈ {1, . . . , n} either the three edges {x�

i , x+
i }, {x+

i , x−
i }, {x−

i , xr
i } or the three edges

{x�
i , x−

i }, {x−
i , x+

i }, {x+
i , xr

i } belong to T . In the former case, we set variable xi to 1, and in the latter case we set variable xi
to 0. Since for every i ∈ {4, 5, 6} we have that cc(3, i) = 1, it follows that for every clause-vertex C j , its incident edge that
belongs to T joins C j to a literal that is set to 1 by the constructed assignment. Hence, all clauses of φ are satisfied by this
assignment, concluding the proof of the theorem. �

Note that the above proof actually implies that MinCCA cannot be approximated to any positive ratio on planar graphs in
polynomial time, since an optimal solution has cost 0. If we do not allow 0 costs among different colors, then the problem
is inapproximable within any polynomial factor. Indeed, for any positive integer c we can replace every 0 cost by n−c−1.
Then the optimum becomes at most n−c , and the cost of a non-optimal solution is at least 1. Therefore, it is NP-hard to get
an approximation ratio of nc .

In the next theorem we present a modification of the previous reduction showing that the MinCCA problem remains
hard even if the maximum degree of the input planar graph is bounded.

Theorem 4. The MinCCA problem is NP-hard on planar graphs even when restricted to instances with at most 8 colors, maximum
degree bounded by 4, and 0/1 symmetric costs.

Proof. The reduction follows closely the one of Theorem 3. Given a monotone rectilinear representation of a planar
monotone 3-SAT instance φ, we build an instance (H, X, χ, r, f) of MinCCA as follows. The variable-vertices and the clause-
vertices of Gφ are {x1, . . . , xn} and {C1, . . . , Cm}, respectively. Without loss of generality, we assume that the variable-vertices
appear in the order x1, . . . , xn . For every variable-vertex xi of Gφ , we add to H a gadget similar to the gadget used in the
proof of Theorem 3, consisting of four vertices x�

i , x
r
i , x

+
i , x−

i and five edges {x�
i , x

+
i }, {x+

i , xr
i }, {xr

i , x
−
i }, {x−

i , x�
i }, {x+

i , x−
i }.

We add to H a new vertex r, which we set as the root, and we add the edge {r, x�
1}. Let C+

i be the set of clauses that
variable i appears positively and let C−

i be the set of clauses that variable i appears negatively. For every i ∈ {1, . . . , n}
and for every clause j ∈ {

1, . . . , |C+
i |}, we add vertices x+

i j and xr+
i j . Likewise, for every i ∈ {1, . . . , n} and for every clause

j ∈ {
1, . . . , |C−

i |}, we add vertices x−
i j and xr−

i j . Moreover, for every i ∈ {1, . . . , n − 1}, we add a vertex x′
i as well as the

edges
{

xr
i , x′

i

}
and

{
x′

i, xl
i+1

}
. We proceed our construction by adding for every i ∈ {1, . . . , n} and j ∈ {

1, . . . , |C+
i |} the edges {

x+
i , x+

i j

}
,
{

xr
i , xr+

i j

}
,
{

x+
i j , xr+

i j

}
,
{

x+
i j , C j

}
and for every j ∈ {

1, . . . , |C−
i |} the edges

{
x−

i , x−
i j

}
,
{

x′
i, xr−

i j

}
,
{

x−
i j , xr−

i j

}
,
{

x−
i j , C j

}
.

Subsequently, for every i ∈ {1, . . . , n} and j ∈ {
1, . . . , |C+

i | − 1
}

we add the edges
{

x+
i j , x+

i(j+1)

}
,
{

xr+
i j , xr+

i(j+1)

}
, and for every

j ∈ {
1, . . . , |C−

i | − 1
}

we add the edges
{

x−
i j , x−

i(j+1)

}
,
{

xr−
i j , xr−

i(j+1)

}
. Note that the maximum degree of H is indeed 4. An

example of this construction can be found in Fig. 9.
We define the color palette as X = {1,2,3,4,5,6,7,8}. Let us now describe the edge coloring function χ . For every

clause vertex, we arbitrarily color its three incident edges with colors {4,5,6} so that each incident edge gets a different
color. For every i ∈ {1, . . . , n}, we define χ({x�, x+}) = χ({xr, x−}) = 1, χ({x+, xr}) = χ({x−, x�}) = 2, and χ({x+, x−}) = 3.
i i i i i i i i i i

D. Gözüpek et al. / Theoretical Computer Science 690 (2017) 91–103 101
Fig. 9. The graph H constructed in the proof of Theorem 4, together with the edge-coloring function χ . Note that the maximum degree of H is 4.

