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Joint Optimization of Cash Management and
Routing for New-Generation Automated

Teller Machine Networks
Şeyma Batı and Didem Gözüpek

Abstract—Cash-related costs constitute a large portion of
management cost of an automated teller machine (ATM) net-
work. Cash should be delivered to or picked-up from ATM
devices in certain intervals in order to both meet customer sat-
isfaction and to be able to generate additional revenue from
excess cash through daily interest rates. Unlike classical ATMs,
new-generation ATMs, also called recycle ATMs, have a single
cassette for cash withdrawal and deposit; this property imposes
new restrictions on ATM cash management. Moreover, recycle
ATMs are costly, and hence their deployment should be planned
carefully. In this paper, our aim is to optimize the ATM networks
in terms of cash related costs. We formulate an optimization prob-
lem as an integer linear program, which jointly decides on when
to visit an ATM, how much money to deliver to which ATM and
which road should be followed for the distribution of cash to the
ATMs. We also decide on which ATMs in the network should be
replaced by a recycle ATM. We then propose a polynomial-time
heuristic algorithm and compare it with the optimization formu-
lation in terms of cash cost and the recycle ATM decision. We
demonstrate through performance evaluation that our heuristic
algorithm is suitable for practical implementation.

Index Terms—Automated teller machine (ATM) network, cash
management, heuristics, integer programming, joint optimiza-
tion.

I. INTRODUCTION

CASH management for automated teller machines (ATMs)
is a key service area for financial institutions such as

banks. Cash-related costs constitute around 35%–60% of the
overall costs of running an ATM [1]. Studies using actual ATM
investment data [2] suggest that ATM usage has a positive
impact on the cost efficiency of the banks. As the size and
complexity of ATM networks increases, it becomes critical for
financial institutions to optimize ATM cash flows to improve
return on cash assets, reduce operation costs, and deliver high
quality service to their customers. The factor that reduces the
return on cash assets, referred to as the idle cash cost, is due
to the more than necessary amount of cash residing in ATMs.
Idle cash in ATM constitutes a cost to the financial institution
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since the institution cannot generate additional revenue by
investments such as daily interest.

There are two types of ATM machines, referred to as:
1) classical and 2) recycle ATMs [3]. While classical ATMs
have separate cassettes for cash withdrawal and deposit, recy-
cle ATMs, also called as new-generation ATMs, have a single
cassette for both operations. Recycle ATMs are costly; there-
fore, their deployment requires rigorous analysis. Transfer of
cash between cash center and ATM points is carried out by
firms called “cash in transit (CIT).” Banks pay the CIT a
certain amount of money for each visit of an ATM and this
payment constitutes the logistic costs, which are major com-
ponents of operational costs. Optimal ATM cash management
involves the analysis of idle cash cost and logistic cost. A vital,
yet unexplored, issue in ATM cash management stems from
the tradeoff between these costs: an ATM cash management
system should minimize the overall idle cash and logistic cost
while at the same time providing the customers with a quality
of service by ensuring that ATMs do not run out of cash, i.e.,
by deciding on the optimum amount of money that should be
placed in the ATMs to satisfy the customer demands [4].

In this paper, we formulate an optimization problem whose
objective is to minimize the cash management cost. We con-
sider a system consisting of CIT vehicles and cash centers as
well as classical and recycle ATMs. Furthermore, we decide
on the route of the CIT vehicles. Since armored vehicles of
the CIT have a certain upper limit for the amount of money
to carry due to reasons such as security, CIT vehicles’ routes
should be determined together with the amount of money to
be delivered to or picked-up from the ATMs. To the best
of our knowledge, this paper is one of the few studies that
focus on recycle ATMs and also on the joint optimization of
cash management and routing. Furthermore, to the best of our
knowledge, this paper is the first study that focuses on an
ATM network consisting of both classical and recycle ATMs
and, even more importantly, provides the optimum decision on
which classical ATMs need to be replaced with recycle ATMs
in order to minimize the total cost of joint cash management
and routing.

The optimization problem we formulate in this paper is an
integer linear programming (ILP) problem that jointly opti-
mizes cash decisions, i.e., when to deliver how much cash
to which ATMs, and the routing of CIT vehicles. We then
propose a polynomial-time heuristic algorithm and conduct
simulations using synthetic data we generated and real ATM
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data obtained from a private company (Provus Inc.). Our sim-
ulation results indicate that our heuristic algorithm yields close
solutions to the values obtained from the execution of our ILP
formulation using optimization software CPLEX.

The remainder of this paper is organized as follows. In
Section II we explain the motivation for this paper and sum-
marize the related work in the literature as well as our
contributions. We formulate our optimization problem as an
ILP in Section III and describe our proposed heuristic algo-
rithm in Section IV. We present the simulation results in
Section V and then conclude this paper in Section VI.

II. MOTIVATION AND RELATED WORK

For efficient cash management in an ATM network, a nec-
essary amount of cash should be held in each ATM because
having insufficient amount of cash leads to customer dissatis-
faction. On the other hand, since the money held in an ATM
is in cash, it is not possible for the banks to invest that money
and generate additional income through daily interest rates.
Therefore, having more than necessary amount of cash in the
ATMs has a financial cost for the banks. Furthermore, the
route of the CIT vehicles should be decided in an optimal
way such that the cash collected from ATMs is delivered to
the cash center (e.g., central bank) within working hours so
that additional income can be generated through daily interest
rates; otherwise, the cash is counted as idle.

CIT firms carry out the delivery of cash to the ATMs;
this action is referred to as the replenishment of the ATMs.
Financial institutions such as banks pay the CIT firms a cer-
tain amount of money for their service. We call this cost CIT
cost. Daily replenishment of the ATMs decreases the customer
dissatisfaction and the idle cash cost; however, it increases the
CIT cost. On the other hand, replenishing the ATMs in long
intervals decreases the CIT cost, but increases the idle cash
cost. As a result, the frequency of ATM replenishment is an
important decision.

In this paper, we address these tradeoffs by formulating an
optimization problem that determines the route of each CIT
vehicle, which ATMs should be visited on which day by each
CIT vehicle, and the amount of cash to be delivered to or
picked-up from each ATM so that the overall cost of ATM cash
management is minimized. Our model takes the ATM type
(recycle/classical) into consideration and also determines what
the type of each ATM should be; in other words, ATM type is
a decision variable in our formulation. Our model is suitable
for a business environment where the banks also determine the
route of the CIT vehicles; in other words, CIT vehicles oper-
ate simply as taxis to transport money. The money paid by
the bank to the CIT consists of two terms: 1) a fixed amount
for each CIT vehicle (which is implicit in our formulation)
and 2) a certain amount for each visited ATM per day per
CIT vehicle (which is explicit in our formulation). Note that
our model does not contain proportional costs, i.e., the sec-
ond term does not depend on the amount of cash delivered
to the ATM. Furthermore, while the decision of the route of
the CIT vehicles and the amount of cash to be delivered to
or picked up from each ATM are operational level decisions,

which typically need to be solved every week, the decision
on whether to deploy a recycle ATM is a rather strategical
decision. We integrate these three terms together in our model
in order to serve a guideline to the banks on replacing which
ATMs with recycle ATMs. For instance, if a replacement deci-
sion is made for a certain ATM is made for most weeks, then
the bank can take such an action. If the bank wishes to see the
performance when no ATM or a particular subset of the ATMs
is replaced with a recycle ATM, then a simple modification
on our optimization problem formulation (which we explain
in Section III) can serve this purpose.

