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In an edge-colored graph, the cost incurred at a vertex on a path when two incident 
edges with different colors are traversed is called reload or changeover cost. The Minimum 
Changeover Cost Arborescence (MinCCA) problem consists in finding an arborescence with a 
given root vertex such that the total changeover cost of the internal vertices is minimized. 
It has been recently proved by Gözüpek et al. (2016) that the MinCCA problem when 
parameterized by the treewidth and the maximum degree of the input graph is in FPT. In 
this article we present the following hardness results for MinCCA:

• the problem is W[1]-hard when parameterized by the vertex cover number of the 
input graph, even on graphs of degeneracy at most 3. In particular, it is W[1]-hard 
parameterized by the treewidth of the input graph, which answers the main open 
problem in the work of Gözüpek et al. (2016);

• it is W[1]-hard on multigraphs parameterized by the tree-cutwidth of the input 
multigraph; and

• it remains NP-hard on planar graphs even when restricted to instances with at most 6 
colors and 0/1 symmetric costs, or when restricted to instances with at most 8 colors, 
maximum degree bounded by 4, and 0/1 symmetric costs.
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1. Introduction

Numerous network optimization problems can be modeled by edge-colored graphs. A path in an edge-colored graph 
may incur at every internal vertex a cost that depends on the colors of the two incident edges. In the literature, this cost is 
referred to as reload cost or changeover cost. Although the reload cost concept has important applications in numerous areas 
such as transportation networks, energy distribution networks, and cognitive radio networks, it has received little attention 
in the literature. In particular, reload/changeover cost problems have been investigated very little from the perspective of 
parameterized complexity; the only previous work we are aware of is by Gözüpek et al. [14].

In heterogeneous telecommunications networks, transiting from a technology such as 3G (third generation) to another 
technology such as wireless local area network (WLAN) has an overhead in terms of delay, power consumption etc., de-
pending on the particular setting. This cost has gained increasing importance due to the recently popular concept of vertical 
handover [5], which is a technique that allows a mobile user to stay connected to the Internet (without a connection loss) 
by switching to a different wireless network when necessary. Likewise, switching between different service providers even 
if they have the same technology has a non-negligible cost. Recently, cognitive radio networks (CRN) have gained increasing 
attention in the communication networks research community. Unlike other wireless technologies, CRNs are envisioned to 
operate in a wide range of frequencies. Therefore, switching from one frequency band to another frequency band in a CRN 
has a significant cost in terms of delay and power consumption [1,13]. This concept has applications in other areas as well. 
For instance, the cost of transferring cargo from one mode of transportation to another has a significant cost that, in some 
cases, outweighs even the cost of transporting the cargo from one place to another using a single mode of transporta-
tion [20]. In energy distribution networks, transferring energy from one type of carrier to another has an important cost 
corresponding to reload costs [8].

The reload cost concept was introduced by Wirth and Steffan [20] that considered the problem of finding an arborescence 
having minimum diameter with respect to reload cost. The same problem was considered later by Galbiati et al. [8]. The 
work of Galbiati et al. [10] focused on the minimum reload cost cycle cover problem, which is to find a set of vertex-disjoint 
cycles spanning all vertices with minimum total reload cost. Gourvès et al. [12] studied the problems of finding a path, trail 
or walk connecting two given vertices with minimum total reload cost.

In their work [9], Galbiati et al. introduced the Minimum Changeover Cost Arborescence (MinCCA) problem which is the 
focus of this work. Given a root vertex, the MinCCA problem consists in finding an arborescence with minimum total 
changeover cost starting from the root vertex. They proved that even on graphs with bounded degree and reload costs 
adhering to the triangle inequality, MinCCA on directed graphs is inapproximable within β log log(n) for β > 0 when there 
are two colors, and within n1/3−ε for any ε > 0 when there are three colors. The work of Gözüpek et al. [15] investigated 
several special cases of the problem such as bounded cost values, bounded degree, and bounded number of colors. In that 
work inapproximability results as well as a polynomial-time algorithms and approximation algorithms are presented for 
special cases.

In this paper, we study the MinCCA problem from the perspective of parameterized complexity; see the books [2,4,7,
19] for an introduction to the domain. Unlike the classical complexity theory, parameterized complexity theory takes into 
account not only the total input size n, but also other aspects of the problem encoded in a parameter k. It mainly aims to 
find an exact resolution of NP-complete problems. A problem is called fixed-parameter tractable if it can be solved in time 
f (k) · p(n), where f (k) is a function depending solely on k and p(n) is a polynomial in n. An algorithm constituting such a 
solution is called an FPT algorithm for the problem. The class of all fixed-parameter tractable problems is denoted as FPT. 
Analogously to NP-completeness in classical complexity, the theory of W[1]-hardness can be used to show that a problem 
is unlikely to be in FPT.

The parameterized complexity of reload cost problems is largely unexplored in the literature. To the best of our knowl-
edge, the work of Gözüpek et al. [14] is the only one that focuses on this issue by studying the MinCCA problem on bounded 
treewidth graphs. In particular, Gözüpek et al. [14] showed that the MinCCA problem is in XP when parameterized by the 
treewidth of the input graph and it is FPT when parameterized by the treewidth and the maximum degree of the input 
graph. We would like to note that these parameters have practical importance in communication networks. Indeed, for 
instance, many networks that model real-life situations appear to have small treewidth [16,18].

In this article we prove that the MinCCA problem is W[1]-hard parameterized by the vertex cover number of the input 
graph, even on graphs of degeneracy at most 3. In particular, it is W[1]-hard parameterized by the treewidth of the input 
graph. This answers the main open issue pointed out by Gözüpek et al. [14], and is also interesting since most problems 
are known to be in FPT when parameterized by the treewidth of their input graph.

In view of the above results, it makes sense to study the parameterized complexity of the MinCCA problem for parame-
ters that lie in between treewidth and treewidth plus maximum degree. A natural candidate is tree-cut width (see Fig. 1), 
a width parameter recently introduced by Wollan [21] that plays a fundamental role in the structure of graphs not admit-
ting a fixed immersion (see Section 2 for the precise definition). In this direction, we prove that MinCCA is W[1]-hard on 
multigraphs parameterized by the tree-cutwidth of the input multigraph.

We also prove that MinCCA is NP-hard on planar graphs, which are also graphs of bounded decomposability, even when 
restricted to instances with at most 6 colors and 0/1 symmetric costs. In addition, we prove that it remains NP-hard on 
planar graphs even when restricted to instances with at most 8 colors, maximum degree bounded by 4, and 0/1 symmetric 
costs.
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The rest of this paper is organized as follows. In Section 2 we introduce some basic definitions and preliminaries, as 
well as a formal definition of the MinCCA problem. Our main result is in Section 3, where we prove that the problem is
W[1]-hard parameterized by the vertex cover number of the input graph, even if the input graph has degeneracy at most 3. 
In Section 4 we prove that the problem is W[1]-hard on multigraphs parameterized by the tree-cutwidth of the input graph. 
In Section 5 we prove that the problem remains NP-hard on planar graphs. Finally, Section 6 concludes the paper.

