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A Graph-Theoretic Approach to Scheduling in
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Didem Goziipek, Mordechai Shalom, and Fatih Alagoz

Abstract—We focus on throughput-maximizing, max-min fair,
and proportionally fair scheduling problems for centralized
cognitive radio networks. First, we propose a polynomial-time
algorithm for the throughput-maximizing scheduling problem.
We then elaborate on certain special cases of this problem and
explore their combinatorial properties. Second, we prove that the
max-min fair scheduling problem is NP-Hard in the strong sense.
We also prove that the problem cannot be approximated within
any constant factor better than 2 unless P = NP. Additionally,
we propose an approximation algorithm for the max-min fair
scheduling problem with approximation ratio depending on the
ratio of the maximum possible data rate to the minimum possible
data rate of a secondary users. We then focus on the combinatorial
properties of certain special cases and investigate their relation
with various problems such as the multiple-knapsack, matching,
terminal assignment, and Santa Claus problems. We then prove
that the proportionally fair scheduling problem is NP-Hard in the
strong sense and inapproximable within any additive constant less
than log(4/3). Finally, we evaluate the performance of our ap-
proximation algorithm for the max-min fair scheduling problem
via simulations. This approach sheds light on the complexity and
combinatorial properties of these scheduling problems, which
have high practical importance in centralized cognitive radio
networks.

Index Terms—Algorithmic graph theory, approximation
algorithms, cognitive radio networks, dynamic spectrum access,
resource allocation, scheduling.

I. INTRODUCTION

IRELESS networks are currently characterized by a
fixed spectrum assignment policy. Due to the prolif-
eration of wireless technologies and services, the demand for
the radio spectrum continuously increases. This increasing
demand together with the fixed spectrum assignment policy
creates a shortage of spectrum. However, this shortage is
artificial because studies show that a very small portion of the
assigned spectrum is actually utilized [1]. This situation calls
for techniques that utilize the radio spectrum more efficiently.
To overcome the inefficiency in the spectrum usage, the dy-
namic spectrum access (DSA) concept has been introduced by
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researchers in the wireless networking community. DSA hinges
upon the idea of having an intelligent device that opportunisti-
cally utilizes the temporarily unused parts of the spectrum and
vacates them as soon as the licensed owner of that spectrum
band resumes its operation. These intelligent devices are called
cognitive radios. The licensed owners of the spectrum are called
primary users (PUs), and the cognitive radio devices are called
the secondary users (SUs). PUs are unaware of the SUs, and
SUs are obliged not to disturb the PUs. In a centralized cogni-
tive radio network (CRN), cognitive base station (CBS) is the
central entity that has cognitive capabilities; in other words, a
CBS is aware of the DSA concept. The CBS controls and guides
the SUs in its service area by ensuring that the PUs in the region
are not disturbed by the data communication of the SUs with the
CBS.

Opportunistic scheduling concept is based on the exploitation
of the time-varying channel conditions in wireless networks
to increase the overall performance of the system [2]-[4]. The
opportunistic nature of cognitive radio networks is very much
in line with the opportunistic scheduling paradigm; i.e., oppor-
tunistic scheduling enables efficient opportunistic utilization
of the time-varying PU activities by the SUs. In our previous
work [5] and its extension [6], we formulated throughput-max-
imizing, max-min fair, weighted max-min fair, and proportion-
ally fair scheduling problems for centralized cognitive radio
networks. All schedulers make frequency, time-slot, and data
rate allocations to the SUs. Furthermore, all of them ensure
that the PUs in the service area of the CBS are not disturbed,
no collisions occur among the SUs, reliable communication
of the SUs with the CBS is maintained, each SU is assigned
at least one time-slot whenever possible, and the number of
frequencies assigned to an SU in a particular time-slot is not
more than the number of its transceivers (antennas) for data
transmission. Throughput-maximizing scheduler (TMS) aims
to maximize the overall throughput and therefore opportunisti-
cally favors the SUs that have better channel conditions such
as being more distant to the active PUs. A scheme designed
only to maximize the overall throughput can be unfairly biased,
especially when there are users with persistently bad channel
conditions. Therefore, maintaining some notion of fairness is
a vital criterion that opportunistic schedulers should address.
Max-min fair scheduler (MMFS) achieves max-min fairness
by maximizing the throughput of the SU that has the minimum
throughput among all the SUs. When MMFS is executed, an SU
with very bad channel conditions can drive the total throughput
of all SUs to very low values. On the other hand, the notion of
proportional fairness aims to provide a tradeoff between user
satisfaction and total throughput [7], [8]. Accordingly, pro-
portionally fair scheduler (PFS) provides proportional fairness
by maximizing the product of the SU throughput values and
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thereby provides a tradeoff between TMS and MMFS [6]. The
work in [5] formulates the TMS problem as an integer linear
programming problem and provides its numerical evaluation.
The work in [6] extends [5] by also formulating MMFS and
PFS problems through integer programming formulations and
provides heuristic algorithms.

In this paper, we present a formal combinatorial analysis to
the TMS, MMFS, and PFS problems formulated in [5] and [6]
and provide computational hardness results. Our contributions
can be summarized as follows.

1) In Section III-A, we propose more compact equivalent
integer programming formulations (with respect to those
considered in [5] and [6]) for all three problems.

2) In the same section, we also propose a polynomial-time
algorithm for the TMS problem (Theorem 1).

3) In Section III-B, we investigate the combinatorial proper-
ties of certain special cases of the TMS problem and an-
alyze their relationship with various combinatorial opti-
mization problems in the literature such as the multiple-
knapsack and terminal assignment problems.

4) In Section III-C, we investigate the hardness of approxima-
tion of the MMFS problem and some of its special cases.

5) In the same section, we propose an approximation algo-
rithm for the MMFS problem with approximation ratio de-
pending on the ratio of the maximum possible data rate
to the minimum possible data rate of a secondary user
(Theorem 2) and evaluate its performance via simulations.

6) In Section III-D, we prove that the PFS problem is
NP-Hard in the strong sense and inapproximable within
any additive constant less than log(4/3) even in its special
cases.

Graph-theoretic techniques have previously been used for
peer-to-peer networks [9] and wavelength-division multi-
plexing (WDM) networks [10]. Some scheduling problems in
wireless networks have also been addressed by using graph-the-
oretic techniques [11], [12]. On the other hand, graph-theoretic
approaches in CRNs are mainly based on simple variants of
graph coloring problems. Authors in [13] formulate a spectrum
allocation problem considering the different channel availabili-
ties at different nodes in a CRN and show that it is a list coloring
problem. The work in [14] also addresses dynamic spectrum
allocation problem using list coloring and proposes centralized
and decentralized suboptimal algorithms. The authors of [15]
reduce the spectrum allocation problems that they consider
to a variant of graph coloring problem. Unlike the works in
[5] and [6], the work in [15] does not have a time aspect, and
therefore it focuses mainly on channel allocation rather than
scheduling. The authors in [16] also focus on centralized and
distributed DSA problem in CRNs by proving NP-hardness of
their problem and presenting an approximation algorithm. Un-
like [6], the work in [16] does not focus on max-min fairness.
Furthermore, the schedulers proposed in [5] and [6] have also
a temporal notion of fairness since they ensure that each SU is
assigned at least one time-slot. This temporal notion of fairness
also does not exist in [16].