We set χ({r, x�
1}) = 4 and for every i ∈ {1, . . . , n − 1}, χ({xr

i , x
′
i) = χ(x′

i, x
l
i+1) = 4. For every j ∈ {

1, . . . , |C+
i | − 1

}
, we

set χ(x+
i j , x

+
i(j+1)

) = 7 and χ(xr+
i j , xr+

i(j+1)
) = 8. Likewise, for every j ∈ {

1, . . . , |C−
i | − 1

}
, we set χ(x−

i j , x
−
i(j+1)

) = 7 and
χ(xr−

i j , xr−
i(j+1)

) = 8. For every i ∈ {1, . . . , n} and j ∈ {
1, . . . , |C+

i |}, we set χ(x+
i j , x

r+
i j) = χ(xr

i , x
r+
i j) = 8, χ(x+

i , x+
i j) = 7 and

for every j ∈ {
1, . . . , |C−

i |} we set χ(x′
i, x

r−
i j) = χ(x−

i j , x
r−
i j) = 8, χ(x−

i , x−
i j) = 7. The function χ is also depicted in Fig. 9.

Finally, we define the cost function cc as follows. We set cc(1, 2) = 1, cc(1, 3) = cc(2, 3) = 0, cc(1, 7) = cc(2, 7) = 0, and
cc(3, 7) = 1. For every i ∈ {1, 2, 3, 4, 5, 6, 7, 8} we set cc(i, i) = 0. For every i, j ∈ {4, 5, 6} with i �= j we set cc(i, j) = 1. For all
i ∈ {1,2,3,4,5,6}, cc(8, i) = 0, whereas cc(1, 8) = cc(2, 8) = 0 and cc(7, 8) = cc(8, 7) = 1. Moreover, cc(1, 4) = cc(2, 4) = 0
and for all i ∈ {4,5,6} we set cc(8, i) = cc(i, 8) = 0 and cc(7, i) = cc(i, 7) = 1.

We now claim that H contains an arborescence T rooted at r with cost 0 if and only if the formula φ is satisfiable.
Suppose first that φ is satisfiable, and we proceed to define an arborescence T rooted at r with cost 0. T contains the

edge {r, x�
1} and, for every i ∈ {1, . . . ,n − 1}, the edges

{
xr

i , x′
i

}
and

{
x′

i, x�
i+1

}
. For every i ∈ {1, . . . ,n}, if variable xi is set to 1

in the satisfying assignment of φ, we add to T the edges {x�
i , x+

i }, {x+
i , x−

i }, and {x−
i , xr

i }. Otherwise, if variable xi is set to 0
in the satisfying assignment of φ, we add to T the edges {x�

i , x−
i }, {x−

i , x+
i }, and {x+

i , xr
i }. For every i ∈ {1, . . . ,n}, if variable

xi is set to 1 in the satisfying assignment of φ, then for every j ∈ {
1, . . . , |C+

i |} we add to T the edges
{

xr
i , xr+

i j

}
,
{

xr+
i j , x+

i j

}
, {

x+
i j , C j

}
(note that for each clause C j we add only one such edge), for every j ∈ {

1, . . . , |C+
i | − 1

}
we add to T the edges {

xr+
i j , xr+

i(j+1)

}
, for every j ∈ {

1, . . . , |C−
i |} we add to T the edges

{
x−

i , x−
i j

}
,
{

x′
i, xr−

i j

}
, and for every j ∈ {

1, . . . , |C−
i | − 1

}
we

add to T the edges
{

xr−
i j , xr−

i(j+1)

}
,
{

x−
i j , x−

i(j+1)

}
. For every i ∈ {1, . . . ,n}, if variable xi is set to 0 in the satisfying assignment

of φ, then for every j ∈ {
1, . . . , |C+

i |} we add to T the edges
{

xr
i , xr+

i j

}
,
{

x+
i , x+

i j

}
, for every j ∈ {

1, . . . , |C+
i | − 1

}
we add to

T the edges
{

xr+
i j , xr+

i(j+1)

}
,
{

x+
i j , x+

i(j+1)

}
, for every j ∈ {

1, . . . , |C−
i |} we add to T the edges

{
x′

i, xr−
i j

}
,
{

xr−
i j , x−

i j

}
,
{

x−
i j , C j

}

(note that for each clause C j we add only one such edge), and for every j ∈ {
1, . . . , |C−

i | − 1
}

we add to T the edges {
xr−

i j , xr−
i(j+1)

}
.