Inventory routing problem [5] is comprised of the inte-
gration of inventory management and vehicle routing so that
inventory control and routing decisions are made simultane-
ously, while the pick-up and delivery problem [6] focuses
on the collection and distribution of one/several commodi-
ties from/to a set of locations. The problem we formulate
in this paper resembles the inventory routing problem with
pick-ups and deliveries, which combines features of these
two main problems. Our main distinction from the inven-
tory routing problem with pick-ups and deliveries is that the
routing cost in our problem does not depend on the route
length and our model decides on what the ATM type (classi-
cal/recycle) should be for each ATM in order to minimize the
total cost.

Before discussing the related work in the literature, let us
point out that in the remainder of this paper, withdraw and
deposit refer to the customer actions, whereas deliver and pick-
up refer to the CIT vehicle actions.

Economists have long recognized the similarity between
cash management and managing the inventory of some phys-
ical quantity. In this perspective, the Baumol model [7] has
been dominant for analyzing the transactions demand at the
micro level. Miller and Orr [8] then defined the cash balance as
having an uneven fluctuation by characterizing a random vari-
able and proposed a stochastic model. The work in [9] also
focuses on a stochastic cash balance problem and formulate
a linear programming model for it, whereas the paper in [10]
studies the problem of minimizing the expected time aver-
age cash balance subject to the constraint that the probability
that all demands are satisfied is at least some given num-
ber. Elton and Gruber [11] proposed a dynamic programming
formulation for a cash balance problem in which stochastic
changes in the cash level can be positive or negative. The work
in [12] proposes a simple mathematical model for cash man-
agement at the bank branches, in particular both at the branch
ATMs and at the cash desks. Another work in [13] presents
a general model of cash management, viewed as an impulse
control problem for a stochastic money flow process. This pro-
cess is represented by a superposition of a Brownian motion
and a compound Poisson process, controlled by two-sided
target-trigger policies. The study in [14] applies a stochastic
single-period inventory management approach to analyze opti-
mal cash management policies with fuzzy cash demand based
on fuzzy integral method so that total cost is minimized. The
work in [15] focuses on the joint optimization for banks and
CIT firms by using Pareto-improvement recontracting schemes
based on a Baumol-type cash demand forecast.
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Besides cash management in other areas, ATM cash man-
agement has also received significant attention. Most studies
about ATM cash management in the literature focused on
estimation of daily cash demands for ATMs, which is chal-
lenging due to the heteroscedasticity of such time series. For
instance, the work in [1] proposed a method based on sim-
ulated annealing to estimate the amount of cash load for
ATMs such that the maintenance cost of ATMs is minimized.
ATM maintenance cost function consists of idle cash costs
(related to interest rate), cash delivery costs, and constant
ATM-service costs, while neglecting the routing of CIT vehi-
cles. Furthermore, unlike this paper, they do not take the
recycle ATMs into account. Venkatesh et al. [16] used neu-
ral networks to predict cash demand for groups of ATMs
with similar day-of-the week cash demand patterns. The work
in [17] introduces a local learning model of the pseudo self-
evolving cerebellar model articulation controller associative
memory network for ATM cash demand forecasting. There are
also other methods used for demand forecasting. For instance,
the study in [18] uses neural networks and least square support
vector machines, while the work in [19] also uses artificial neu-
ral networks and neuro-fuzzy models and the one in [20] uses
a local linear wavelet neural network for time-series predic-
tion. While most works in the literature studied forecasting and
ATM cash replenishment policy separately, the work in [21]
proposes an integrated approach where the ATMs in near-by
locations are grouped into clusters and the optimal replen-
ishment time interval as well as data forecasting are applied
to the clusters. Another work in [22], elaborates on a model
based on the combination of neural networks and multiagent
technology for predicting future cash demand.

Besides demand forecasting, cash management literature
focused on other aspects as well. For instance, the work in [4]
focuses on cash management in ATMs and in the compensa-
tion of credit card transactions. They formulate a stochastic
programming problem and analyze its several special cases.
The short-term model with fixed costs results in an ILP prob-
lem, whereas the mid-term model with fixed and staircase costs
leads to a multistage stochastic problem. Unlike this paper,
the work in [4] does not focus on the routing of CIT vehicles.
Moraes and Nagano [23] developed a policy for cash man-
agement using Miller and Orr model, which does not define
a single ideal point for cash balance, but an oscillation range
between a lower bound, an ideal balance, and an upper bound.
They use genetic algorithms and particle swarm optimization.
Again, unlike this paper, the work in [23] does not focus on
the routing of CIT vehicles. The work in [24] focuses on
cash inventory management for out of working hours, dur-
ing which replenishment of the ATMs is impossible. They
propose inventory models and policies under both full and
imperfect information. Unlike this paper, they do not consider
the routing of CIT vehicles (since replenishment of the ATMs
is impossible) or recycle ATMs. The study in [25] proposes a
class of adaptive data-driven policies for a stochastic inventory
control problem in order to provide a robust method for the
cash deployment strategies of the ATMs. The paper in [26]
studies an ATM network consisting of ATMs of several banks
and it allocates the total transaction cost arising in the network

TABLE I
INPUT VARIABLES

among the participating banks by modeling the situation as a
cooperative game with transferable utility.

There are few studies in the literature that focus on the
routing of CIT vehicles. However, most of these studies do
not take the cash management into account. For instance, the
work in [27] models the routing of CIT vehicles as some type
of vehicle routing problem and addresses it using a genetic
algorithm. Besides, the work in [28], treat the routing of
CIT vehicles and cash management as two separate problems,
while focusing mainly on demand forecasting in cash man-
agement. Opasanon and Lertsanti [29] aimed at identifying
logistics issues arising from relocating the main distribution
center from the view of the company’s policy makers. They
use the analytic hierarchy process to evaluate and rank the
importance of the logistics issues according to the needs
and requirements of the company’s policy makers. The work
in [30] focuses on joint vehicle routing and inventory manage-
ment in ATM networks; however, they do not take the recycle
ATMs into account, and therefore, do not make a decision on
which ATMs should be replaced by recycle ATMs. The study
in [31] focuses on joint vehicle routing and inventory man-
agement of recirculation (recycle) ATMs. Unlike this paper,
they focus merely on recycle ATMs, while we consider an
ATM network consisting of both classical and recycle ATMs
in addition to making the important decision of which clas-
sical ATMs should be replaced by recycle ATMs in order to
minimize the total cost.