To the best of our knowledge, very few works provide a com-
binatorial approach for scheduling in CRNs [17], [18]. Unlike
most work in the literature that uses graph coloring arguments,
we use various techniques from matching theory. We relate our
scheduling problems to numerous combinatorial optimization
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problems such as knapsack, terminal assignment, generalized
assignment, partition, and Santa Claus problems.

The rest of the paper is organized as follows. In Section II,
we provide the background information related to the TMS,
MMEFS, and PFS scheduling problems. We discuss our proposed
solutions and provide NP-hardness proofs as well as remarks
about certain special cases of these problems in Section III.
We elaborate on the practical implications of our results in
Section IV and present the simulation results in Section V.
Finally, we conclude the paper in Section VI.

II. BACKGROUND

In all of the schedulers in this work, the scheduling decisions
are made for a duration of 7" time-slots during which the net-
work conditions are assumed to be fairly stable due to the SU
and PU velocities as well as the PU spectrum occupancies. In
the first stage of the schedulers, U;; values denoting the max-
imum number of packets per time-slot that can be sent by SU ¢
using frequency f in the entire scheduling period are found. U,
values are calculated such that the PUs are guaranteed not to be
disturbed and the reliable communication of the SUs with the
CBS is ensured. In order to derive a formula for U; ¢, in [6] we
first find the following expression for P;J:,ft, which denotes the
maximum permissible transmission power for SU ¢ using fre-
quency f in time-slot ¢:

P}
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47‘rd1‘jt

(1)

where Pf l’,;mav denotes the maximum tolerable interference
power of PU j for frequency f, d;;+ is the distance between SU ¢
and PU j in time-slot ¢, Ay is the wavelength of frequency f,
hij: is the fading coefficient of the channel between SU 4 and
PU j in time-slot ¢, and ‘I'étBs denotes the set of PUs that are
in the coverage area of the CBS and carrying out their commu-
nication using frequency f in time-slot ¢. Note here that it is
possible that |<I>étBS| > 1 because primary users are allowed
to use the same frequency at the same time in some wireless
technologies. For instance, users in a cellular network can use
the same frequency as long as the distance between them is
larger than a particular distance referred to as the frequency
reuse distance. In essence, (47:17% X |hijs])? refers to the path
loss of the channel between SU ¢ and PU j for frequency f in
time-slot £ as a result of the free-space path-loss formula [6].
Subsequently, using Shannon's capacity function for
Gaussian channels, we derive the following formula to ensure
reliable communication between the SUs and the CBS [6]:
A z

U = |In| 14 | P, x :

2)

where U; ¢, denotes the maximum number of packets that can
be sent by SU ¢ using frequency f in time-slot ¢ of the pertinent
scheduling period, d$;B% represents the distance between SU i
and the CBS in time-slot ¢, h$;55 denotes the fading coefficient
of the channel between SU i and the CBS in time-slot ¢, and &
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symbolizes the sum of noise power and interference power from
the PUs to each SU.

Parameters such as d$;2° and h;;; are detected by the CBS
via techniques such as geolocation system and common control
channel. All the parameters are assumed to remain constant for
each time-slot ¢ of the scheduling period since the scheduling
period is a time duration during which the network conditions
remain fairly stable. Therefore, U,y instead of Ujy; is used to
represent the maximum number of packets that can be sent by
SU 7 using frequency f in any time-slot of the considered sched-
uling period. Schedulers are executed by the CBS; thus, central-
ized scheduling is considered.

In all of the scheduling problems, A/ denotes the set of N
SUs, F represents the set of F' frequencies, and 7 denotes the
set of T time-slots. In other words, A" = {1,2,..., N}, F =
{1,2,...,F},and T = {1,2,...,T}. Furthermore, a; denotes
the number of antennas of SU ¢ and X, is a binary decision
variable that equals 1 if SU ¢ transmits using frequency f in
time-slot ¢, and 0 otherwise. We use the standard vector notation
and denote, for instance, by X the vector of all values X ;.

A. TMS Problem

Given the values for N, F, T a;, and U, the TMS problem
is to find the vector X given by the following binary integer
linear programming (ILP) formulation:

F T
max Y > Y UipXip (3)
i=1 f=11t=1
s.t.
F T
>N Xzl VieN 4)
f=11t=1
N
Y Xip<1l VfeFNteT 5)
i=1
F
Y Xipp<ai VieNVEeT (6)
f=1
Xip € {0,1} Vie N,Vfe FyteT. @)

In this formulation, the objective function in (3) maximizes the
total throughput of all the SUs in the centralized CRN governed
by the CBS. The constraint in (4) guarantees that at least one
time-slot is assigned to every SU and hence provides a temporal
notion of fairness. Besides, (5) ensures that at most one SU can
transmit in a particular time-slot and frequency, and hence pre-
vents collisions between the SUs. Moreover, (6) represents the
fact that an SU ¢ cannot transmit at the same time using fre-
quencies more than the number a; of its transceivers (antennas)
since each transceiver can be tuned to at most one frequency at
a time. The rationale for these constraints can be found in [5].
In this paper, we focus on the combinatorial properties of the
TMS problem and propose a polynomial-time algorithm for it.
We also investigate certain special cases of the problem.

B. MMFS Problem

In order to provide fairness for a longer timescale, the
work in [6] proposes a windowing mechanism that considers
the throughput of the SUs in the recent scheduling periods.
Through this mechanism, temporary throughput losses of the
SUs due to rapidly changing network conditions can be com-
pensated in the subsequent scheduling periods. The number of
considered scheduling periods in the recent past is referred to
as the window size, during which the changes in the network
conditions are considered to be important. If the window size is
too large, the scheduler will be too responsive to small changes
in the network conditions. If it is too small, the scheduler will
be inflexible in compensating for the temporary fluctuations
in the network conditions. Both MMFS and PFS have this
windowing mechanism.

The aggregate average throughput of SU ¢ in the last ¢ sched-
uling periods is defined as Rfﬁ, in packets per time-slot. In other
words, ¢ is the window size. All of the R, values are initial-
ized to O for all the SUs. Let us define R_fp, which is based on an
exponentially weighted low pass filter, as follows:

F T
ZZUiinft

. 1 . f=1t=1
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o= (- ) B i
(®)
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Z E Uis Xige
Here, £="————— denotes the throughput of SU i in the

current scheduling period & and rn(lk 2

it. On the other hand, (1 — m is the weight given to the

is the weight given to

value of pr, i.e., the aggregate average throughput of SU 7 at
the start of the current scheduling period. At the end of each
scheduling period k, the value for R, is updated as R., < Ri,.
Since both & and ¢ are constant in a particular scheduling exe-
cution, without loss of generality we use ¢ instead of min(k, ¢)
in the rest of this paper.

Given the values for N, F,T,a;, ¢, R}, and Uy, MMFS
problem is to find the vector X given by the following ILP
formulation:

max Z 9
t.