2. Preliminaries

For a set A and an element x, we use A + x (resp., A − x) as a shorthand for A ∪ {x} (resp., A \ {x}). We denote by [i, k]
the set of all integers between i and k inclusive, and [k] = [1, k].

Graphs, digraphs, trees, and forests Given an undirected (multi)graph G and a subset U ⊆ V (G) of the vertices of G , δG(U ) :={{u, u′} ∈ E(G) | u ∈ U , u′ /∈ U
}

is the cut of G determined by U , i.e., the set of edges of G that have exactly one end in U . 
In particular, δG(v) denotes the set of edges incident to v in G , and dG (v) := |δG(v)| is the degree of v in G . We denote by 
NG(U ) the open neighborhood of U in G . NG (U ) is the set of vertices of V (G) \ U that are adjacent to a vertex of U . When 
there is no ambiguity about the graph G we omit it from the subscripts. For a subset of vertices U ⊆ V (G), G[U ] denotes 
the subgraph of G induced by U . For a subset U of vertices of G , and a subset F of its edges we denote by G[U ∪ F ] the 
graph induced by these vertices and edges, that is obtained by adding to G[U ] the edges of F and their endpoints. Formally, 
G[U ∪ F ] := (U ∪ V (F ), F ∪ E(G) ∩ U × U ). The degeneracy of a graph G is the smallest number k such that every induced 
subgraph of G has a vertex of degree at most k. A vertex cover of a graph G is a subset S ⊆ V (G) such that G − S is an 
independent set. The minimum cardinality of a vertex cover of a graph G is called the vertex cover number of G and denoted 
by vc(G).

A digraph T is a rooted tree or arborescence if its underlying graph is a tree and it contains a root vertex with a directed 
path from every other vertex to it. Every non-root vertex v of T has a parent in T , and v is a child of its parent.

A rooted forest is the disjoint union of rooted trees, that is, each connected component of it has a root, which will be 
called a sink of the forest.

Tree decompositions and treewidth A tree decomposition of a graph G = (V (G), E(G)) is a tree T , where V (T ) = {B1, B2, . . .}
is a set of subsets (called bags) of V (G) such that the following three conditions are met:

1.
⋃

V (T ) = V (G).
2. For every edge uv ∈ E(G), u, v ∈ Bi for some bag Bi ∈ V (T ).
3. For every Bi, B j, Bk ∈ V (T ) such that Bk is on the path PT (Bi, B j), Bi ∩ B j ⊆ Bk .

The width ω(T ) of a tree decomposition T is defined as the size of its largest bag minus 1, i.e., ω(T ) =
max {|B| | B ∈ V (T )} − 1. The treewidth of a graph G , denoted as tw(G), is defined as the minimum width among all 
tree decompositions of G .

Tree-cutwidth We now explain the concept of tree-cutwidth and follow the notation of Ganian et al. [11]. A tree-cut decom-
position of a graph G is a pair (T , X ) where T is a rooted tree and X is a near-partition of V (G) (that is, empty sets are 
allowed) where each set Xt of the partition is associated with a node t of T . That is, X = {Xt ⊆ V (G) : t ∈ V (T )}. The set Xt

is termed the bag associated with the node t . For a node t of T we denote by Yt the union of all the bags associated with t
and its descendants, and Gt = G[Yt], and by cut(t) = δ(Yt) the set of all edges with exactly one endpoint in Yt .

The adhesion adh(t) of t is |cut(t)|. The torso of t is the graph Ht obtained from G as follows. Let t1, . . . , t� be the children 
of t , Yi = Yti for i ∈ [�] and Y0 = V (G) \ (Xt ∪ ⋃�

i=1 Yi). We first contract each set Yi to a single vertex yi for every i ∈ [0, �]
by possibly creating parallel edges. We then remove every vertex yi of degree 1 (with its incident edge), and finally suppress
every vertex yi of degree 2 having 2 neighbors, by connecting its two neighbors with an edge and removing yi .

The torso size tor(t) of t is the number of vertices in Ht . The width of a tree-cut decomposition (T , X ) of G is 
max{adh(t), tor(t) | t ∈ V (T )}. The tree-cutwidth of G , or tcw(G) in short, is the minimum width of (T , X ) over all tree-
cut decompositions (T , X ) of G .

Fig. 1 shows the relationship between the graph parameters that we consider in this article. As depicted in Fig. 1, tree-
cutwidth provides an intermediate measurement which allows either to push the boundary of fixed-parameter tractability 
or strengthen W[1]-hardness results (cf. [11,17,21]). Furthermore, the vertex cover number and tree-cutwidth are not related 
to each other, i.e., in general none of them bounds the other one.

Reload and changeover costs We follow the notation and terminology of Wirth and Steffan [20] where the concept of reload 
cost was defined. We consider edge-colored graphs G , where the colors are taken from a finite set X and χ : E(G) → X is 
the coloring function. Given a coloring function χ , and a color x ∈ X , we denote by Eχ

x , or simply by Ex the set of edges of 
E colored x, and Gx = (V (G), E(G)x) is the subgraph of G having the same vertex set as G , but only the edges colored x. 
The costs are given by a non-negative function cc : X2 →N0 satisfying
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Fig. 1. Relationships between the graph parameters considered in this paper. In the figure, A being a child of B (drawn beneath B) means that every graph 
class with bounded A has also bounded B , but the converse is not necessarily true [11].

1. cc(x1, x2) = cc(x2, x1) for every x1, x2 ∈ X .
2. cc(x, x) = 0 for every x ∈ X .

The cost of traversing two incident edges e1, e2 is cc(e1, e2) := cc(χ(e1), χ(e2)).
We say that an instance satisfies the triangle inequality, if (in addition to the above) the cost function satisfies cc(e1, e3) ≤

cc(e1, e2) + cc(e2, e3) whenever e1, e2 and e3 are incident to the same vertex.
The changeover cost of a path P of length � ≥ 2 with edges e1, e2, . . . , e� is cc(P ) := ∑�

i=2 cc(ei−1, ei). We define 
cc(P ) = 0 whenever � ≤ 1.

We extend this definition to trees as follows: Given a directed tree T rooted at r, (resp., an undirected tree T and a vertex 
r ∈ V (T )), for every outgoing edge e of r (resp., incident to r) we define prev(e) = e, and for every other edge prev(e) is the 
edge preceding e on the path from r to e. The changeover cost of T with respect to r is cc(T , r) := ∑

e∈E(T ) cc(prev(e), e). 
When there is no ambiguity about the vertex r, we denote cc(T , r) by cc(T ).