III. PROBLEM FORMULATION

Our optimization problem aims to find a schedule that
decides on which days the ATMs should be visited, what
amount of cash should be delivered to the ATMs, and what
the route of the CIT vehicles should be such that the total cost
is minimized. For each ATM, the cash amount to be delivered
is calculated for each day in the scheduling period, which is
a tunable parameter and is usually six or seven days in prac-
tice. We assume that the daily cash need for each ATM is
forecasted beforehand. Therefore, the daily cash amount fore-
casted to be in withdrawal and deposit box of each ATM, the
daily interest rate and the amount of money charged by CIT
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TABLE II
DECISION VARIABLES

for each visit of an ATM are input parameters to our opti-
mization problem. Tables I and II show the input and decision
variables, respectively, of our ILP formulation.

The objective in our optimization problem is to minimize
the overall cost of ATM cash management, which consists of
logistic cost, idle cash cost, and recycle ATM cost. The first
term of (1) models the idle cash cost, which is proportional to
the daily interest rate, whereas, the second term of (1) models
the logistic cost, which is due to the money paid to the CIT
firm for ATM visits. The last term of (1) models the cost of
deploying a recycle ATM. Accordingly, the objective function
of our ILP formulation is as follows:

min
N∑

i=1

(
H∑

h=1

(wih + dih)× fh

)
+

M∑

k=1

N∑

i=0

H∑

h=1

(cihk × yihk)

+
N∑

i=1

(ri × R). (1)

Note that in the objective function, cost parameters may
depend on the ATM, the day of the week, and vehicle type
(see the definition of cihk). The reasons for these dependen-
cies are the following: vehicle type may change the amount of
gas consumed and can change the expenses of the CIT firm.
Moreover, the more ATMs are visited, the more costly the
tour will be for the CIT. Visiting some ATMs may be costlier
than visiting other ATMs since, for instance, they may be in
a less secure location necessitating extra security measures to
be taken for the CIT vehicles, which are armored vehicles.
The day of the week may also be an important factor since,
for instance, working on holidays such as Saturday obligates
the CIT to pay overtime to the CIT vehicle drivers and hence
increases the cost charged to the bank. CIT vehicles have to
start the route from a presepecified center node, which is usu-
ally the central bank, because the cash to be delivered to the
ATMs must be picked-up from a cash center. Note that the
second term in the objective function starts from i = 0, which

refers to the index of the center node. cihk values for i = 0
are used to model the fixed money charged to the CIT firm;
i.e., the fixed money per week can be divided by the number
of days to calculate the cihk values for i = 0 for each day h.
If it turns out as a result of the execution of our optimization
formulation that a CIT vehicle does not visit any ATMs, in
which case the route found for that CIT vehicle makes a tour
without visiting any ATMs [due to Constraint (2)] and visiting
only the center node, then only the fixed cost charged for that
CIT vehicle contributes to the objective function. Note that
this situation of CIT vehicles visiting only the center node is
used only to model the fixed costs charged for that vehicle
and it does not occur in reality.

We model the requirement that each CIT vehicle starts the
route from the center node as follows:

N∑

j=1

x0jhk = 1; ∀k ∈M, h ∈ H. (2)

CIT vehicles have to return to the center node after visiting
the ATMs in order to bring the collected cash to the central
bank. This requirement necessitates a closed loop to be con-
structed. At each node, the incoming flow of CIT vehicles
must be same as the outgoing flow. Therefore, we need a flow
conservation constraint as follows:

N∑

i=0

xiphk −
N∑

j=0

xpjhk = 0; ∀p ∈ N , k ∈M, h ∈ H. (3)

Note that if a vehicle makes a tour without visiting any
ATMs, then since the corresponding x0jhk value equals 1, this
will incur a cost in the second term of the objective function
because the indices in the second term of the objective func-
tion start from 0. Since the objective function minimizes the
cost and making a tour without visiting any ATM does not
bring any benefit in terms of the objective function value, this
situation will be avoided by the ILP. Indeed, not using all the
available vehicles bring cost gains due to the same reason.
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Visiting the same set of ATMs using more vehicles on a given
day incurs more cost since the cost of visiting the center node
also contributes to the objective function.

Each ATM should be visited by at most one CIT vehicle.
We can model this requirement as follows:

M∑

k=1

yihk ≤ 1; ∀i ∈ N , h ∈ H. (4)

A CIT vehicle can visit an ATM only if the ATM is on the
route of the related CIT vehicle

yihk =
N∑

j=0

xjihk; ∀i ∈ N , h ∈ H, k ∈M. (5)

The cash capacity vk of the CIT vehicle k stems from its
physical and security requirements. The cash amount carried
by CIT vehicle k on day h should not exceed its capacity

N∑

i=1

zihk +
N∑

i=1

aihk ≤ vk; ∀h ∈ H, k ∈M. (6)

Equation (6) ensures that the vehicle capacity constraints are
satisfied. The first term represents the total amount of cash
to be delivered to all ATMs on the route, while the second
term represents the total amount of cash to be picked-up from
all ATMs on the route. In the worst case, the sum of these
two terms should not exceed the vehicle capacity. Since cash
is delivered in cassettes, even if a certain amount of cash is
picked up from a particular ATM, it does not matter when
delivering cash to the next ATM as to the initial amount of
money to be loaded to the CIT vehicle.

The amount of cash delivered to ATM i on day h is equal
to the sum of the cash delivered to ATM i on day h by all
CIT vehicles

zih =
M∑

k=1

zihk; ∀i ∈ N , h ∈ H. (7)

The amount of cash picked-up from ATM i on day h is
equal to the sum of cash picked-up from ATM i on day h by
all CIT vehicles

aih =
M∑

k=1

aihk; ∀i ∈ N , h ∈ H. (8)

Note here that since at most one CIT vehicle can visit an
ATM on a certain day due to (4), at most one CIT vehicle
can contribute to the summation in (7). The same is valid also
for (8).