M e

T
=1

1t

) |/ Uss Xife
Z< <1—;>R;+; T vie N (10)
(4), (5), (6), and (7)

where (9) and (10) together maximize min;ecas R_fp In this
paper, we focus on the graph-theoretical properties of the
MMEFS problem and show that it cannot be approximated
within any constant factor better than 2. Furthermore, we
propose an approximation algorithm for it and investigate the
combinatorial properties of some special cases.
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C. PFS Problem

Given the values for N, F, T, a;,, R, and Uiy, the PFS
problem is to find the vector X given by the following binary
integer programming formulation:

(11)

s.t.

@), (5), (6), and (7).

This integer programming formulation of the PFS problem max-
imizes a nonlinear concave objective function subject to linear
constraints. In this paper, we prove that the PFS problem is
NP-Hard in the strong sense.

III. PROPOSED SOLUTIONS

A. Preliminaries

Approximation Algorithms: Let II be a maximization
problem and p > 1. A (feasible) solution s of an instance I of
II is a p-approximation if its objective function value Or(s)
is at least a factor p of the o g)tlmal objective function value
Of(I) of I, ie., On(s An algorithm ALG is said to
be a p-approximation algorzthm for a maximization problem
II if ALG returns a p-approximation for every instance I of
II supplied to it. A problem II is said to be p-approximable if
there is a polynomial-time p-approximation algorithm for it. II
is said to be p-inapproximable if there is no polynomial-time
p-approximation algorithm for it unless P = N P. An approx-
imation ratio-preserving (polynomial-time) reduction from a
maximization problem IT to a maximization problem I’ is a pair
of algorithms (f, g) such that: 1) f transforms every instance I
of IT to an instance I’ = f(I) of II’; and 2) ¢ transforms every
p-approximation s’ of I’ = f(I) to a p-approximation g(s’)
of 1. We denote this fact by II <apx II'. IT and II' are said
to be equivalent under approximation preserving reductions if
II <apx IT' and IT" <apx II. A polynomial-time approxima-
tion scheme (PTAS) for a problem II is an algorithm ALG that
takes as input both the instance I and an error bound e, runs in
time polynomial in |7|, and has approximation ratio (1 + ¢). In
fact, such an algorithm ALG is a family of algorithms ALG,
that has approximation ratio (1 + €) for any instance I. The
running time of a PTAS is required to be polynomial in || for
every fixed ¢ but can be different for different e.

Matchings: I-matching and I-factor are defined as fol-
lows [19]: Let G = (V,E) be a (multi)graph with weight
function w : E — R on its edges, and let I be a function
associating an interval of natural numbers with each vertex in
V. We denote by ds(v) the set of incident edges of v in G,
ie., dg(v) = {e € E|v € e}, and dg(v) = |dg(v)| is the
degree of v in G. An I-matching is a function m: £ — N
such that for v € V.3 5., m(e) lies in the interval I(v).
An I-factor is an I-matching such that m: E — {0,1}. A
matching is an I-factor such that I{v) = {0,1} foreachv € V.
In particular, if I(v) = {1} for each v € V, it is called a perfect
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matching. A maximum weighted I-factor is an I-factor m such
that 37 ., m(e) - w(e) is maximized. A maximum weighted
I-factor can be found in polynomial time [20], [21]. An I-factor
m corresponds to a sub(multi)graph M of G such that the
multiplicity of the edges of G in M is given by the function m.
With slight abuse of notation, M will also be called an I-factor.

Let G= (U, V. E) be an edge weighted bipartite (multi)graph.
Let b(u) = > .c5,0 mie) - w(e),Vu € U. A max-min
weighted 1-factor is an I-factor m such that 11;1’161[1’]1 b(u) is max-

imized. In the rest of this paper, we use the terms maximum
I-factor and max-min I-factor to mean maximum weighted
I-factor and max-min weighted I-factor, respectively. Since
our focus is on edge weighted graphs, the implication to the
weighted case is implicit.

SANTA CLAUS Problem: The SANTA CLAUS problem is de-
fined in [22]: Santa Claus has a set of presents that she wants
to distribute among a set of kids. Each present has a different
value for different kids. The happiness of a kid is the sum of the
values of the presents she gets. Santa's goal is to distribute the
presents in such a way that the least happy kid is as happy as
possible. The problem is also known as the Max-Min Fair Al-
location Problem [23].

In the sequel, we propose equivalent simpler ILP formula-
tions for the TMS, MMFS, and PFS problems.

Lemma 1: Let II be an optimization problem that involves

T

the variables X;s; only in the form ZXi s+ 1n its objective

t=1
function O, and also in all its constraints except constraints
(5)—(7). Let IT" be the optimization problem obtained from II
by substituting

T
Y = ZXift
i—1

in Op and all the constraints except (5)—(7) and by replacing the
constraints (5)—(7) by the following constraints:

Vie N,VfeF (12)

N
Y Yy <T VfeF (13)
=1
F
Y Yif<aT VieN (14)
f=1

Yir €N VieN,VfeF. (15)

Then, IT and IT' are equivalent under approximation-preserving
reductions.

Proof: 1t is sufficient to show that any solution X of II
can be converted in polynomial time to a solution Y of T’ with
O (Y) = Op(X), and vice versa. In particular, this holds
also for an optimal solution X *; thus, both problems have the
same optimum, and a p-approximate solution for one problem
corresponds to a p-approximate solution for the other.

One direction is immediate. Indeed, given a solution X of II,
the solution Y defined by (12) clearly satisfies all the constraints
except (13)—(15) because these constraints were obtained by
substituting (12) in the original constraints that are satisfied by
our assumption. Moreover, O/ (Y) = Op(X) for the same
reason. On the other hand, note that the constraints (13)—(15)
are obtained by summing up 7" inequalities of type (5)—(7), re-
spectively, each of which is satisfied by our assumption.
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Now assume that we are given a solution Y of II'. Any de-
composition of ¥ into X;s,Vi € N,Vf € F,Vt € T sat-
isfying (12) clearly satisfies all the constraints except (5)—(7)
and also O, (X) = O,(Y) for the same reason as in the pre-
vious paragraph. In the sequel, we give a polynomial-time al-
gorithm that finds such a decomposition and also satisfies the
constraints (5)—(7). From the vector Y, we build a bipartite
multigraph G = (U,V, E) such that U = {uy,...,un},V
= {vy,...,vFp}, and there are Y;s parallel edges connecting
u; € U and vy € V. The degree of a vertex vy € V is at
most T' by constraint (13), and the degree of a vertex u;, € U
is at most a; - T' by constraint (14). Consider the bipartite graph
G' = (U',V,E') obtained from G by replacing each vertex
u; € U with a; vertices in U’ and dividing the at most a; - T
edges adjacent to u; to these new vertices such that each vertex
receives at most T edges. The degree of each vertex of G is at
most 7. Let G = (U", V", E") be the graph obtained from
G’ by adding |V’ — |V|] dummy vertices to either U’ or V so
that [U”| = |V"| and adding dummy edges as long as there
are vertices with degree less than 7'. G is a T-regular bipartite
graph. A well-known classical result by the works of Konig,
Hall, and Tutte [24]-[26] implies that such a graph contains a
perfect matching and it can be found in polynomial time using
the Hungarian algorithm. Removing a perfect matching from
G", one remains with a (T — 1)-regular bipartite graph. Ap-
plying this inductively, G is partitioned into T perfect match-
ings My, ..., M/.. By removing all the dummy edges and ver-
tices of G”' from these perfect matchings, we obtain T' match-
ings M7, ..., M5 of G'. In each matching M{, ¥Vt € T, we con-
tract back the a; vertices of U’ to the node u; for every i € A to
get T bipartite graphs My, ..., Mp, where each vertex u; € U
has degree at most a; and each node vy € V' has degree at most
1. Let X;¢; = 1 if u; is adjacent to vy in M;, and 0 otherwise.
We conclude that X satisfies (5)—(7). ]