Statement of the problem As defined by Galbiati et al. [9], the MinCCA problem aims to find an arborescence rooted at r
with minimum changeover cost. Formally,

MinCCA

Input: A graph G = (V , E) with an edge coloring function χ : E → X , a vertex r ∈ V and a changeover cost 
function cc : X2 → N0.
Output: An arborescence T of G minimizing cc(T , r).

3. W[1]-hardness with parameter vertex cover

Before stating our main result, we need to define the following parameterized problem.

Multicolored k-Clique

Input: A graph G , a coloring function c : V (G) → {1, . . . , k}, and a positive integer k.
Parameter: k.
Question: Does G contain a clique on k vertices with one vertex from each color class?

Multicolored k-Clique is known to be W[1]-hard on general graphs, even in the special case where all color classes 
have the same number of vertices [6], and therefore we may make this assumption as well.

Theorem 1. The MinCCA problem is W[1]-hard when parameterized either by the vertex cover number of the input graph, even when 
its degeneracy is 3.

Proof. We reduce from Multicolored k-Clique, where we may assume that k is odd. Indeed, given an instance (G, c, k) of
Multicolored k-Clique, we can trivially reduce the problem to itself as follows. If k is odd, we do nothing. Otherwise, we 
output (G ′, c′, k + 1), where G ′ is obtained from G by adding a universal vertex v , and c′ : V (G ′) → {1, . . . , k + 1} is such 
that its restriction to G equals c, and c(v) = k + 1.

Given an instance (G, c, k) of Multicolored k-Clique with k odd, we proceed to construct an instance (H, X, χ, r, cc)
of MinCCA. Let V (G) = V 1 � V 2 � · · · � Vk , where the vertices of V i are colored i for 1 ≤ i ≤ k. Let W be an Eulerian 
circuit of the complete graph Kk on the vertex set V (Kk) = {v1, . . . , vk} that starts by visiting, in this order, the vertices 
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Fig. 2. The complete graph Kk and an Eulerian circuit W in Kk starting with v1, v2, . . . , vk, v1 and ending with v3, v1. A k-colored graph G is also 
illustrated.

Fig. 3. The graph F .

Fig. 4. The graph H and a solution arborescence T drawn in solid lines. The path Q is drawn in thicker lines.

v1, v2, . . . , vk, v1, and ends by visiting v3 and finally v1
2; see Fig. 2. Note that W always exists since whenever k > 3 we 

can construct the k + 1 cycle v1 v2 · · · vk v3 v1 and combine it with any Eulerian circuit of the remaining graph to get W . 
For every edge {vi, v j} of W , we add to H a vertex si, j . These vertices are called the selector vertices of H . For every two 
consecutive edges {vi, v j}, {v j, v�} of W , we add to H a vertex vi,�

j and we make it adjacent to both si, j and s j,� . We also 
add to H a new vertex v0,2

1 adjacent to s1,2, a new vertex v3,0
1 adjacent to s3,1, and a new vertex r adjacent to v0,2

1 , which 
will be the root of H . Note that the graph constructed so far is a simple path P on 2

(k
2

) + 2 vertices. We say that the 
vertices of the form vi,�

j are occurrences of vertex v j ∈ V (Kk). For 2 ≤ j ≤ k, we add an edge between the root r and the 
first occurrence of vertex v j in P (note that the edge between r and the first occurrence of v1 already exists).

The first k selector vertices, namely s1,2, s2,3, . . . , sk−1,k, sk,1 will play a special role that will become apparent later. To 
this end, for 1 ≤ i ≤ k, we add an edge between the selector vertex si,i (mod k)+1 and each of the occurrences of vi that 
appear after si,i (mod k)+1 in P . These edges will be called the jumping edges of H .

Let us denote by F the graph constructed so far; see Fig. 3. Finally, in order to construct H , we replace each vertex of 
the form vi,�

j in F with a whole copy of the vertex set V j of G and make each of these new vertices adjacent to all the 
neighbors of vi,�

j in F . This completes the construction of H ; see Fig. 4.

At this point we note that the vertex cover number of H is at most 
(k

2

) + 1, since the selector vertices and r constitute 
a vertex cover of H . The degeneracy of H is 3 since every induced subgraph of H that contains a non-selector vertex v has 
minimum degree at most 3, and every induced subgraph that does not contain such a vertex has minimum degree 0.

We now proceed to describe the color palette X , the coloring function χ , and the cost function cc, which altogether will 
encode the edges of G and will ensure the desired properties of the reduction. For simplicity, we associate a distinct color 
with each edge of H , and thus, with slight abuse of notation, it is enough to describe the cost function cc for every ordered 
pair of incident edges of H . We will use just three different costs: 0, 1, and B , where B = (k

2

) + 1. For each ordered pair of 
incident edges e1, e2 of H , we define

2 This assumption is not crucial for the construction, but helps in making it conceptually and notationally easier.
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cc(e1, e2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if e1 = {x̂, si, j} and e2 = {si, j, ŷ} is a jumping edge such that
x̂, ŷ are copies of vertices x, y ∈ V i , respectively, with x �= y, or

if e1 = {r, x̂} and e2 = {x̂, s1,2}, where x̂ is a copy of a vertex
x ∈ V 1, or

if e1 = {x̂, si, j} and e2 = {si,�, x̂} are the two edges that connect a
vertex in a copy of a color class V j to a selector vertex.

1, if e1 = {x̂, si, j} and e2 = {si, j, ŷ}, where x̂ is a copy of a vertex
x ∈ V i and ŷ is a copy of a vertex y ∈ V j such that {x, y} ∈ E(G).

B, otherwise.

This completes the construction of (H, X, χ, r, cc), which can be clearly performed in polynomial time.3

We now claim that H contains an arborescence T rooted at r with cost at most 
(k

2

)
if and only if G contains a multi-

colored k-clique. Note that the simple path P described above naturally defines a partial left-to-right ordering among the 
vertices of H , and hence any arborescence rooted at r contains forward and backward edges defined in an unambiguous 
way. Note also that all costs that involve a backward edge are equal to B , and therefore no such edge can be contained in 
an arborescence of cost at most 

(k
2

)
.