If ATM i is visited on day h by CIT vehicle k, then the
amount of cash delivered to ATM i cannot exceed the ATM
cash capacity Ci. Otherwise, the amount of cash delivered to
ATM i equals zero

zihk ≤ Ci × yihk; ∀i ∈ N , h ∈ H, k ∈M. (9)

Likewise, if ATM i is visited on day h, then the amount of
cash picked-up from ATM i is at most the ATM cash capacity.
Otherwise, the amount of cash picked-up from ATM i is zero

aihk ≤ Ci × yihk; ∀i ∈ N , h ∈ H, k ∈M. (10)

For classical ATMs, the remaining amount of cash in the
withdrawal box of ATM i on day h is equal to the difference
between the total amount of cash delivered to ATM i until day
h and the total amount of cash withdrawn from ATM i until
day h. For recycle ATMs, on the other hand, the remaining
amount of cash in ATM i at the end of day h is equal to
the difference between the total amount of cash delivered and
deposited to ATM i until the end of day h and the total amount
of cash withdrawn and picked-up from ATM i until the end
of day h. These constraints can be modeled as follows:

wih =
h∑

e=1

(zie −Wie)+
(

h∑

e=1

ri × Die

)
− φih; ∀i ∈N , h ∈H.

(11)

For recycle ATMs, CIT vehicle can pick-up more than nec-
essary amount of cash residing in the withdrawal box while
visiting the ATM. The term φih refers to the cash amount
picked-up from ATM i until the end of day h if ATM i is a
recycle ATM (equals zero otherwise). Note that the definition
of the decision variable φih = ri×∑h

e=1 aie poses a nonlinear
relationship between the decision variables. We can linearize
this relationship through the following set of constraints:

φih ≤ Ci × h× ri; ∀i ∈ N , h ∈ H (12)

φih ≤
h∑

e=1

aie; ∀i ∈ N , h ∈ H (13)

φih ≥ Ci × h× (ri − 1)+
h∑

e=1

aie; ∀i ∈ N , h ∈ H. (14)

For classical ATMs, the remaining amount of cash in deposit
box on day h is equal to zero if ATM i is visited by a CIT
vehicle on day h; otherwise, it is equal to the total amount of
cash deposited to ATM i after the last visit of ATM i by a CIT
vehicle. For recycle ATMs, since there is no separate deposit
box, the remaining amount is equal to zero

dih ≤ (1− ri)×
h∑

e=1

(ϒieh × Die); ∀i ∈ N , h ∈ H. (15)

Note that in both cases, if a CIT vehicle visits an ATM, it
picks up all the money residing in the deposit box. This behav-
ior is due to the practical business situation as suggested by
our industrial partner Provus, who informed us that banks (in
Turkey) always prefer to pick-up all the money in the deposit
box since they are very eager to earn money from the interest
rates. Even if our formulation had modeled the case where the
CIT vehicle had the option of leaving some of the money in
the deposit box, the bank would always require them to pick-
up all the money. Another issue is that note also that some
money can be deposited in the ATM after the CIT vehicle
visits the ATM and picks up all the money in the deposit box.
In this case, the money residing in the ATM at the end of
the day would be nonzero. Our model neglects this situation
due to the following two reasons: first, as can also be seen
from our simulation results with real data, deposit amounts in
Turkey are very low, and if such a case occurs, this deposited
money can be treated as if it were deposited at the beginning of
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the next day. Second, incorporating such level of detail to our
model would obligate us to make the resolution of scheduling
in minutes rather than days and therefore would tremendously
increase the complexity of our formulation. In short, for prac-
tical reasons, we treat such money as money deposited on the
next day.

Note also that the definitions of the decision variables
ϒihh′ and yiek pose a nonlinear relationship between the deci-
sion variables. We can linearize this relationship through the
following set of constraints:

ϒihh′ ≤ 1− yiek; ∀i ∈ N , h, h′ ∈ H, h �= h′ (16)

ϒihh′ ≥ h− h′ +
h′∑

e=h

M∑

k=1

(1− yiek); ∀i ∈ N , h, h′ ∈H, h �=h′.

(17)

The time spent in traveling between ATMs and during the
cash delivery process has to be smaller than the total number
of working hours; i.e., CIT vehicle should return to the center
node within working hours. The time spent in giving service
to the ATMs is assumed to be constant and equal to δ. We
can model this constraint as follows:

N∑

i=0

N∑

j=0

tijh × xijhk +
N∑

i=1

δ × yihk ≤ B. (18)

We have to provide subtour elimination in the routing of
CIT vehicles. We use the Miller–Tucker–Zemlin formulation
of the traveling salesman problem [32], which has a simple
implementation that introduces three constraints as follows:

u1 = 1 (19)

2 ≤ ui ≤ N; ∀i �= 1 (20)

ui − uj + 1 ≤ (N − 1)× (1− xijhk
); ∀i �= 1,∀j �= 1,∀k,∀h.

(21)

Note that if the bank wishes to see the results when a par-
ticular set of ATMs necessarily consists of recycle ATMs or
classical ATMs, the constraints ri = 1 or ri = 0, respectively,
can be added to the formulation.

Finally, the following set of constraints model the decision
variables of our ILP formulation:

xijhk, yihk, ri, ϒihh′ ∈ {0, 1} (22)

wih, dih, aih, zih, aihk, zihk, φih, μijhk, ui ∈
{
Z
+ ∪ {0}}. (23)

Note that in the above formulation, we determine the
amount of cash to be delivered by taking into account the
cash capacity of the CIT vehicles due to security constraints.
In practice, there may also be a limited number of possible
cassette sizes also due to security issues [30]. Which banknote
types to use for a given total cash amount is called the change
making problem in [33]. As suggested by our industrial part-
ner Provus Inc., we have not included this level of detail in
our model since the banks usually have a certain strategy for
this decision and they make this decision independent of the
cash management and routing model.

IV. PROPOSED ALGORITHM

We propose in this section a polynomial-time heuristic algo-
rithm to address our problem formulated in (1)–(23). ILP
problems are known to be computationally difficult in general.
Thus, we propose a heuristic algorithm for our formulated ILP
problem.

In our proposed algorithm, by considering a fixed plan-
ning horizon of seven days, we first calculate the ATM visit
days and cash amount by using exhaustive search to find the
schedule that gives minimum cost among all possible alterna-
tives. Then, for each CIT vehicle, we construct a route with
candidate ATM nodes by using a variant of a vehicle rout-
ing problem. After that, we assign the ATMs to one of the
candidate routes constructed previously by forming an edge-
weighted bipartite graph between ATMs and CIT vehicles and
solving an optimization problem with the objective of mini-
mizing total cost. Lastly, we check the solution in terms of
vehicle capacity constraint. If there is a route that violates the
constraint, we update the pick-up values for each ATM on
the route of that CIT vehicle. Indeed, we basically split the
original model into four submodels and propose four separate
algorithms for every submodel. We explain the four consecu-
tive stages that form our overall algorithm in more detail as
follows.