Note that the formulation of TI' has less variables and con-
straints than the formulation of II; therefore, it is computation-
ally more efficient, whether we are looking for exact solutions or
using optimization software such as CPLEX [27] to find nearly
optimal solutions.

Corollary 1: The TMS problem is equivalent to finding the
vector Y given by the following ILP formulation:

N F
max Z Z UisYig

(16)
i=1 f=1
s.t.
F
Y Vg2l  VieN (17)
f=1

(13), (14), and (15).

Corollary 2: The MMFS problem is equivalent to finding the
vector Y given by the following ILP formulation:

max Z (18)
S.t.
o
. . > UiV
Z< (1—>RZ;+—L VieN (19)
® @ T
(17), (13), (14), and (15).

Algorithm 1: THRMAX

Require: N, F,a;,Vi € N.
Ensure: Y;; values Vi € NV,Vf € F.

1: Build an edge weighted bipartite (multi)graph
G = (U, V, E) as follows:
2: For each i € A add a vertex u; to U.
3: For each f € F add a vertex vy to V.
4: For each pair of vertices u; € U and vy € V, add
the edge {u;, vy} to F with weight U f.
5: Define the following function I, which associates an
interval of natural numbers with each vertex in G:
I(’U,Z) = [l,ai - T],VZ S N
I(vy) = [0,T],Vf € F
Find a maximum weighted I-factor M of G.
Foralli € M and f € F, let Y;+ be equal to the number
of edges between vertices u; and vy in the I-factor M.

LoD

Corollary 3: The PFS problem is equivalent to finding the
vector Y given by the following IP formulation:

F
> UisYig

Y ) 1 ;oo 1yr=1
maleog 1—; R¢+;T
i=1

(20)

s.t.
17), (13), (14), and (15).

B. Algorithms for the TMS Problem

1) Polynomial-Time Algorithm.

Theorem 1: There exists a polynomial-time algorithm for the
TMS problem.

Proof: We show in the following that Algorithm
THRMAX is an optimal algorithm for the TMS problem. No-
tice here that the lower bound 1 of I(u;) in line 6 is equivalent
to constraint (17). Besides, the upper bound 7" of I(v;) in line
7 is equivalent to (13), and the upper bound a; - T of I{w;) in
line 6 is equivalent to (14).

Clearly, all the steps except line 8 of the algorithm can be
performed in polynomial time. Line 8 calculates a maximum
weighted I-factor. This problem is solvable in polynomial time
for general graphs [20]. However, as G is a bipartite graph, its
incidence matrix is totally unimodular. The matrix of our linear
program is obtained from the incidence matrix of the bipartite
graph G by duplicating some of the rows. Therefore, our con-
straint matrix is totally unimodular, too. As such, the vertices
of the polyhedron corresponding to the linear constraints are in-
tegral, in particular any optimal solution of it is integral. We
conclude that the integrality constraints (15) are redundant, thus
they can be removed. The linear programming relaxation ob-
tained in this way can be solved in polynomial time. [ |

2) Special Cases:

Case 1: Ignore constraint (17) in the TMS formulation. Recall
that this constraint ensures that each SU is assigned at least one



322

time-slot and therefore achieves temporal fairness. Without this
temporal fairness constraint in the problem formulation, some
SUs with bad channel conditions may end up being unable to
send any packets for a long time. Some transport-layer proto-
cols such as TCP close the connection if no packets are received
for a certain amount of time. Constraint (17) gives each SU the
opportunity to send at least something and therefore avoids this
undesired disconnection situation caused by transport-layer pro-
tocols. A CBS operator may prefer to ignore constraint (17) if
it does not have any concern with this transport-layer behavior
or temporal fairness. Ignoring constraint (17) causes the TMS
scheduler to behave more opportunistically and increases the
possibility to increase the total throughput at the expense of sac-
rificing from temporal fairness.

In this case, we can solve the following ILP and set X;;; =
Yi;,Vie N,Vfe FyvteT:

N F
max ZZUiinf

21)
i=1 f=1
S.t.
N
YN Yip<1 VferF (22)
zFl
Y Yig<a VieN (23)
f=1
Vi€ {0,1} VieN,VfeF. (24)

Clearly, a method similar to the one in Algorithm THRMAX
can be used. The function I is defined as follows: I(u;) =
0,0;],¥i € M, and I{vy) = [0,1],Vf € F. However, there
are other methods to solve this special case. In the following,
we discuss these alternative ways and the relation of this spe-
cial case with other combinatorial optimization problems such
as the multiple-knapsack and terminal assignment problems.
Relation With Other Combinatorial Optimization Problems:
This problem is a variant of the knapsack problem, where the
frequencies correspond to the items and the SUs correspond to
the knapsacks each with capacity a,;. The general case of (23)
F

would be Z w; Yy < a;, where w;; values correspond to the
=1

weights ojtt‘ the items. Hence, constraint (23) is a special case

where w;y = 1,Vi € N,Vf € F.

In essence, the problem in (21)—(24) is a multiple-knapsack
problem (MKP) where the item profits (U;y) vary with knap-
sacks and all item sizes are identical. The authors of [28] state
that the special case of MKP where the item profits vary with
bins and all item sizes are identical is solvable in polynomial
time. Besides, the work in [29] presents the case with gener-
alized w;y as a variant of the generalized assignment problem
(GAP), called LEGAP. This problem is also referred to in the
operations research literature as the loading problem, where
the items (frequencies) are loaded into containers (SUs) of dif-
ferent capacities (antennas) such that container capacities are
not violated. In the centralized network design literature, this
problem is also referred to as the terminal assignment problem,
where terminals (frequencies) are assigned to the concentrators
(SUs). Likewise, the case where all the terminal weights are
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identical can be solved in polynomial time by alternating chain
algorithms [30].

Case 2: Ignore constraints (17) and (14) in the TMS for-
mulation. Notice that ignoring constraint (14) is equivalent to
having a; > F,Vi € N. Then, the optimal solution is to as-
sign each frequency f in every time-slot to the SU that has the
highest U; ¢ value for frequency f breaking ties arbitrarily. In
other words, X;; = 1 if i = argmax U;, and 0 otherwise, V f

e F,vt e T.