Conversely, suppose now that H contains an arborescence T rooted at r with cost at most 0 and let us define a satisfying
assignment of φ. Since for every i, j ∈ {4,5,6} with i �= j we have that cc(i, j) = 1, for every clause-vertex C j exactly one
of its incident edges belongs to T . Since cc(i, 8) = 0 and cc(i, 7) = 1 for all i ∈ {4,5,6}, we have that if

{
x+

i j , C j

}
belongs

to T , then
{

x+
i j , xr+

i j

}
,
{

xr+
i j , xr

i

}
, and all other edges with color 8 in the gadget corresponding to C+

i belong to T . Due to the

same reasons, if
{

x−
i j , C j

}
belongs to T , then

{
x−

i j , xr−
i j

}
,
{

xr−
i j , x′

i

}
, and all edges with color 8 in the gadget corresponding

to C−
i belong to T . From the structure of H and from the fact that cc(1, 2) = 1, it follows that in order for the tree T to

span all vertices of H , for every i ∈ {1, . . . , n} either the three edges {x�
i , x+

i }, {x+
i , x−

i }, {x−
i , xr

i } or the three edges {x�
i , x−

i },
{x−, x+}, {x+, xr} belong to T . In the former case, we set variable xi to 1, and in the latter case we set variable xi to 0. Since
i i i i

102 D. Gözüpek et al. / Theoretical Computer Science 690 (2017) 91–103
for every i ∈ {4, 5, 6} we have that cc(7, i) = 1, it follows that for every clause-vertex C j , its incident edge that belongs to T
joins C j to a literal that is set to 1 by the constructed assignment. Hence, all clauses of φ are satisfied by this assignment,
concluding the proof of the theorem. �

From Theorem 4, it is not difficult to prove that the MinCCA problem is NP-hard even on grids. The main idea is that
any planar graph G with maximum degree at most 4 is contained in a grid as a topological minor. From this observation,
one can play with the costs in such a way that solving the problem in G is equivalent to solving it in the grid on which G
is embedded.

6. Conclusions and further research

In this article we proved several hardness results for the MinCCA problem. Our main result, which answers an open
question from Gözüpek et al. [14], is that the problem is W[1]-hard parameterized by the vertex cover number (hence,
by treewidth as well) on general graphs. We also proved that the problem is W[1]-hard on multigraphs parameterized by
tree-cutwidth. While we were not able to prove this W[1]-hardness result on graphs without multiple edges, we believe
that it is indeed the case.

As a partial result in this direction, in an extended version of this article, permanently available at [arxiv:1605.00532],
we provide an FPT algorithm for the MinCCA problem parameterized by a restricted version of tree-cutwidth. Without
entering into technical details here, in this variation of tree-cutwidth we further impose a limited dependency among the
thin children of each node t of the tree-cut decomposition. According to Ganian et al. [11], a non-root node t of T is thin if
adh(t) ≤ 2. While this parameter is somehow artificial, the algorithm shows that bounded tree-cutwidth is “almost” enough
to provide an FPT algorithm for MinCCA, in the sense that the potential source of hardness, if any, comes from the structure
of thin nodes. It is worth mentioning that this algorithm can be seen as a generalization of the FPT algorithm of Gözüpek
et al. [14] with parameter tw +
. Indeed, if the maximum degree is also considered as a parameter, then the number of
thin children in a tree-cut decomposition is bounded at any node, and we can solve the problem in time FPT using our
algorithm.

Our hardness results imply that the problem is para-NP-hard when parameterized by the number of distinct cost values.
Another interesting research direction is to consider parameters related to the cost function, such as the value of the largest
cost, the ratio of the largest cost to the smallest cost, the ratio the largest cost to the smallest cost among different colors,
costs obeying the triangle inequality, etc.