A. Calculation of ATM Visit Days and Cash
Amount (Stage 1)

First, which day to visit and the amount of cash to be deliv-
ered to each ATM are calculated separately. The amount of
cash to be deposited to (Dih) and withdrawn from (Wih) ATMs
are given as input to this stage. Furthermore, the CIT cost for
visiting the ATMs (cihk) and the daily interest rate (fh) are also
given as input. Daily cash management cost of ATMs (tcihk)
can be calculated by the following formula:

tcihk = (wih × fh)+ (cihk × yih). (24)

Total cost depends on which days the ATMs are visited
(yih). Calculation of the cash amount to be delivered to ATMs
is done for a scheduling period, which is given as input to
the algorithm. In practice, the scheduling period is a small
and constant number, which is usually six or seven days. If
we consider seven days ahead, there are total of 27 possible
solutions. In Algorithm 1, line 7 states that the number of
possible solutions to investigate is 27. Since there is a finite
number of possible solutions, the amount of cash to deliver
to ATMs, the remaining amount of cash in ATM (wih), the
idle cash cost (mc), the amount of money to be charged by
the CIT (cc), and the total cost (tcihk) can be calculated for
each possible solution. In line 8, bj shows the binary form of
j where bit values indicate whether ATM is visited or not on
that day. In line 9, the cash amount to be deliver to ATM for
that possible solution is calculated by using the withdrawal
and deposit amounts. In line 10, the remaining cash value
for each day is calculated. Similarly, delivery and remaining
amounts for a recycle ATM is calculated in lines 11 and 12.
Line 13 calculates the idle cash cost, which is proportional to
the interest rate and the remaining amount of cash in the ATM
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Algorithm 1 Stage 1 of the Proposed Algorithm
1: procedure GET POSSIBLE SOLUTIONS

2: Require: Wih, Dih, cihk, fh
3: Ensure: yih, ri

4: tcihk, mc, cc, tcrihk, mcr, ccr← 0
5: tcmin

ihk , tcrmin
ihk ← A very large number

6: for each ATM i do
7: for j = 0 to 27 do
8: bj ← binary(j)
9: findDeliveryAmount(bj, Wih, Dih)

10: findRemainingAmount(wih)
11: findDeliveryAmountRecycle(bj, Wih, Dih)
12: findRemainingAmountRecycle(wrih)
13: mc← wih × fh
14: cc← cihk × yih

15: tcihk ← mc+ cc
16: mcr← wrih × fh
17: ccr← cihk × yih

18: tcrihk ← mcr + ccr
19: if tcihk ≤ tcmin

ihk then
20: tcmin

ihk ← tcihk

21: bmin
j ← bj

22: end if
23: if tcrihk ≤ tcrmin

ihk then
24: tcrmin

ihk ← tcrihk

25: end if
26: for each h do
27: yih ← bj

28: end for
29: end for
30: if tcrmin

ihk ≤ tcmin
ihk then

31: ri ← 1
32: end if
33: end for
34: return yih, ri

35: end procedure

at the end of the day. Line 14 calculates the CIT cost, which
is equal to zero if the ATM is not visited on that day. Line 15
calculates the total cash management cost for that day, which
is stated in (24). In lines 16–18, money, CIT and total cost for
a recycle ATM are calculated. In lines 19–22 the solution that
gives the minimum total cost among all possible 27 solutions is
stored. In lines 30 and 31, we compare total cost for classical
and recycle ATM and we decide on ATM being recycle or not
(ri) by choosing the one that gives lower cost. The algorithm is
executed for each day. As the output, we find the days (within
the N days) to visit the ATM, what amount of cash to be
delivered to that ATM and ATM type (classical/recycle). The
same algorithm is executed for each ATM.

B. Candidate Route Construction for CIT Vehicles (Stage 2)

Stage 1 determines when to visit each ATM, i.e., which
ATMs will be visited within a given day. Stage 2 decides on
the routes of the CIT vehicles that pass through these prede-
termined ATMs. The CIT vehicles’ routes should satisfy the

following criteria: 1) the distribution of the cash to ATMs must
be completed within the working hours (B) and 2) CIT vehi-
cles must start the route from a center node and return to it
within the given time period.

The problem in stage 2 is actually a variant of the capac-
itated vehicle routing problem (CVRP). However, apart from
having vehicle capacity constraints, we also have a time con-
straint for the vehicles. Therefore, traditional approaches to
CVRP is insufficient for our problem.

In Algorithm 2, lines 12 through 31 state that, for the first
half of the working hours, our algorithm starts the route from
the center node and moves as far away from the center node
as possible. In contrast, for the second half of the working
hours, our algorithm makes the route return to the center node
as we state in lines 32 through 44. The algorithm marks the
selected ATMs as it proceeds; we keep two separate lists for
the unselected ATMs: 1) listall keeps the list of ATMs not
selected by any of the CIT vehicles and 2) listk keeps the list
of ATMs not selected by CIT vehicle k. In order to prevent
cycles nodes are removed from the lists as follows: for the
first selection of each CIT vehicle, the node closest to the
center from listall is picked and the selected node is removed
from that list (line 15). By doing so, each CIT vehicle selects
the one that is not been selected by other CIT vehicles and
initialize different routes. After first node, each CIT vehicle
selects the node from its own listk that is further from the
center among the two closest nodes to the current node and
removes the node from that list (line 23). For the second half
of the working hours, the algorithm selects the node from listk
that is closer to the center among the two closest nodes to the
current node (line 33). For each CIT vehicle, a route with
candidate ATM nodes is constructed. Stage 2 is executed just
once for each CIT vehicle. For each route, we keep the number
of the selected nodes in the first half of the working hours as
numCount and at the beginning of the iteration we set the limit
for that variable to a very large number, numNodesLimit. At
the end of the iteration, if we cannot reach center node, we
update numNodesLimit as numCount− 1 (line 41) and repeat
the iteration until the duration of the route shrinks to below
the allowed time. xijk in line 49 is the binary variable showing
whether the route of CIT vehicle k includes the edge from
ATM i to j.

Observe that some ATMs may not be selected at the end of
stage 2. When the number of vehicles is insufficient, instead of
returning an infeasible solution, our algorithm selects a subset
of ATMs. In our simulations, we evaluate the performance of
our algorithm by also taking the percentage of visited ATMs
into account (see Fig. 1).