Suppose first that G contains a multicolored k-clique with vertices v1, v2, . . . , vk , where vi ∈ V i for 1 ≤ i ≤ k. Then we 
define the edges of the arborescence T of H as follows. The tree T contains the edges of a left-to-right path Q that starts 
at the root r, contains all 

(k
2

)
selector vertices and connects them, in each occurrence of a set V i , to the copy of vertex vi

defined by the k-clique. Since in Q the selector vertices connect copies of pairwise adjacent vertices of G , the cost incurred 
so far by T is exactly 

(k
2

)
. For 1 ≤ i ≤ k, we add to Q the edges from r to all vertices in the first occurrence of V i that are not 

contained in Q . Note that the addition of these edges to T incurs no additional cost. Finally, we will use the jumping edges 
to reach the uncovered vertices of H . Namely, for 1 ≤ i ≤ k, we add to T an edge between the selector vertex si,i (mod k)+1
and all occurrences of the vertices in V i distinct from vi that appear after si,i (mod k)+1; see the solid edges in Fig. 4. Note 
that since the jumping edges in T contain copies of vertices distinct from the ones in the k-clique, these edges incur no 
additional cost either. Therefore, cc(T , r) = (k

2

)
, as we wanted to prove.

Conversely, suppose now that H has an arborescence T rooted at r with cost at most 
(k

2

)
. Clearly, all costs incurred by 

the edges in T are either 0 or 1. For a selector vertex si, j , we call the edges joining si, j to the vertices in the occurrence of 
V i right before si, j (resp., in the occurrence of V j right after si, j) the left (resp., right) edges of this selector vertex.

Claim 1. The tree T contains exactly one left edge and exactly one right edge of each selector vertex of H.

Proof: Since only forward edges are allowed in T , and T should be a tree, clearly for each selector vertex exactly one of its 
left edges belongs to T . Thus, it just remains to prove that T contains exactly one right edge of each selector vertex.

Let si, j and s j,� be two consecutive selector vertices. Let e be the left edge of s j,� in T and let v j be the vertex of the 
copy of V j contained in e. Again, since backward edges are not allowed in T , v j needs to be incident with another forward 
edge e′ of T . If this edge e′ contains r or if it is a jumping edge, then the cost incurred by T during the traversal from e′
to e would be equal to B , a contradiction to the assumption that cc(T , r) ≤ (k

2

)
< B . Therefore, e′ is necessarily one of the 

right edges of si, j , so at least one of the right edges of the selector vertex si, j belongs to T .
As for the right edges of the last selector vertex, namely s3,1, if none of them belonged to T , then there would be a 

jumping edge going to the last copy of V 1 such that, together with the left edge of the selector vertex s1,2 that belongs 
to T , would incur a cost of B , which is impossible.

We have already proved that exactly one left edge and at least one of the right edges of each selector vertex belong to T . 
For each selector vertex si, j , its left edge in T together with each of its right edges in T incur at cost of at least 1. But as 
there are 

(k
2

)
selector vertices in H , and by hypothesis the cost of T is at most 

(k
2

)
, we conclude that exactly one of the right 

edges of each selector vertex belongs to T , as we wanted to prove. �
By Claim 1, the tree T contains a path Q ′ that chooses exactly one vertex from each occurrence of a color class of G . 

We shall now prove that, thanks to the jumping edges, these choices are consistent, i.e., copies of the same vertex. This will 
allow us to extract the desired multicolored k-clique in G .

Claim 2. For every 1 ≤ i ≤ k, the vertices in the copies of color class V i contained in Q ′ all correspond to the same vertex of G, denoted 
by vi .

3 If the costs associated with colors are restricted to be strictly positive, we can just replace cost 0 with cost ε, for an arbitrarily small positive real 
number ε, and ask for an arborescence in H of cost strictly smaller than (k

2

) + 1.
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Fig. 5. The graph F ′ .

Proof: Assume for a contradiction that for some index i, the vertices in the copies of color class V i contained in Q ′
correspond to at least two distinct vertices v ′

i and v ′′
i of G , in such a way that v ′

i is the selected vertex in the first 
occurrence of V i , and v ′′

i occurs later, say in the jth occurrence of V i . Therefore, the copy of v ′
i in the jth occurrence 

of V i does not belong to path Q ′ , so for this vertex to be contained in T , by construction it is necessarily an endpoint of a 
jumping edge e starting at the selector vertex si,i (mod k)+1. But then the cost incurred in T by the edges e′ and e, where e′
is the edge joining the copy of v ′

i in the first occurrence of V i to the selector vertex si,i (mod k)+1, equals B , contradicting 
the assumption cc(T , r) < B . �

Finally, we claim that the vertices v1, v2, . . . , vk defined by Claim 2 induce a multicolored k-clique in G . Indeed, assume 
for contradiction that there exist two such vertices vi and v j such that {vi, v j} /∈ E(G). Then the cost in T incurred by the 
two edges connecting the copies of vi and v j to the selector vertex si, j (by Claim 1, these two edges indeed belong to T ) 
would be equal to B , contracting again the assumption cc(T , r) < B . �
4. W[1]-hardness on multigraphs with parameter tree-cut width

In the next theorem we prove that the MinCCA problem is W[1]-hard on multigraphs parameterized by the tree-cutwidth 
of the input graph. Note that this result does not imply Theorem 1, which applies to graphs without multiple edges.

Theorem 2. The MinCCA problem is W[1]-hard on multigraphs parameterized by the tree-cutwidth of the input multigraph.

Proof. As in Theorem 1, we reduce again from Multicolored k-Clique. Given an instance (G, c, k) of Multicolored k-Clique

with k odd, we proceed to construct an instance (H, X, χ, r, cc) of MinCCA. The first steps of the construction are similar 
to those of Theorem 1. Namely, let F be the graph constructed in the proof of Theorem 1 (see Fig. 3), and let F ′ be the 
graph constructed from F as follows (see Fig. 5). We delete the last vertex of F , namely v3,0

1 , and all edges incident with 
the root r except the edge {r, v0,2

1 }. Finally, for every vertex of F ′ of the form vi, j
� (that is, a vertex that is neither the root 

nor a selector vertex), let e1 and e2 be the two edges of the path P incident with vi, j
� , such that e1 is to the left of e2. 

Then we contract the edge e2, and we give to the newly created vertex the name of the selector vertex incident with e2. 
This completes the construction of F ′ . Note that |V (F ′)| = (k

2

) + 1. Finally, in order to construct H , we proceed as follows. 
For every edge e of F ′ which is not a jumping edge, let si, j be its right endpoint. Then we replace e with a multiedge 
with multiplicity |V i |, and we associate each of these edges with a distinct vertex in V i ⊆ V (G). These edges are called 
the horizontal edges of H . On the other hand, for every 1 ≤ i ≤ k, and for every jumping edge e whose left endpoint is the 
selector vertex si,i (mod k)+1, we replace e with a multiedge with multiplicity |V i |, and we subdivide each of these new 
edges once. Each of these new vertices x̂ is associated with a distinct vertex in V i ⊆ V (G). Let us call the selector vertices 
of the form si,i (mod k)+1 special selector vertices. This completes the construction of H .