Case 3: Ignore constraint (17) and assume that a; = 1
Vi € N In this case, a maximum weighted bipartite matching
problem between the SUs (3 € A) and the frequencies (f € F)
can be solved, and the result of this matching can be applied in
every time-slot ¢ € 7. Hungarian algorithm [31] can be used to
solve the maximum weighted bipartite matching problem. This
technique can be extended also to the case where the a; values
are small by replacing each node wu; corresponding to SU i with
a; nodes, each of which corresponds to the antennas of SU i. In
this case, the reason for a; values to be necessarily small is to
obtain a polynomial reduction.

C. Algorithms for the MMFS Problem and Its Complexity

We present in this section a graph-theoretic approach to the
MMES problem. In addition to the MMFS problem, the work in
[6] also formulates the weighted MMFS problem, where con-
straint (19) is replaced by the following:

F
ZUiinf

1 i 1 f=1
s (1- L) R+ L —
B i

Vie N (25)
where 7; is the relative importance of SU i. Weighted MMFS
is essentially the same computational problem as the MMFS

problem, where U; ¢ values are replaced by Yit and Rfo values

: ni
are replaced by & All the variables except Z’ and Y, are
again input variables. The only difference is that U;; values in
MMES are integers, whereas the Uif values in the weighted
MMES are not necessarily integers. Since they appear only in
the objective function, they do not affect the computational
hardness of the problem. In the rest of this section, we mainly
refer to the unweighted MMFS problem. However, the entire
analysis is valid for the weighted MMFS problem as well.

1) Hardness Results:

Lemma 2: SANTA CLAUS < 4pxy MMFS.

Proof: Consider a special case of the MMFS problem
where T =1, ¢ = 1,and a; > F,Vi € N. The optimization in
this case corresponds to distributing the frequencies to the SUs
in such a way that the SU having the least throughput receives
as much throughput as possible. Because a; > F Vi € A, there
is practically no upper bound on the number of frequencies
that an SU can receive. This special case is exactly the SANTA
CLAUS problem, where kids are replaced by SUs and presents
are replaced by frequencies. [ |

Restricted Santa Claus Problem (R-SANTA CLAUS): Due to
the difficulty of the SANTA CLAUS problem, the attention in
the theoretical computer science community has shifted toward
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more special cases. One special case is the so-called R-SANTA
CLAUS problem, where every present f has the same value Uy
for every kid interested in that present, i.e., U;y € {Uy,0}. The
authors in [32] have shown that it is NP-Hard to approximate the
R-SANTA CLAUS problem within any constant factor better than
2. The proofis very similar the proofin Lenstra ez al. [33], which
proves that the problem of minimum makespan scheduling in
unrelated parallel machines cannot be approximated within any
constant factor better than 3/2 unless P = NP.

Degree Two and Symmetric Degree Two SANTA CLAUS
Problems (D2-SANTA CLAUS, SD2-SANTA CLAUS): D2-SANTA
CLAUS is the variant of SANTA CLAUS problem when each
present has a nonzero value for at most two kids. SD2-SANTA
CLAUS is a special case of D2-SANTA CLAUS where every
present has the same value for both kids interested in that
present. In other words, SD2-SANTA CLAUS is a special case of
the R-SANTA CLAUS problem where each present has a nonzero
value for at most two kids. Clearly, we have the following
observations.

Observation 1: SD2-SANTA CLAUS =<ppx D2-SANTA
CLAUS = spx SANTA CLAUS.

Observation 2: SD2-SANTA CLAUS = spx R-SANTA CLAUS
=< apx SANTA CLAUS.

It is shown in [34] that SD2-SANTA CLAUS is 2-inapprox-
imable, and a (2 + €)-approximation algorithm for D2-SANTA
CLAUS running in polynomial time for every € > 0 is presented.

Definition 1: For a graph G = (V, E) with nonnegative
edge weights U, 5(G,U) is the ratio of the maximum edge

weight to the minimum nonzero edge weight, i.e., 3(G,U) =
min?;:(\eggé[,][;z>0} :

Lemma 3: For any € > 0, the MMFS problem is (8(G, U) —
¢)-inapproximable, even when T' = 1, = 1, a; > F, Uy €
{U¢,0} and each frequency f is usable by at most two SUs.

Proof: This case corresponds to the SD2-SANTA CLAUS
problem. The authors in [35] show that SD2-SANTA CLAUS is
(2 — €)-inapproximable for any € > 0. The graphs used in their
reduction satisfy (G, U) = 2. Therefore, the lemma holds. m

Note that having ¢ = 1 as in Lemma 3 implies that the sched-
uler does not give any importance to what has happened in the
recent past and focuses only on the current scheduling period. In
other words, ¢ = 1 implies that the scheduler does not consider
the historical throughput information in its current scheduling
decision.

Lemma 4: The MMFS problem remains NP-Hard in the
strong sense even when T = 1, = 1,a; = 3, and U;y = Uy
Vi # jandi,j € N.

Proof: Recall that the 3-PARTITION problem is the problem
of deciding whether a given set of integers can be partitioned
into triplets, all of which have the same sum. More precisely,
given a multiset S of 3m positive integers ny, na,...,Nam,
such that Zf‘;"l n; = m- B, can S be partitioned into m subsets
51,55, ..., 5, such that the sum of the integers in each subset
is B? This problem is well known to be NP-Hard in the strong
sense. Given such an instance of the 3-PARTITION problem, we
can build a complete bipartite graph G = (U, V, E), where U
= {51,852, Sm;, V = {b1,bs,..., b3}, and each edge
{8;,b;} has a weight equal to n;, and a; = 3,¥i € N. Every
3-PARTITION corresponds to a feasible solution of this new

instance, and vice versa. The value of the minimum SU i is
equal to B if and only if the answer to the 3-PARTITION problem
is YES. [ |

Lemma 5: The MMFS problem remains NP-Hard even when
N=2T=1,¢=1U;=U,¢,anda; > F,Vi # jand¢,j
e N.

Proof: Note that this special case corresponds to the
PARTITION problem, i.e., the problem of deciding whether a
given set of integers can be partitioned into two subsets that
have the same sum. Since the PARTITION problem is NP-Hard
in the weak sense, this special case is also NP-Hard in the weak
sense. [ |

2) Algorithms:
Lemma 6: NINIFS < 4 px max-min I-factor.

Proof: Since ¢ and T are both constants, by multiplying
both sides of (19) by ¢ - T and substituting K; = T'(¢ — 1)Rf‘7
and Z' = Z T we get the following constraint:

F
ZISKi-i-ZUZ‘fX@‘f vieN.
f=1

(26)

Build a bipartite (multi)graph G = (U, V, E) as follows.

1) For each SU i € N, add a vertex u; to U.

2) For each frequency f € F, add a vertex vy to V.

3) Add a dummy vertex v to V.

4) For each pair of vertices u; € U and vy € V, add Yy

edges {u;, vs} to E each with weight U .

5) For each vertex v; € U, add the edge {v;, T} to E with

weight K;.