C. Assignment of ATMs to the CIT Vehicles (Stage 3)

As the output of the second stage, different route sets are
given; i.e., for each CIT vehicle, a route with candidate ATM
nodes are constructed. In other words, these ATMs are candi-
date for being visited on the route sets that are passing through
it. If an ATM is decided to be visited on a particular day as
a result of stage 1, then it needs to be assigned to one of the
routes that pass through it on that day so that it can be visited



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Algorithm 2 Stage 2 of the Proposed Algorithm
1: procedure CIT VEHICLES’ ROUTES
2: Require: tij, B
3: Ensure: xijk
4: listall ← N
5: for each CIT vehicle k ∈M
6: totalTime← 0
7: listk ← N
8: i← 0
9: numNodesLimit← A very large number

10: label1
11: while(true)
12: while(true)
13: numCount← 0
14: if(i = 0 and totalTime+ t0j ≤ B/2)
15: Pick the node j from listall closest to the center

node
16: x0jk ← 1
17: listk ← listk − j
18: listall ← listall − j
19: totalTime← totalTime+ t0j
20: numCount← numCount + 1
21: i← j
22: else
23: Pick the node j from listk that is further from

the center among the two closest nodes to the current node i
24: if(totalTime + tij ≤ B/2 and numCount ≤

numNodesLimit)
25: xijk ← 1
26: listk ← listk − j
27: totalTime← totalTime+ tij
28: numCount← numCount + 1
29: i← j
30: else break
31: end while
32: while(true)
33: Pick the node j from listk that is closer to the center

among the two closest nodes to the current node i
34: if(totalTime+ tij ≤ B)
35: xijk ← 1
36: listk ← listk − j
37: totalTime← totalTime+ tij
38: i← j
39: else
40: if(j �= 0)
41: numNodesLimit← numCount − 1
42: break label1
43: end if
44: else break label2
45: end while
46: end while
47: label2
48: end for
49: return xijk
50: end procedure

by the CIT vehicle of that route. Each such ATM must be
assigned to exactly one of the routes that passes through it.
The routes might intersect; however, each ATM must be vis-
ited and served by exactly one CIT vehicle; i.e., ATMs must
be assigned to only one route. In order to assign the ATMs to
the routes and to pick the route with minimum cost we con-
struct an edge-weighted bipartite graph G = (A,R, E), where
A = {1, . . . , A} is the set of ATMs, R = {1, . . . , R} is the set
of routes, and there is an edge e ∈ E between an ATM a ∈ A

and a route r ∈ R if ATM a is on the route r. Let cr be the
cost of visiting an ATM on route r, i.e., cr equals cihk shown
in Table I denoting the money paid to the CIT. Since stage 2
determines for each CIT vehicle a route with candidate ATMs,
each route here corresponds to a CIT vehicle and the cost of
using that route equals the money paid to that CIT. We set
the weights of all edges incident to vertex r ∈ R to cr. We
then define another variable �r, which denotes the maximum
number of ATMs that route r can visit. We set �r to a rea-
sonable number (as follows) by considering the service time
for each ATM (δ in Table I) and the working hour limit (B in
Table I). Let Yhk be the total number of ATMs that are only
on the route of CIT vehicle k on day h and Xhk be the total
amount of time spent in traveling between the ATMs on the
route of CIT vehicle k on day h. Note that Yhk and Xhk can
be stated as follows:

Yhk =
N∑

i=0

yihk; ∀h ∈ H, k ∈M (25)

Xhk =
N∑

i=0

N∑

j=0

xijhk × tijh; ∀h ∈ H, k ∈M. (26)

Then we calculate �r as follows:

�r = B− (δ × Yhk)− Xhk

δ
. (27)

Note that �r gives the maximum number of ATMs that can
be included into route r. Furthermore, since stage 2 ensures
that the total time spent on the route cannot exceed B, �r

cannot be negative.
We then solve the ILP in (28)–(30). Let xar be a binary

decision variable related to yihk in Table II as in the following.
Here the subscript a in xar corresponds to ATM i and the
subscript r corresponds to the route of CIT vehicle k on day
h. In other words

xar =
⎧
⎨

⎩

1; if edge between ATM a and
route r is selected

0; otherwise.

The objective function in (28) aims to minimize the total
cost of assigning ATMs to the routes. The goal here is related
to the transportation cost of the objective function (1) in
Section III

min
A∑

a=1

cr × xar s.t. (28)

The following constraint ensures that each ATM is assigned
to only one route:

R∑

r=1

xar = 1; ∀a ∈ A. (29)

The following constraint ensures that at most �r ATMs can
be assigned to each route r:

A∑

a=0

xar ≤ �r; ∀r ∈ R. (30)
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Algorithm 3 Stage 4 of the Proposed Algorithm
1: procedure CHECK VEHICLE CAPACITY CONSTRAINT

2: Require: zih, aih, vk

3: Ensure: aih

4: for each CIT vehicle k do
5: for each day h do

6: if
N∑

i=0
(aih − zih) ≤ vk then

7: for each ATM i do
8: if(ri = 0)

9: aih ←
(vk−

N∑
i=0

(aih−zih))×aih

N∑
i=0

aih

10: end if
11: end for
12: end if
13: end for
14: end for
15: return aih

16: end procedure

D. Vehicle Capacity Constraint (Stage 4)

In the last stage of the algorithm, we rearrange the pick-up
amounts of cash if the security constraint is not satisfied, i.e.,
if the amount of cash in the CIT vehicle exceeds the vehicle
capacity. We simply decrease the amount of cash picked-up
from the classical ATMs so that the total amount of cash in
the CIT vehicle adheres to the vehicle capacity. We decrease
the cash amount for each classical ATM proportional to their
pick-up values.

Note that in stage 4, for classical ATMs since the money
can be picked up only from the deposit box, this action cannot
cause the ATM to run out of cash. For recycle ATMs, on
the other hand, this is not necessarily the case. Therefore, we
execute line 9 in Algorithm 3 only for classical ATMs.

E. Computational Complexity of Our Heuristic Algorithm

In stage 1, scheduling period is constant in all experiments;
hence there exists a finite number of CIT visit alternatives
for each ATM. Each day, an ATM is either visited by a CIT
vehicle or not; therefore, there are a total of 27 alternatives
since we take the scheduling length as seven days. In lines
8 and 9 of stage 1, finding the remaining amount of cash in
the ATM has constant time complexity because it is related
to the scheduling length, which is also constant. We make
the calculation for each CIT visit alternative for each ATM.
We use exhaustive search in this stage; since the scheduling
length is always constant in our algorithm (seven days), this
step takes linear time.

In stage 2, for each CIT vehicle, the algorithm scans the
nodes in the ATM network. The time to construct a route
is restricted by the working hour limit B. For each node in
the network, the algorithm scans at most N − 1 other nodes,
where N is the number of ATMs. Hence, the route of each
CIT vehicle can be constructed in quadratic time.

In stage 3, the calculation of �r clearly takes polynomial
time. We now show that the ILP in (24)–(29) is also solvable
in polynomial time. Let I be a function associating an interval
of natural numbers for each vertex in A and R. We then set
I(a) = [1, 1] ∀a ∈ A and I(r) = [0,�r] ∀r ∈ R. The prob-
lem of finding a sub(multi)graph that maximizes the total edge
weights while respecting the constraints about the interval of
allowed degrees for each vertex is known to be solvable in
polynomial time [34], [35]. In particular, if the (multi)graph
is bipartite (as it is in our case), then the solution for the ILP
representing this problem is equal to the solution of its lin-
ear program because the incidence matrix of a bipartite graph
is totally unimodular [34]. Therefore, if we update the edge
weights cr as cr ← M − cr, where M is a sufficiently large
number so that the resulting weights are non-negative, then
the corresponding maximization problem gives our desired
solution in polynomial time.