Claim 3. The tree-cutwidth of H is at most 
(k

2

) + 1.

Proof: We proceed to construct a tree-cut decomposition (T , X ) of H of width at most 
(k

2

) + 1. Let T be a star with 
|V (H)| − (k

2

)− 1 leaves rooted at its center. If t is the center of this star T , then the bag Xt contains the root r of H together 
with the 

(k
2

)
selector vertices. If t is a leaf of T , then the bag Xt contains a single vertex, in such a way that each of the 

remaining |V (H)| −(k
2

)−1 vertices of T is associated with one of the leaves. For every leaf t ∈ V (T ), it holds that adh(t) = 2, 
as every vertex in H that is neither the root nor a selector vertex has degree exactly 2. Also, for every leaf t of T , clearly 
tor(t) ≤ 2, as |Xt | = 1 and t has degree 1 in T . Finally, if t the root of T , then when considering the torso Ht , every vertex 
in a leaf-bag gets dissolved, as each such vertex has exactly 2 neighbors in Xt . Therefore, tor(t) ≤ (k

2

) + 1. �
We now proceed to describe the color palette X , the coloring function χ , and the cost function cc, which altogether will 

encode the edges of G and will ensure the desired properties of the reduction. For simplicity, as in the proof of Theorem 1, 
we again associate a distinct color with every edge of H , and thus, it is enough to describe the cost function cc for every 
ordered pair of incident edges of H . In this case, we will use just two different costs: 0 and 1. For every ordered pair of 
incident edges e1, e2 of H , we define
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Fig. 6. (a)–(b)–(c) The three cases where cc(e1, e2) = 0 in the proof of Theorem 2. (d) Construction in the proof. The vertices vi, v ′
i and v ′′

i correspond to 
the vertices in V i that are associated with the corresponding edges or vertices of H .

cc(e1, e2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if e1 = {x, si, j} and e2 = {si, j, y} are two horizontal edges
such that x is to the left of y, and the vertex in V i associated
with e1 is adjacent in G to the vertex in V j associated with e2, or

if e1 = {x, si,i (mod k)+1} and e2 = {si,i (mod k)+1, x̂′
i} are

such that si,i (mod k)+1 is a special selector vertex, edge e1
is horizontal and is associated with a vertex vi ∈ V i , edge e2
arises from the subdivision of a jumping edge such that vertex
x̂′

i is associated with a vertex v ′
i ∈ V i with vi �= v ′

i , or

if e1 = {x, si, j} and e2 = {si, j, x̂′
i} with si, j being a selector

vertex that is not special, edge e1 is horizontal and is associated
with a vertex vi ∈ V i , edge e2 arises from the subdivision of a
jumping edge such that vertex x̂′

i is associated with a vertex
v ′

i ∈ V i with vi = v ′
i .

1, otherwise.

The three different cases above where cc(e1, e2) = 0 are illustrated in Fig. 6(a)–(b)–(c), respectively. This completes 
the construction of (H, X, χ, r, cc), which can be clearly performed in polynomial time. We now claim that H contains 
an arborescence T rooted at r with cost 0 if and only if G contains a multicolored k-clique. Again, we assume that any 
arborescence in H rooted at r contains forward and backward edges defined in an unambiguous way.

Suppose first that G contains a multicolored k-clique with vertices v1, v2, . . . , vk , where vi ∈ V i for 1 ≤ i ≤ k. Then we 
define the edges of the arborescence T of H as follows. For each selector vertex si, j , 1 ≤ i, j ≤ k, we add to T its left 
horizontal edge associated with the vertex vi that belongs to the clique. For every jumping edge {si,i (mod k)+1, si, j} of T ′ , 
we do the following. Note that this edge has given rise to |V i | paths with two edges in H , and the vertices of H in the 
middle of these paths, which we call inner vertices, are associated with the vertices in V i . Then we add to H a forward 
edge between si,i (mod k)+1 and each inner vertex x̂ associated with a vertex in V i distinct from the vertex vi that belongs 
to the clique. Note that |V i | − 1 edges are added to H in this way. Finally, we add a backward edge between si, j and the 
inner vertex x̂ associated with the vertex vi ∈ V i that belongs to the clique. By the definition of the cost function and using 
the fact that the vertices v1, v2, . . . , vk are pairwise adjacent in G , it can be easily checked that cc(T , r) = 0, as we wanted 
to prove.

Conversely, suppose now that H has an arborescence T rooted at r with cost 0. Clearly, all costs incurred by the edges 
in T are necessarily 0. Since the cost incurred by the two edges incident with every inner vertex is equal to 1, necessarily T
contains a path Q starting at the root r and containing all 

(k
2

)
selector vertices. Let si, j be an arbitrary selector vertex distinct 

from the last one, and let ei and e j be its left and right incident horizontal edges in Q , respectively. Since cc(e1, e2) = 0, 
necessarily the vertex vi ∈ V i associated with ei is adjacent in G to the vertex v j ∈ V j associated with e j . We say that the 
selector vertex si, j has selected the vertex vi . Our objective is to prove that these selections are coherent, in the sense that 
if two distinct selector vertices si, j and si,� have selected vertices vi and v ′

i in V i , respectively, then vi = v ′
i . This property 

will be guaranteed by how the inner vertices are covered by H , as we proceed to prove.
By construction of H , each such inner vertex x̂ is adjacent to a special selector vertex, say si,i+1, and to another selector 

vertex that is not special, say si, j . Let e1 = {si,i+1, ̂x} and let e2 = {x̂, si, j}. Note that either e1 or e2 belong to T , but not 
both, as otherwise these two edges would close a cycle with the path Q . Let also ei (resp., e′

i) be the edge that is to the 
left of si,i+1 (resp., si, j) in Q ; see Fig. 6(d) for an illustration. Note that ei (resp., e′

i) is associated with a vertex vi ∈ V i

(resp., v ′
i ∈ V i), and similarly vertex x̂ is associated with another vertex v ′′

i ∈ V i . We distinguish two cases. Assume first that 
vi = v ′′

i . In this case, by the definition of the cost function we have that cc(ei, e1) = 1, so e1 cannot belong to T , implying 
that e2 belongs to T , which is possible only if cc(e′

i, e2) = 1, and this is true if and only if v ′
i = vi . This implies that the 

selections made by the selection vertices are coherent, as we wanted to prove. Otherwise, we have that vi �= v ′′
i . By the 

definition of the cost function, it holds that cc(e′
i, e2) = 1, and therefore, as we assume that cc(T , r) = 0, necessarily e1

belongs to T , which is indeed possible as cc(ei, e1) = 0 because vi �= v ′′ .
i
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Fig. 7. A monotone rectilinear representation of a planar monotone 3-SAT instance.