On the other hand, we proved that the MinCCA problem is NP-hard on planar graphs; however, we do not know whether
it is W[1]-hard parameterized by treewidth on planar graphs.

It would be natural to consider other structural parameters as well as other width parameters. Note that the MinCCA

problem is W[1]-hard parameterized by any parameter that can by bounded as a function of the vertex cover number,
such as treedepth or branchwidth. A well-known parameter for which the problem is para-NP-hard is cliquewidth. Indeed,
given an arbitrary graph G on n vertices as instance of MinCCA, let G ′ be the graph obtained from a clique on n vertices,
corresponding to the vertices of G , by adding a new pendant vertex to each vertex of the clique. The transition costs among
edges of G ′ that were already in G remain unchanged, the ones involving pendant edges are set to zero, and the other ones
to infinity. It is easy to verify that solving MinCCA in G and in G ′ is equivalent, and that G ′ has cliquewidth 2.

Finally, it would be interesting to try to generalize our techniques to prove hardness results or to provide efficient
algorithms for other reload cost problems that have been studied in the literature [5,8,10,20].

Acknowledgement

We would like to thank the anonymous referees of this article and its conference version for helpful comments that
improved the presentation of the manuscript.

References

[1] S. Arkoulis, E. Anifantis, V. Karyotis, S. Papavassiliou, N. Mitrou, On the optimal, fair and channel-aware cognitive radio network reconfiguration,
Comput. Netw. 57 (8) (2013) 1739–1757.

[2] M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, S. Saurabh, Parameterized Algorithms, Springer, 2015.
[3] M. de Berg, A. Khosravi, Optimal binary space partitions for segments in the plane, Internat. J. Comput. Geom. Appl. 22 (3) (2012) 187–206.
[4] R.G. Downey, M.R. Fellows, Fundamentals of Parameterized Complexity, Texts in Computer Science, Springer, 2013.
[5] M.R. Çelenlioğlu, D. Gözüpek, H.A. Mantar, A survey on the energy efficiency of vertical handover mechanisms, in: Proc. of the International Conference

on Wireless and Mobile Networks, WiMoN, 2013.
[6] M.R. Fellows, D. Hermelin, F. Rosamond, S. Vialette, On the parameterized complexity of multiple-interval graph problems, Theoret. Comput. Sci. 410 (1)

(2009) 53–61.
[7] J. Flum, M. Grohe, Parameterized Complexity Theory, Texts in Theoretical Computer Science, Springer, 2006.
[8] G. Galbiati, The complexity of a minimum reload cost diameter problem, Discrete Appl. Math. 156 (18) (2008) 3494–3497.
[9] G. Galbiati, S. Gualandi, F. Maffioli, On minimum changeover cost arborescences, in: Proc. of the 10th International Symposium on Experimental

Algorithms, SEA, in: LNCS, vol. 6630, 2011, pp. 112–123.
[10] G. Galbiati, S. Gualandi, F. Maffioli, On minimum reload cost cycle cover, Discrete Appl. Math. 164 (2014) 112–120.

http://refhub.elsevier.com/S0304-3975(17)30525-X/bib41414B2B3133s1
http://refhub.elsevier.com/S0304-3975(17)30525-X/bib41414B2B3133s1
http://refhub.elsevier.com/S0304-3975(17)30525-X/bib437967616E464B4C4D5050533135s1
http://refhub.elsevier.com/S0304-3975(17)30525-X/bib426572674B3132s1
http://refhub.elsevier.com/S0304-3975(17)30525-X/bib44463133s1
http://refhub.elsevier.com/S0304-3975(17)30525-X/bib43474D3133s1
http://refhub.elsevier.com/S0304-3975(17)30525-X/bib43474D3133s1
http://refhub.elsevier.com/S0304-3975(17)30525-X/bib464852563039s1
http://refhub.elsevier.com/S0304-3975(17)30525-X/bib464852563039s1
http://refhub.elsevier.com/S0304-3975(17)30525-X/bib46473036s1
http://refhub.elsevier.com/S0304-3975(17)30525-X/bib47613038s1
http://refhub.elsevier.com/S0304-3975(17)30525-X/bib47474D3131s1
http://refhub.elsevier.com/S0304-3975(17)30525-X/bib47474D3131s1
http://refhub.elsevier.com/S0304-3975(17)30525-X/bib47474D3134s1

D. Gözüpek et al. / Theoretical Computer Science 690 (2017) 91–103 103
[11] R. Ganian, E.J. Kim, S. Szeider, Algorithmic applications of tree-cut width, in: Proc. of the 40th International Symposium on Mathematical Foundations
of Computer Science, MFCS, in: LNCS, vol. 9235, 2015, pp. 348–360.