We claim that the MMFS problem is equivalent to the
max-min I-factor problem on the (multi)graph G, where the
function I is as follows: I(u;) = [2,a; - T + 1] Vo; € X,
I{vy) = [0,T] Yv; € Y, and I{T) = [N, N]. For an I-factor
H of G, let Y;; = 1 if and only if the edge {u;,vs} is
in H. I(v) implies that dg(¥) = N. On the other hand,
de(T) = N by the construction. Therefore, all the incident
edges 6 (7) of T are also in H. Each node u; € U has exactly
one incident edge from 4 (%) of utility K;, and this edge is
in H. Therefore, b(u;) = K; + Z}ll Uyg - Yif, Vi € N
In particular, this equality holds for the minimum value, thus
min; b(u;) = min,(K; + ij:l Uiy - Yit). We conclude that
the value of the objective function is equal to the value of the
I-factor. It remains to show that an I-factor H corresponds to a
feasible solution Y, and vice versa. Recall that a node u; € U
has one incident edge from (), thus dg(u;) — 1 incident
edges connecting it to nodes v¢,Vf € F. I(u;) implies that
2<dg(u;) <a;-T+1,thusl <dg(u;)—1<a,-T.We
conclude that constraints (17) and (13) are satisfied by Y. On
the other hand I(vy) implies that constraint (14) is satisfied.
The opposite direction is shown similarly. [ |

Theorem 2: There is a 3(G, U }-approximation algorithm for
the max-min I-factor problem.

Proof: We show in the following that Algorithm
MAXMINEQ is a B(G,U)-approximation algorithm
for the max-min I-factor problem. Consider an optimal
max-min I-matching H* and the vertex w; € U with
minimum degree in H*. Then, dg~(u;) < D because
otherwise all the nodes u; € U have dg«(u;) > D
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Algorithm 2: MAXMINEQ

Require: N, F,a;, Vi € V.
Ensure: Y;; values Vi € N,Vf € F.

1: Build an edge weighted bipartite (multi)graph
G = (U,V, E) as follows:

2: For each SU ¢ € A/, add a vertex u; to U.

3:  For each frequency f € F, add a vertex vy to V.

4: For each pair of vertices u; € U and vy € V, add the

edge {u;, v¢} to E with weight U ¢.

5: D + mini{a,,-} -T.

6: Execute lines 7-9 iteratively by employing a binary
search on D to find the maximum possible value of D for
which the below steps 7-9 return a feasible solution:

7:  Find an I-factor for:
8: L{u;) = [D,a; - T),Yu; € U.
9: I{vy) = [0,T],Vuy € V.

+ 1. Then, H* constitutes an I-factor for I{u;) = [D
+ 1,a; - T],Yu; € U and I{vy) = [0,T],Vv; € V con-
tradicting the fact that D is the maximum possible value
leading to a feasible solution for the steps 7-9. Therefore,
blu;) = ZEEJH*(ui) Ue < dp~(w;) - maxeep{Uc} < D
-max.cg{U.}. Then

O(H*) = min b(w;)

<D. .}
ieN - Igleag:({U}

27)
On the other hand, our algorithm returns an I-factor H such
that dg(u;) > D,Vi € N. Therefore, for every u; € U,
b(ui) = X ccsyuy Ue = min{U,|U, > 0,e € E} - dp(u;) >
min{U.|U, > 0,e € E} - D. We conclude that our solution
H has value at least O(H) = min;ep b(w;) > min{U,|U, >
0,e € E} - D. Combining with inequality (27), we conclude
that ST > B(G,U). m
Corollary 4: If (G, U) = 1, i.e., all nonzero U;y values are
equal, then max-min I-matching is solvable in polynomial time.

Therefore, we have shown the following.

Theorem 3: 3(G,U) is a tight bound for the approximability
of all the problems mentioned in this section, i.e., the max-min
I-factor, MMFS, SANTA CLAUS, R-SANTA CLAUS, D2-SANTA
CLAUS, and SD2-SANTA CLAUS problems.

We proceed with a few observations about special cases.

Lemma 7: For every € > 0, there is a (2 + €)-approximation
algorithm for the special case of the MMFS problem with T°
= 1,K; = 0,0; > F Vi € N and each frequency f € F
has nonzero U value for at most two SUs i € N.

Proof: This special case corresponds to D2-SANTA CLAUS,
for which there exists a (2 + ¢)-approximation algorithm [34].
Therefore, the lemma holds. [ ]

Lemma 8: There exists a PTAS for the special case of the
MMEFS problem with 7" = 1, K; = 0, U;y = Uj¢, and a; >
FYi# jandi,j € N.

Proof: The frequencies and SUs can be regarded as jobs
and machines, respectively, and this special case of the problem
becomes the problem of maximizing the minimum machine
completion time on identical machines [36], which is the dual
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problem to the well-known problem of makespan minimiza-
tion. There exists a PTAS for the problem of maximizing the
minimum machine completion time [36], and hence the lemma
holds. ]

3) Related Work on the SANTA CLAUS Problem: Bansal
and Sviridenko have shown in [22] that the natural LP for-
mulation of the SANTA CLAUS problem has a big integrality
gap. Therefore, instead of the natural LP formulation, Bansal
and Sviridenko have considered the so-called configuration
LP and showed how to round it so that the resulting value is
at least OPT /N, where N is the number of kids (SUs). They
also showed that the integrality gap is in the order of 1/ V'N.
Asadpour and Saberi have shown in [23] that it is possible to
round the configuration LP such that the objective function
value is at least OPT/v/N log® N.

The work of Bansal and Sviridenko [22] proposes a method of
rounding the configuration LP for the R-SANTA CLAUS problem
such that a factor of at most loglog N/logloglog N is lost.
Later, Asadpour ef al. [37] have shown an integrality gap of 5
for the R-SANTA CLAUS problem, which was later improved to
4 by the same authors [38]. Note here that this is an estimation
ratio rather than an approximation ratio. In other words, they
have proved that the gap can be at most 4. However, they failed
to provide a polynomial-time 4-approximation algorithm. They
provided a local search heuristic that returns a solution of value
at least O PT /4; nevertheless, their method is not known to run
in polynomial time. In [34], a (2 4 €)-approximation is given
for D2-SANTA CLAUS, and it is shown that the lower bound of
2 holds even for its subproblem SD2-SANTA CLAUS.

Recall that the 5(G,U)-approximation algorithm that we
propose in this paper works for the max-min I-factor problem,
which is a much more generalized version of the general (not
restricted) SANTA CLAUS problem. Therefore, our algorithm
also works for the general SANTA CLAUS problem, for which
very few approximation results have been found [22], [23].
The additive approximation ratio of max;; U;; in [32] can
be arbitrarily bad since it gives a very bad guarantee even
when a single U;; value is large and the others are small.
The v/ N(log®N) approximation ratio of [23] can still be bad
when the number of kids (SUs) is large. On the other hand, our
B(G, U)-approximation algorithm gives a good approximation
guarantee when the U,y values are close to each other; i.e.,
it works well in a fairly uniform spectral environment where
the availabilities of all frequencies are similar for every SU.
Even if the number SUs is very large, our algorithm gives a
good approximation ratio as long as the nonzero U;; values
are close to each other; i.e., 3(G, U) is small. In other words,
it gives a better result than the one in [23] when there are
many SUs but a uniform spectral environment. However, it
fails to provide a good approximation guarantee for highly
nonuniform spectral environments. On the other hand, when
the number of kids (SUs) is small and the values of the presents
to the kids (spectral environment) are highly nonuniform, the
algorithm in [23] gives a better approximation ratio. To sum
up, our algorithm is strong in terms of two different criteria:
First, unlike [22] and [23], our algorithm works for a much
more general case than the SANTA CLAUS problem. Second,
it gives a better approximation guarantee than the previous
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work when there are a large number of SUs and the spectral
environment is fairly uniform. In other words, it provides an
alternative solution so that whichever algorithm provides a
better approximation guarantee (either ours or the ones in [22]
and [23]) can be chosen in a practical implementation.