By the above discussion, it follows that for each 1 ≤ i ≤ k, all selector vertices of the form si, j , for every 1 ≤ j ≤ k, i �= j, 
have selected the same vertex vi ∈ V i . Furthermore, for every 1 ≤ i, j ≤ k, i �= j, it holds that {vi, v j} ∈ E(G). That is, the 
selected vertices v1, v2, . . . , vk induce a multicolored k-clique in G , concluding the proof of the theorem. �
5. NP-hardness on planar graphs

In this section we prove that the MinCCA problem remains NP-hard on planar graphs. In order to prove this result, we 
need to introduce the Planar Monotone 3-SAT problem. An instance of 3-SAT is called monotone if each clause is monotone, 
that is, each clause consists only of positive variables or only of negative variables. We call a clause with only positive (resp., 
negative) variables a positive (resp., negative) clause. Given an instance φ of 3-SAT, we define the bipartite graph Gφ that 
has one vertex per each variable and each clause, and has an edge between a variable-vertex and a clause-vertex if and only 
if the variable appears (positively or negatively) in the clause. A monotone rectilinear representation of a monotone 3-SAT

instance φ is a planar drawing of Gφ such that all variable-vertices lie on a path, all positive clause-vertices lie above the 
path, and all negative clause-vertices lie below the path; see Fig. 7 for an example.

In the Planar Monotone 3-SAT problem, we are given a monotone rectilinear representation of a planar monotone 
3-SAT instance φ, and the objective is to determine whether φ is satisfiable. Berg and Khosravi [3] proved that the Planar 
Monotone 3-SAT problem is NP-complete.

Theorem 3. The MinCCA problem is NP-hard on planar graphs even when restricted to instances with at most 6 colors and 0/1
symmetric costs.

Proof. We reduce from the Planar Monotone 3-SAT problem. Given a monotone rectilinear representation of a planar 
monotone 3-SAT instance φ, we build an instance (H, X, χ, r, f ) of MinCCA as follows. The variable-vertices and the clause-
vertices of Gφ are {x1, . . . , xn} and {C1, . . . , Cm}, respectively. Without loss of generality, we assume that the variable-vertices 
appear in the order x1, . . . , xn on the path P of Gφ that links the variable-vertices. For every variable-vertex xi of Gφ , we 
add to H a gadget consisting of four vertices x�

i , x
r
i , x

+
i , x−

i and five edges {x�
i , x

+
i }, {x+

i , xr
i }, {xr

i , x
−
i }, {x−

i , x�
i }, {x+

i , x−
i }. We 

add to H a new vertex r, which we set as the root, and we add the edge {r, x�
1}. For every i ∈ {1, . . . , n − 1}, we add to H

the edge {xr
i , x

�
i+1}. We add to H all clause-vertices C1, . . . , Cm . For every i ∈ {1, . . . , n}, we add an edge between vertex x+

i

and each clause-vertex of Gφ in which variable xi appears positively, and an edge between vertex x−
i and each clause-vertex 

of Gφ in which variable xi appears negatively. This completes the construction of H , which is illustrated in Fig. 8. Since Gφ

is planar and all positive (resp., negative) clause-vertices appear above (resp., below) the path P , it is easy to see that the 
graph H is planar as well.

We define the color palette as X = {1, 2, 3, 4, 5, 6}. Let us now describe the edge-coloring function χ . For every 
clause-vertex C j , we color arbitrarily its three incident edges with the colors {4, 5, 6}, so that each edge incident to C j

gets a different color. For every i ∈ {1, . . . , n}, we define χ({x�
i , x

+
i }) = χ({xr

i , x
−
i }) = 1, χ({x+

i , xr
i }) = χ({x−

i , x�
i }) = 2, and 

χ({x+
i , x−

i }) = 3. We set χ({r, x�
1}) = 4 and for every i ∈ {1, . . . , n − 1}, χ({xr

i , x
�
i+1}) = 4. The function χ is also depicted 

in Fig. 8. Finally, we define the cost function cc to be symmetric and, for every i ∈ {1, 2, 3, 4, 5, 6}, we set cc(i, i) = 0. We 
define cc(1, 2) = 1 and cc(1, 3) = cc(2, 3) = 0. For every i ∈ {4, 5, 6}, we set cc(1, i) = cc(2, i) = 0 and cc(3, i) = 1. Finally, 
for every i, j ∈ {4, 5, 6} with i �= j we set cc(i, j) = 1.

We now claim that H contains an arborescence T rooted at r with cost 0 if and only if the formula φ is satisfiable.
Suppose first that φ is satisfiable, and fix a satisfying assignment of φ. We proceed to define an arborescence T rooted 

at T with cost 0. T contains the edge {r, x�
1} and, for every i ∈ {1, . . . , n − 1}, the edge {xr

i , x
�
i+1}. For every i ∈ {1, . . . , n}, if 

variable xi is set to 1 in the satisfying assignment of φ, we add to T the edges {x�
i , x+

i }, {x+
i , x−

i }, and {x−
i , xr

i }. Otherwise, if 
variable xi is set to 0 in the satisfying assignment of φ, we add to T the edges {x�

i , x−
i }, {x−

i , x+
i }, and {x+

i , xr
i }. Finally, for 

every j ∈ {1, . . . , m}, let xt (resp., x̄t ) be a literal in clause C j that is set to 1 by the satisfying assignment of φ (note that 
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Fig. 8. The graph H constructed by the reduction in Theorem 3 from the example of Fig. 7, together with the edge-coloring function χ (in green). (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

for each clause we consider only one such literal). Then we add to T an edge between vertex C j and vertex x+
t (resp., x−

t ). 
It can be easily checked that T is an arborescence of H with cost 0.

Conversely, suppose now that H contains an arborescence T rooted at r with cost 0, and let us define a satisfying 
assignment of φ. Since for every i, j ∈ {4, 5, 6} with i �= j we have that cc(i, j) = 1, for every clause-vertex C j exactly one of 
its incident edges belongs to T . From the structure of H and from the fact that cc(1, 2) = 1, it follows that in order for the 
tree T to span all vertices of H , for every i ∈ {1, . . . , n} either the three edges {x�

i , x+
i }, {x+

i , x−
i }, {x−

i , xr
i } or the three edges 

{x�
i , x−

i }, {x−
i , x+

i }, {x+
i , xr

i } belong to T . In the former case, we set variable xi to 1, and in the latter case we set variable xi
to 0. Since for every i ∈ {4, 5, 6} we have that cc(3, i) = 1, it follows that for every clause-vertex C j , its incident edge that 
belongs to T joins C j to a literal that is set to 1 by the constructed assignment. Hence, all clauses of φ are satisfied by this 
assignment, concluding the proof of the theorem. �

Note that the above proof actually implies that MinCCA cannot be approximated to any positive ratio on planar graphs in 
polynomial time, since an optimal solution has cost 0. If we do not allow 0 costs among different colors, then the problem 
is inapproximable within any polynomial factor. Indeed, for any positive integer c we can replace every 0 cost by n−c−1. 
Then the optimum becomes at most n−c , and the cost of a non-optimal solution is at least 1. Therefore, it is NP-hard to get 
an approximation ratio of nc .