V. SIMULATION RESULTS

In this section, we evaluate via simulations the performance
of our heuristic algorithm under various parameter settings by
comparison with the solutions obtained from the execution
of the ILP formulation in (1)–(21) using CPLEX optimiza-
tion software and Java. In particular, we compare our heuristic
algorithm and CPLEX solutions in terms of the total cost of
cash management, the number of recycle ATMs, and the cost
per ATM. As the problem size gets larger, CPLEX running
times become prohibitively high. Therefore, we set an upper
time limit to CPLEX. When we set an upper time limit, if
CPLEX finds an optimal solution within this time limit, then
CPLEX returns an optimal solution; otherwise, it returns the
solution it has found up until that time as well as the result-
ing gap value. This way, we obtain CPLEX solutions that are
either optimal or near optimal so that we can have a baseline
to compare our heuristics with. The default value of the gap
parameter (epgap) is 0.0001 and it can take any value between
0.0 and 1.0. In our experiments, we set the upper time limit to
3 h and observe that the maximum gap value resulting from
our experiments is 0.01.

In the simulations, we use both synthetic data and real ATM
data provided by Provus, a payment processing company in
Istanbul, Turkey. The real data consists of ATMs of PTT (the
national post and telegraph directorate of Turkey) which are
operated by Provus. We use the data of 16 ATMs in Ataşehir
and Kadıköy region in the Anatolian side of Istanbul and 106
ATMs in the European side of Istanbul. We use the actual
withdrawal and deposit amounts between December 2013 and
May 2014 as well as the actual x-y coordinates of the ATMs.
We obtain the travel times between each pair of ATMs by using
Google Maps Distance Matrix API. We set the scheduling
period to 1 week; i.e., using real data we evaluate the per-
formance of our proposed methods for 25 weeks. Therefore,
the figures for real data display the results for 25 samples.
Note here that in a real implementation, demand forecasting
should be implemented in order to estimate the deposit and
withdrawal amounts of the ATMs and the output of demand
forecasting should be fed as input to our optimization problem.
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Fig. 1. Percentage of visited ATMs with 1, 2, and 3 CIT vehicles in heuristic algorithm solution for real data with 106 ATMs.

In order to better evaluate the performance of our model by
isolating us from the possible errors in demand forecasting,
we have implemented our simulations with the actual with-
drawal and deposit data (retrospectively). Moreover, although
our theoretical model enables any length for the scheduling
period, we set it to 1 week (seven days) since our industrial
partner Provus Inc. explicitly informed us that their scheduling
is on a weekly basis.

For synthetic data, we generate three ATM networks with
25, 50, and 100 ATMs. Each network is connected and ran-
domly generated. We set the travel times between each pair
of ATMs to be uniformly random between 5 and 60 min. The
reason for this setting is to ensure consistency with the real-
life situation in Istanbul, which is a huge city where the travel
time between two locations varies a lot depending on the traffic
congestion level rather than the Euclidean distances, and the
vehicles usually have high variance in their velocities due to
the varying traffic congestion at different places on the road.
We verified this behavior also by the results of the Google
Maps Distance Matrix API in the previous experiment with
real data. In all experiments, we set the CIT cost, service time
for an ATM, interest rate, CIT vehicle capacity, working hours,
and scheduling period to constant values, which are specified
in Table III. We take the interest rate as 11.25% for a year and
use the daily interest rate as 11.25%/365. Table IV shows the
ranges for the amount of withdrawal and deposit for synthetic
data with 25 ATMs, while Table V shows the corresponding
ranges for 50 and 100 ATMs. For each of the three networks,
we run ten independent simulations and take their average as
the obtained result depending on what the evaluated metric in
that experiment is, i.e., average total cost of cash management
etc.

In the first set of experiments, we analyze the impact of the
number of CIT vehicles on feasibility. A solution is infeasible
unless it satisfies all of the constraints in (2)–(21) specified
in Section III. For instance, the solution is infeasible if at
least one ATM cannot be visited within the restricted work-
ing hours. For the real data with 16 ATMs, both CPLEX and
heuristic algorithm always yield feasible solutions even with

TABLE III
PARAMETER VALUES

1 CIT vehicle. For the real data with 106 ATMs, CPLEX
returns an infeasible solution (within the given time limit),
whereas the heuristic algorithm yields a solution that can leave
some of the ATMs, which were originally required to be vis-
ited, as unvisited. We refer to such a solution as a partial
solution. Fig. 1 illustrates the performance in terms of the
percentage of visited ATMs for the real data of 106 ATMs
with 1, 2, and 3 CIT vehicles. Both heuristic algorithm and
CPLEX visit all ATMs in the case with three CIT vehicles. For
1 and 2 CIT vehicles, CPLEX yields an infeasible solution,
whereas our heuristic algorithm can generate partial solutions
with the demonstrated percentage of visited ATMs. Moreover,
we observe that increasing the number of CIT vehicles has an
important role in increasing the percentage of visited ATMs
and eventually obtaining a feasible solution.

We then investigate the relation between the number of CIT
vehicles and the total cost of cash management by using real
data with 16 and 106 ATMs. In our experiments, we vary the
number of CIT vehicles from 1 to 5. In Fig. 2, we compare the
total cost in CPLEX solution and heuristic algorithm with 1
and 5 CIT vehicles for 16 ATMs. We do not show the cost of
two, three, and four CIT vehicles in the figure for better visual
quality; instead, we show the average cost values for these
cases in Table VI. For 106 ATMs, since CPLEX gives infea-
sible solution for 1 and 2 CIT vehicles, we compare the results
with 3, 4, and 5 CIT vehicles. In Fig. 3, we show the results for
only three and five CIT vehicles, again for better visual quality.
For four CIT vehicles, average costs of CPLEX and heuristic
algorithm are 22.948 and 24.949, respectively. In Figs. 2 and
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TABLE IV
WITHDRAWAL AND DEPOSIT RANGES OF SYNTHETIC DATA WITH 25 ATMS

TABLE V
WITHDRAWAL AND DEPOSIT RANGES OF SYNTHETIC DATA WITH 50 AND 100 ATMS

Fig. 2. Comparison of CPLEX and heuristic algorithm for real data with 16 ATMs.

TABLE VI
AVERAGE COST FOR REAL DATA OF 16 ATMS

3, we observe that our proposed algorithm yields close perfor-
mance to CPLEX for both 16 and 106 ATMs. Furthermore,
once a feasible solution is found, increasing the number of
CIT vehicles result in higher cost values. Table VII shows the
average total cost difference (in terms of percentage) between
CPLEX and heuristic algorithm for real data, and again shows
that the performance of our heuristic algorithm is close to the
solutions obtained by CPLEX.