[12] L. Gourvès, A. Lyra, C. Martinhon, J. Monnot, The minimum reload s-t path, trail and walk problems, Discrete Appl. Math. 158 (13) (2010) 1404–1417.
[13] D. Gözüpek, S. Buhari, F. Alagoz, A spectrum switching delay-aware scheduling algorithm for centralized cognitive radio networks, IEEE Trans. Mob.

Comput. 12 (7) (2013) 1270–1280.
[14] D. Gözüpek, H. Shachnai, M. Shalom, S. Zaks, Constructing minimum changeover cost arborescenses in bounded treewidth graphs, Theoret. Comput.

Sci. 621 (2016) 22–36.
[15] D. Gözüpek, M. Shalom, A. Voloshin, S. Zaks, On the complexity of constructing minimum changeover cost arborescences, Theoret. Comput. Sci. 540

(2014) 40–52.
[16] F.V. Jensen, Bayesian Networks and Decision Graphs, Springer, 2001.
[17] E.J. Kim, S.-I. Oum, C. Paul, I. Sau, D.M. Thilikos, An FPT 2-approximation for tree-cut decomposition, Algorithmica (2017), http://dx.doi.org/10.1007/

s00453-016-0245-5, in press.
[18] S.J. Lauritzen, D.J. Spiegelhalter, Local computations with probabilities on graphical structures and their application to expert systems, J. R. Stat. Soc., B

50 (1988) 157–224.
[19] R. Niedermeier, Invitation to Fixed-Parameter Algorithms, vol. 31, Oxford University Press, 2006.
[20] H.-C. Wirth, J. Steffan, Reload cost problems: minimum diameter spanning tree, Discrete Appl. Math. 113 (1) (2001) 73–85.
[21] P. Wollan, The structure of graphs not admitting a fixed immersion, J. Combin. Theory Ser. B 110 (2015) 47–66.

http://refhub.elsevier.com/S0304-3975(17)30525-X/bib47616E69616E30533135s1
http://refhub.elsevier.com/S0304-3975(17)30525-X/bib47616E69616E30533135s1
http://refhub.elsevier.com/S0304-3975(17)30525-X/bib474C4D4D3130s1
http://refhub.elsevier.com/S0304-3975(17)30525-X/bib4742413133s1
http://refhub.elsevier.com/S0304-3975(17)30525-X/bib4742413133s1
http://refhub.elsevier.com/S0304-3975(17)30525-X/bib4650542D62792D74772D44656C7461s1
http://refhub.elsevier.com/S0304-3975(17)30525-X/bib4650542D62792D74772D44656C7461s1
http://refhub.elsevier.com/S0304-3975(17)30525-X/bib476F7A7570656B53565A3134s1
http://refhub.elsevier.com/S0304-3975(17)30525-X/bib476F7A7570656B53565A3134s1
http://refhub.elsevier.com/S0304-3975(17)30525-X/bib4A656E3031s1
http://dx.doi.org/10.1007/s00453-016-0245-5
http://refhub.elsevier.com/S0304-3975(17)30525-X/bib53704C613838s1
http://refhub.elsevier.com/S0304-3975(17)30525-X/bib53704C613838s1
http://refhub.elsevier.com/S0304-3975(17)30525-X/bib4E69653036s1
http://refhub.elsevier.com/S0304-3975(17)30525-X/bib576953743031s1
http://refhub.elsevier.com/S0304-3975(17)30525-X/bib576F6C6C616E3135s1
http://dx.doi.org/10.1007/s00453-016-0245-5

	Parameterized complexity of the MINCCA problem on graphs of bounded decomposability
	1 Introduction
	2 Preliminaries
	3 W[1]-hardness with parameter vertex cover
	4 W[1]-hardness on multigraphs with parameter tree-cut width
	5 NP-hardness on planar graphs
	6 Conclusions and further research
	Acknowledgement
	References