Authors in [32] have shown a method that gives an approxi-
mation guarantee of OPT — max; s U;f for the general SANTA
CLAUS problem. Although their method performs badly for high
values of Uy, its performance guarantee is good for low values
of Uj;. Therefore, the approximation algorithm in [22] gives
good results for the special case of the MMFS problem where
Uiy values are small, T = 1, K; = 0,anda; > F Vi e N.

4) Special Cases:

Case 1: Assume that a; = 1Vi € N andT = 1. In
this case, the problem is equivalent to the max-min version of
the linear bottleneck assignment problem (LBAP), where the
workers (frequencies) are assigned to the workstations (SUs)
such that the completion time of the job with the latest comple-
tion time is minimized. The authors in [39] develop threshold al-
gorithms, a dual method, and a shortest augmenting path method
for solving LBAP in polynomial time. The work in [31] also
develops thresholding methods. In particular, min-max version
of LBAP is equivalent to its max-min version [31], [39]. Note
that having K; = 0 Vi € A is not necessary here. Even when
3 € N such that K; # 0, thresholding method in [31] can
still be applied. However, as in the proof of Lemma 6, we need
a dummy vertex called 7 and dummy edges between each SU ¢
and v with weight K;, and then we need to implement the thresh-
olding method in this new graph.

Case 2: Recall that if we decide to neglect the past perfor-
mance, then K; = 0,V: € N. In this case, constraint (17) can
be eliminated. The reason for this is that the objective function
already aims to assign every SU at least one time-slot because it
tries to make the throughput of every SU as high as possible.
If it is possible to assign each SU at least one time-slot, ob-
jective function will do it anyway. If it is not possible, then
the only difference is that the case with constraint (17) declares
that no feasible solution can be found, whereas the case without
constraint (17) declares that a feasible solution has been found
but the resulting objective function value is zero. Therefore,
both cases are essentially the same, and hence constraint (17)
can safely be eliminated in this special case. This elimination
reduces the number of constraints in the problem formulation
and hence enables more efficient running time if optimization
software such as CPLEX [27] is used to find close to optimal
solutions.

Remark 1: Assume that a; = 1,¥i € N and ignore con-
straint (17). In this special case, the method of solving the
problem for one time-slot and applying the same solution for
all time-slots (akin to the method used in special case 3 of the
TMS problem in Section I1I-B.2) does not work. To see this,
consider the following example. There are two SUs and two
frequencies. Let Uy; = Usz; = 3 and Usy = Usy = 0. If we
solve the problem in one time-slot and apply the same solution
to the other time-slots, then the result equals zero. However, we
can achieve a nonzero result by assigning different frequencies
to an SU in different time-slots. Assigning frequency 1 to SU 1
and frequency 2 to SU 2 in the first time-slot, and assigning

frequency 1 to SU 2 and frequency 2 to SU 1 in the second
time-slot achieves a nonzero throughput value for the minimum
throughput.

D. Results About the PFS Problem

Theorem 4: The PFS problem remains NP-Hard in the strong
sense even when T’ = 1, = 1,a; = 3, and U;y = Ujj Vi, g
e N.

Proof: Recall that the 3-PARTITION problem is to decide
whether a given set of integers can be partitioned into triplets
that all have the same sum. Assume that there is a polyno-
mial-time algorithm for the PFS problem. Then, we can use this
algorithm to solve the 3-PARTITION problem as follows. Con-
sider the special case of the PFS problem where there are m SUs,
3m frequencies, T = 1 time-slot, U;; = U;; Vi,j € N, and
a; = 3Vi € N. Every 3-PARTITION corresponds to a feasible
solution of this special case, and vice versa. Then, .5; equals the
sum of all the U;¢ values assigned to this SU 4. The values of
each 5; are equal to each other if and only if the answer to the
3-PARTITION problem is YES. Notice that the product of a set
of numbers is maximized when all numbers are equal to each
other. In other words, if it is theoretically possible to make the
sum of integers in each group equal to each other (if the answer
to the 3-PARTITION problem is YES), then the polynomial-time
algorithm for the PFS problem will yield a solution where the
sum of integers in each group (the sum of U; s values assigned
to each SU i) is equal to each other. If the answer is NO, then
as a result of the PFS execution, the sum of integers in each
group will not all be equal to each other; i.e., the sum in at
least one group will differ from another sum (in another group).
Since the 3-PARTITION problem is NP-Hard in the strong sense,
PFS problem is also NP-Hard in the strong sense even when T’
:1,<p:1,ai:3,andU,-f:Uiji,jEJ\/'. |

Max-Product Santa Claus Problem (MAX-PROD-SANTA
CLAUS): This problem is the same as the SANTA CLAUS
problem except that the goal of Santa Claus is to maximize the
product of the happiness values of the kids.

Lemma 9: 1f MAX-PROD-SANTA CLAUS cannot be approxi-
mated within any constant factor better than ¢, then PFS cannot
be approximated within any additive constant less than log(c).

Proof: Consider a special case of the PFS problem where
T =1,¢ =1,and a; > F,Vi € N. Recall that maximizing
the sum of logarithms of a set of numbers is equivalent to max-
imizing their product. Therefore, the optimization in this case
corresponds to distributing the frequencies to the SUs in such
a way that the product of the throughput values of each SU is
as high as possible. Because a; > F Vi € N, there is practi-
cally no upper bound on the number of frequencies that an SU
can receive. This special case is exactly the MAX-PROD-SANTA
CLAUS problem where kids are replaced by SUs and presents
are replaced by frequencies. Therefore, if MAX-PROD-SANTA
CLAUS cannot be approximated within any constant factor better
than ¢, then PFS cannot be approximated within any additive
constant less than log(c). [

Theorem 5: The MAX-PROD-SANTA CLAUS problem cannot
be approximated within any constant factor better than %.

Proof: This result is implied by the work of
Lenstra et al. [33], which proves that the problem of minimum
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makespan scheduling in unrelated parallel machines cannot
be approximated within any constant factor better than 3/2
unless P = NP. In particular, the work in [33] proves that
for the minimum makespan problem on unrelated parallel
machines, the question of deciding if there exists a schedule
with makespan at most 2 is NP-complete. Let us consider the
MAX-PROD-SANTA CLAUS problem. If an assignment where
each kid has a happiness value of 2 cannot exist, then at least
one kid has to have a happiness value of 3 and another kid with
happiness 1. This result implies that MAX-PROD-SANTA CLAUS
cannot be approximated within any constant factor better than
1 [
’ Corollary 5: Due to Lemma 9 and Theorem 5, PFS problem
cannot be approximated within any additive constant less than
log(4/3) even whenT = 1,0 = 1,and a; > F,Vi € .