In order to better demonstrate the relation between the num-
ber of CIT vehicles and the total cost of cash management, in
Fig. 4 we vary the number of CIT vehicles from 1 to 5 and
show only the CPLEX results for real data with 16 ATMs.
We observe that once a feasible solution is found, the cost
increases as the number of CIT vehicles increases.

Decision of replacing a classical ATM with a recycle one is
also an output in both CPLEX solution and heuristic algorithm.
We compare them in terms of the number of classical ATMs to
be replaced by recycle ones. In Fig. 5(a), we show the results
of the case with 25 ATMs and synthetic data. We observe that
the number of ATMs to be replaced as recycle ATMs is lower

in cases with Sample ID 1, 2, and 3 compared to the other
cases. Referring to Table IV, we see that the deposit amounts
in the cases with Sample ID 1, 2, and 3 are much lower; to be
more precise, the difference between deposit and withdrawal
amounts is much larger in these samples. We also observe that
the deposit and withdrawal amounts are closer to each other
in the cases with Sample ID 4, 5, and 6. This observation
implies that deploying recycle ATMs is more suitable when
the deposit amounts are closer to the withdrawal amounts since
the ATM can be virtually self-operating only when the deposit
amounts are large enough. Fig. 5(b) and (c) show the results
of the case with 25 and 50 ATMs, respectively, using synthetic
data. The number of ATMs to be replaced as recycle ATMs is
uniformly little in the case with 25 ATMs, whereas the results
are higher in the case with 100 ATMs. When we investigate
the withdrawal and deposit ranges in Table V, we see that the
lower limit of deposit ranges for the case with 100 ATMs is
higher than the case with 50 ATMs, whereas the upper limits of
deposit ranges are very close to each other for both cases. This
observation also corroborates that deploying recycle ATMs is
more advantageous when the deposit amounts are closer to the
withdrawal amounts. Furthermore, our results demonstrate that
in comparison to the total number of ATMs in the network,
the difference between the withdrawal and deposit amounts
has more impact on the number of ATMs to be replaced as
recycle ATMs.

We also show the results of real ATM data in Fig. 5 and we
see that the number of ATMs to be changed to recycle ATMs
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Fig. 3. Comparison of CPLEX and heuristic algorithm for real data with 106 ATMs.

TABLE VII
AVERAGE TOTAL COST DIFFERENCE (IN TERMS OF PERCENTAGE) BETWEEN CPLEX AND HEURISTIC ALGORITHM FOR REAL DATA

Fig. 4. Impact of the number of CIT vehicles in CPLEX solution for real data with 16 ATMs.

is little. Also by taking into account the behavior with syn-
thetic data in Fig. 5(a)–(c), this behavior in Fig. 5(d) and (e)
can be attributed to the fact that deposit amounts in real data is
considerably lower than the withdrawal amounts. In Table VIII
we show the difference between the average number of recycle
ATMs for CPLEX and heuristic algorithm, and we observe that
they are close to each other. Recall here that in our experiments
with real data, we use the real withdrawal and deposit amounts
provided by Provus Inc. As a consequence, this paper demon-
strates that although recycle ATMs are new-generation ATMs,
their deployment requires careful analysis. Recycle ATMs are
advantageous only in places where deposit amounts are high
and real data demonstrates that this occurs rarely in practice in
Turkey. If a bank or payment institution has a high motivation
to deploy recycle ATMs, they should first develop business
related mechanisms to increase the deposit amounts of the
customers.

In Fig. 6, we analyze the relation between the number of
ATMs and the total cost using synthetic data. We compare
the cost per ATM values in CPLEX solution and heuristic
algorithm. The minimum number of CIT vehicles that gives
feasible solution for 25, 50, and 100 ATMs are 1, 2, and 3,
respectively. y-axis in Fig. 6 shows the average cost per ATM
of ten samples and x-axis shows the number of ATMs. The
number of CIT vehicles is set to minimum possible value that
gives feasible solution in CPLEX. Fig. 6 demonstrates that
given that a feasible solution can be found, the cost per ATM
decreases as the number of ATMs increases. Furthermore,
the results corroborate that the performance of our proposed
heuristic algorithm is close to the performance of CPLEX.
In Table IX, we show the difference of average cost per
ATM between CPLEX and heuristic algorithm for synthetic
data, and we observe that they are very close to each other.
Although, in some cases the performance of our heuristic
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(a)

(b)

(c)

(d) 

(e)

Fig. 5. Number of classical ATMs to be replaced by recycle ATM. (a) Synthetic data, 25 ATMs. (b) Synthetic data, 50 ATMs. (c) Synthetic data, 100 ATMs.
(d) Real data, 16 ATMs. (e) Real data, 106 ATMs.

algorithm may not seem satisfactory at first glance (e.g., in
Table VI the heuristic algorithm yields 13%–16% higher cost
than the CPLEX solution), its performance was found to be

very suitable for practical implementation by the employees of
Provus Inc., whom we consulted at every stage of this paper,
mainly because the problem, being an ILP with 22 constraints,
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Fig. 6. Comparison of cost per ATM values in CPLEX solution and heuristic algorithm using synthetic data.

TABLE VIII
DIFFERENCE BETWEEN THE AVERAGE NUMBER OF RECYCLE

ATMS FOR CPLEX AND HEURISTIC ALGORITHM

TABLE IX
DIFFERENCE OF AVERAGE COST PER ATM BETWEEN CPLEX

AND HEURISTIC ALGORITHM FOR SYNTHETIC DATA

is very complex, practical implementations require simplic-
ity in algorithm design, and 13%–16% difference from the
optimal solution is quite satisfactory for all practical purposes.

VI. CONCLUSION

In this paper, we have formulated an integer linear program
that jointly optimizes cash management and routing for new
generation ATM networks. The objective of our formulated
problem is to minimize the total cost of cash management in
ATMs, which consists of logistic cost and idle cash cost. Our
formulation also enables the decision of replacing a classi-
cal ATM with a recycle ATM. We implemented our proposed
formulation by using the optimization software CPLEX. We
have also proposed a polynomial-time heuristic algorithm for
this problem. Via simulations using both real data obtained
from Provus, a payment processing company in Turkey, and
synthetically generated data, we have demonstrated that the
performance of our proposed heuristic algorithm is close to the
ones obtained from CPLEX. Furthermore, our results indicate
that in real data, replacing a classical ATM with a recycle
ATM rarely occurs in an optimal solution due to the fact
that deposits occur much less frequently than withdrawals in
Turkey. Therefore, if a bank or payment institution has a high
motivation to deploy recycle ATMs especially in Turkey, they

should first develop business related mechanisms to encourage
the customers for more deposit to the ATMs.
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