In the next theorem we present a modification of the previous reduction showing that the MinCCA problem remains 
hard even if the maximum degree of the input planar graph is bounded.

Theorem 4. The MinCCA problem is NP-hard on planar graphs even when restricted to instances with at most 8 colors, maximum 
degree bounded by 4, and 0/1 symmetric costs.

Proof. The reduction follows closely the one of Theorem 3. Given a monotone rectilinear representation of a planar 
monotone 3-SAT instance φ, we build an instance (H, X, χ, r, f ) of MinCCA as follows. The variable-vertices and the clause-
vertices of Gφ are {x1, . . . , xn} and {C1, . . . , Cm}, respectively. Without loss of generality, we assume that the variable-vertices 
appear in the order x1, . . . , xn . For every variable-vertex xi of Gφ , we add to H a gadget similar to the gadget used in the 
proof of Theorem 3, consisting of four vertices x�

i , x
r
i , x

+
i , x−

i and five edges {x�
i , x

+
i }, {x+

i , xr
i }, {xr

i , x
−
i }, {x−

i , x�
i }, {x+

i , x−
i }. 

We add to H a new vertex r, which we set as the root, and we add the edge {r, x�
1}. Let C+

i be the set of clauses that 
variable i appears positively and let C−

i be the set of clauses that variable i appears negatively. For every i ∈ {1, . . . , n}
and for every clause j ∈ {

1, . . . , |C+
i |}, we add vertices x+

i j and xr+
i j . Likewise, for every i ∈ {1, . . . , n} and for every clause 

j ∈ {
1, . . . , |C−

i |}, we add vertices x−
i j and xr−

i j . Moreover, for every i ∈ {1, . . . , n − 1}, we add a vertex x′
i as well as the 

edges 
{

xr
i , x′

i

}
and 

{
x′

i, xl
i+1

}
. We proceed our construction by adding for every i ∈ {1, . . . , n} and j ∈ {

1, . . . , |C+
i |} the edges {

x+
i , x+

i j

}
, 
{

xr
i , xr+

i j

}
, 
{

x+
i j , xr+

i j

}
, 
{

x+
i j , C j

}
and for every j ∈ {

1, . . . , |C−
i |} the edges 

{
x−

i , x−
i j

}
, 
{

x′
i, xr−

i j

}
, 
{

x−
i j , xr−

i j

}
, 
{

x−
i j , C j

}
. 

Subsequently, for every i ∈ {1, . . . , n} and j ∈ {
1, . . . , |C+

i | − 1
}

we add the edges 
{

x+
i j , x+

i( j+1)

}
, 
{

xr+
i j , xr+

i( j+1)

}
, and for every 

j ∈ {
1, . . . , |C−

i | − 1
}

we add the edges 
{

x−
i j , x−

i( j+1)

}
, 
{

xr−
i j , xr−

i( j+1)

}
. Note that the maximum degree of H is indeed 4. An 

example of this construction can be found in Fig. 9.
We define the color palette as X = {1,2,3,4,5,6,7,8}. Let us now describe the edge coloring function χ . For every 

clause vertex, we arbitrarily color its three incident edges with colors {4,5,6} so that each incident edge gets a different 
color. For every i ∈ {1, . . . , n}, we define χ({x�, x+}) = χ({xr, x−}) = 1, χ({x+, xr}) = χ({x−, x�}) = 2, and χ({x+, x−}) = 3. 
i i i i i i i i i i
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Fig. 9. The graph H constructed in the proof of Theorem 4, together with the edge-coloring function χ . Note that the maximum degree of H is 4.

We set χ({r, x�
1}) = 4 and for every i ∈ {1, . . . , n − 1}, χ({xr

i , x
′
i) = χ(x′

i, x
l
i+1) = 4. For every j ∈ {

1, . . . , |C+
i | − 1

}
, we 

set χ(x+
i j , x

+
i( j+1)

) = 7 and χ(xr+
i j , xr+

i( j+1)
) = 8. Likewise, for every j ∈ {

1, . . . , |C−
i | − 1

}
, we set χ(x−

i j , x
−
i( j+1)

) = 7 and 
χ(xr−

i j , xr−
i( j+1)

) = 8. For every i ∈ {1, . . . , n} and j ∈ {
1, . . . , |C+

i |}, we set χ(x+
i j , x

r+
i j ) = χ(xr

i , x
r+
i j ) = 8, χ(x+

i , x+
i j ) = 7 and 

for every j ∈ {
1, . . . , |C−

i |} we set χ(x′
i, x

r−
i j ) = χ(x−

i j , x
r−
i j ) = 8, χ(x−

i , x−
i j ) = 7. The function χ is also depicted in Fig. 9. 

Finally, we define the cost function cc as follows. We set cc(1, 2) = 1, cc(1, 3) = cc(2, 3) = 0, cc(1, 7) = cc(2, 7) = 0, and 
cc(3, 7) = 1. For every i ∈ {1, 2, 3, 4, 5, 6, 7, 8} we set cc(i, i) = 0. For every i, j ∈ {4, 5, 6} with i �= j we set cc(i, j) = 1. For all 
i ∈ {1,2,3,4,5,6}, cc(8, i) = 0, whereas cc(1, 8) = cc(2, 8) = 0 and cc(7, 8) = cc(8, 7) = 1. Moreover, cc(1, 4) = cc(2, 4) = 0
and for all i ∈ {4,5,6} we set cc(8, i) = cc(i, 8) = 0 and cc(7, i) = cc(i, 7) = 1.

We now claim that H contains an arborescence T rooted at r with cost 0 if and only if the formula φ is satisfiable.
Suppose first that φ is satisfiable, and we proceed to define an arborescence T rooted at r with cost 0. T contains the 

edge {r, x�
1} and, for every i ∈ {1, . . . ,n − 1}, the edges 

{
xr

i , x′
i

}
and 

{
x′

i, x�
i+1

}
. For every i ∈ {1, . . . ,n}, if variable xi is set to 1 

in the satisfying assignment of φ, we add to T the edges {x�
i , x+

i }, {x+
i , x−

i }, and {x−
i , xr

i }. Otherwise, if variable xi is set to 0 
in the satisfying assignment of φ, we add to T the edges {x�

i , x−
i }, {x−

i , x+
i }, and {x+

i , xr
i }. For every i ∈ {1, . . . ,n}, if variable 

xi is set to 1 in the satisfying assignment of φ, then for every j ∈ {
1, . . . , |C+

i |} we add to T the edges 
{

xr
i , xr+

i j

}
, 
{

xr+
i j , x+

i j

}
, {

x+
i j , C j

}
(note that for each clause C j we add only one such edge), for every j ∈ {

1, . . . , |C+
i | − 1

}
we add to T the edges {

xr+
i j , xr+

i( j+1)

}
, for every j ∈ {

1, . . . , |C−
i |} we add to T the edges 

{
x−

i , x−
i j

}
, 
{

x′
i, xr−

i j

}
, and for every j ∈ {

1, . . . , |C−
i | − 1

}
we 

add to T the edges 
{

xr−
i j , xr−

i( j+1)

}
, 
{

x−
i j , x−

i( j+1)

}
. For every i ∈ {1, . . . ,n}, if variable xi is set to 0 in the satisfying assignment 

of φ, then for every j ∈ {
1, . . . , |C+

i |} we add to T the edges 
{

xr
i , xr+

i j

}
, 
{

x+
i , x+

i j

}
, for every j ∈ {

1, . . . , |C+
i | − 1

}
we add to 

T the edges 
{

xr+
i j , xr+

i( j+1)

}
, 
{

x+
i j , x+

i( j+1)

}
, for every j ∈ {

1, . . . , |C−
i |} we add to T the edges 

{
x′

i, xr−
i j

}
, 
{

xr−
i j , x−

i j

}
, 
{

x−
i j , C j

}

(note that for each clause C j we add only one such edge), and for every j ∈ {
1, . . . , |C−

i | − 1
}

we add to T the edges {
xr−

i j , xr−
i( j+1)

}
.

Conversely, suppose now that H contains an arborescence T rooted at r with cost at most 0 and let us define a satisfying 
assignment of φ. Since for every i, j ∈ {4,5,6} with i �= j we have that cc(i, j) = 1, for every clause-vertex C j exactly one 
of its incident edges belongs to T . Since cc(i, 8) = 0 and cc(i, 7) = 1 for all i ∈ {4,5,6}, we have that if 

{
x+

i j , C j

}
belongs 

to T , then 
{

x+
i j , xr+

i j

}
, 
{

xr+
i j , xr

i

}
, and all other edges with color 8 in the gadget corresponding to C+

i belong to T . Due to the 

same reasons, if 
{

x−
i j , C j

}
belongs to T , then 

{
x−

i j , xr−
i j

}
, 
{

xr−
i j , x′

i

}
, and all edges with color 8 in the gadget corresponding 

to C−
i belong to T . From the structure of H and from the fact that cc(1, 2) = 1, it follows that in order for the tree T to 

span all vertices of H , for every i ∈ {1, . . . , n} either the three edges {x�
i , x+

i }, {x+
i , x−

i }, {x−
i , xr

i } or the three edges {x�
i , x−

i }, 
{x−, x+}, {x+, xr} belong to T . In the former case, we set variable xi to 1, and in the latter case we set variable xi to 0. Since 
i i i i
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for every i ∈ {4, 5, 6} we have that cc(7, i) = 1, it follows that for every clause-vertex C j , its incident edge that belongs to T
joins C j to a literal that is set to 1 by the constructed assignment. Hence, all clauses of φ are satisfied by this assignment, 
concluding the proof of the theorem. �

From Theorem 4, it is not difficult to prove that the MinCCA problem is NP-hard even on grids. The main idea is that 
any planar graph G with maximum degree at most 4 is contained in a grid as a topological minor. From this observation, 
one can play with the costs in such a way that solving the problem in G is equivalent to solving it in the grid on which G
is embedded.

6. Conclusions and further research

In this article we proved several hardness results for the MinCCA problem. Our main result, which answers an open 
question from Gözüpek et al. [14], is that the problem is W[1]-hard parameterized by the vertex cover number (hence, 
by treewidth as well) on general graphs. We also proved that the problem is W[1]-hard on multigraphs parameterized by 
tree-cutwidth. While we were not able to prove this W[1]-hardness result on graphs without multiple edges, we believe 
that it is indeed the case.

As a partial result in this direction, in an extended version of this article, permanently available at [arxiv:1605.00532], 
we provide an FPT algorithm for the MinCCA problem parameterized by a restricted version of tree-cutwidth. Without 
entering into technical details here, in this variation of tree-cutwidth we further impose a limited dependency among the 
thin children of each node t of the tree-cut decomposition. According to Ganian et al. [11], a non-root node t of T is thin if 
adh(t) ≤ 2. While this parameter is somehow artificial, the algorithm shows that bounded tree-cutwidth is “almost” enough 
to provide an FPT algorithm for MinCCA, in the sense that the potential source of hardness, if any, comes from the structure 
of thin nodes. It is worth mentioning that this algorithm can be seen as a generalization of the FPT algorithm of Gözüpek 
et al. [14] with parameter tw + 
. Indeed, if the maximum degree is also considered as a parameter, then the number of 
thin children in a tree-cut decomposition is bounded at any node, and we can solve the problem in time FPT using our 
algorithm.

Our hardness results imply that the problem is para-NP-hard when parameterized by the number of distinct cost values. 
Another interesting research direction is to consider parameters related to the cost function, such as the value of the largest 
cost, the ratio of the largest cost to the smallest cost, the ratio the largest cost to the smallest cost among different colors, 
costs obeying the triangle inequality, etc.

On the other hand, we proved that the MinCCA problem is NP-hard on planar graphs; however, we do not know whether 
it is W[1]-hard parameterized by treewidth on planar graphs.

It would be natural to consider other structural parameters as well as other width parameters. Note that the MinCCA

problem is W[1]-hard parameterized by any parameter that can by bounded as a function of the vertex cover number, 
such as treedepth or branchwidth. A well-known parameter for which the problem is para-NP-hard is cliquewidth. Indeed, 
given an arbitrary graph G on n vertices as instance of MinCCA, let G ′ be the graph obtained from a clique on n vertices, 
corresponding to the vertices of G , by adding a new pendant vertex to each vertex of the clique. The transition costs among 
edges of G ′ that were already in G remain unchanged, the ones involving pendant edges are set to zero, and the other ones 
to infinity. It is easy to verify that solving MinCCA in G and in G ′ is equivalent, and that G ′ has cliquewidth 2.

Finally, it would be interesting to try to generalize our techniques to prove hardness results or to provide efficient 
algorithms for other reload cost problems that have been studied in the literature [5,8,10,20].
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