IV. PRACTICAL IMPLICATIONS

Our findings in this work indicate that the MMFS problem
has high computational complexity even in very special cases.
Therefore, this paper shows that providing throughput fairness
to the SUs is a computationally challenging task for CBS oper-
ators. To better observe the conceptual computational difficulty
of providing throughput fairness, consider the following sched-
uling problem:

N F
max Z Z UisYis

(28)
i=1 f=1
s.t.
F
Y UiYif >QVie N (29)
=1
(17), (13), (14), and (15) (30)

where (1 is a prespecified throughput value. In this problem, the
goal is to maximize the total throughput such that each SU is
guaranteed a prespecified throughput value of 2. If we had a
polynomial-time solution to this problem, we would be able to
use this solution iteratively by updating the value of €2 in each
iteration and therefore find the maximum value of {2 for which
the above problem has a feasible solution; in other words, we
would be able to solve the MMFS problem in polynomial time.
Hence, the problem in (28)—(30) is also NP-Hard in the strong
sense. That is to say, even checking whether each SU can be
guaranteed a certain throughput value is a computationally hard
problem.

In contrast, the TMS problem, which maximizes total
throughput while at the same time providing temporal fairness,
is solvable in polynomial time. Taking into account the fact
that scheduling decisions have to be made in real time, a CBS
operator may opt to provide temporal fairness (by executing
the TMS formulation) instead of throughput fairness. If the
CBS operator prefers to use the MMFS formulation in spite of
its computational difficulties, it may check whether the special
cases we have outlined in this paper are valid in that particular
scheduling period and use the relatively efficient methods we
discussed. For instance, we have shown in this paper that the
special case of Case 1 in Section III-C.4 is solvable in poly-
nomial time. Otherwise, the CBS operator can check the value
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B(G,U) in that particular scheduling period. If 3(G, U) is low
enough; i.e., if the spectral conditions are fairly uniform, the
CBS operator can use our 3(G, U)-approximation algorithm,
with a performance guarantee of 3(()5 7(}) even when there are a
large number of SUs and frequencies.

V. NUMERICAL EVALUATION

We have evaluated the average case behavior of our
B(G,U)-approximation algorithm (MAXMINEQ) for the
MMEFS problem through simulations. As in [5], we have sim-
ulated a centralized CRN cell with 600 m of radius and noise
variance of > = 107°. The maximum tolerable interference
power of the PUs for each frequency is Py, = 10 mW. Each
scheduling period consists of T' = 10 time-slots, and each
time-slot has a duration of Ty = 100 ms. The dynamic nature of
the spectral environment is due to the physical mobility of the
SUs and PUs and the changing spectrum occupancy behavior of
the PUs. Accordingly, U values in each scheduling period are
possibly different owing to these changing network conditions.
Additive white Gaussian noise (AWGN) channels are assumed,
and both the PUs and the SUs move within the CRN cell
according to the random waypoint mobility model (RWMM)
with 10 s of staying duration between the movement periods.
RWMM is a very commonly used model for performance
analysis of wireless networks [40]. The Markovian model
described in [5] is used to model the PU spectrum utilization.
Markovian models are commonly used for the spectrum occu-
pancy modeling of cognitive radio networks [41], [42].

As in [5], we assume that all the PUs and SUs move with
constant velocities of V}, and V;, respectively. We denote the
number of SUs and PUs in the cell by N and M, respectively.
We take M = 20,F = 15,V, = V;, = 13 m/s,and ¢; = 3
Vi € M. We compare the average minimum throughput per-
formance of MAXMINEQ to the results obtained from the op-
timization software CPLEX [27]. In [5], a statistical method is
used to calculate the number of samples to take (the number of
scheduling periods to run the simulations for) so that the sample
mean of all the samples are +0.5 of the actual mean with a 95%
confidence level. We use the same statistical method to deter-
mine the number of scheduling periods for each CPLEX exper-
iment. The number of samples we take for MAXMINEQ in all
the experiments is the same as the corresponding ones obtained
via CPLEX.

Fig. 1 shows the average minimum throughput of CPLEX
and MAXMINEQ where the number of SUs varies between
5 and 30. As the number of SUs increases, the minimum
throughput value resulting from both algorithms decreases.
This behavior is natural since the resources assigned per user
decrease when more users share the same amount of resources.
The table in Fig. 2 provides the numerical minimum throughput
values obtained from CPLEX and MAXMINEQ, which are
essentially the same as the values shown in Fig. 1. The min-
imum throughput performance of MAXMINEQ is close to the
one of CPLEX. While obtaining the CPLEX values, we have
experimentally determined the appropriate gap value in order
to obtain the results in a reasonable amount of time. The default
gap value used by CPLEX is 0.01%. As the number of SUs
increases, the simulations take much longer time. Therefore,
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Fig. 1. Average minimum throughput and CPLEX gap values for varying
number of SUs (V).

Number of | 5 10 15 20 25 30

SUs (N)

MAXMINEQ| 25.36 10.14 | 6.09 3.71 299 | 295

result

CPLEX re- | 29.89 1442 | 9.52 6.86 | 543 | 4.44

sult

CPLEX gap | 0.01% 0.58% | 0.60% | 1.5% | 1.5% | 1.5%
(default)

B(G,U) 2.55 4.06 4.3 492 | 542 | 6.62

Fig. 2. Average minimum throughput, CPLEX gap, and 3(G, U) values.

we have increased the value of the gap parameter (epgap) to
obtain satisfactory results in a reasonable amount of time. The
gap values for each experiment are shown in the table in Fig. 2.
The table also shows the average S(G,U) values resulting
from each experiment. As the number of SUs increases, the
average (G, U) values also increase due to the increasing
diversity in the network; i.e., the probability that there exists
an SU with better/worse U;y values increases as the number
of SUs increases. However, the experimental results show
that the 5(G, U) values do not increase too much in practice.
Furthermore, recall that 8(G, U) is the worst-case bound of the
algorithm MAXMINEQ. The experimental results show that
the average-case behavior of MAXMINEQ in practice is much
better than its worst-case guarantee. Although the 8(G,U)
value increases as the number of SUs increases, we do not
observe an increase in the average performance difference of
MAXMINEQ and CPLEX; in other words, the average-case
performance of MAXMINEQ does not deteriorate.

VI. CONCLUSION

We have presented a graph-theoretic approach to
throughput-maximizing, max-min fair, and proportionally
fair scheduling problems for centralized cognitive radio
networks, which have previously been formulated in the lit-
erature. We have proposed a polynomial-time algorithm for
the throughput-maximizing scheduling problem and discussed

some of its special cases. We have then proved that the max-min
fair scheduling problem is NP-Hard in the strong sense and
inapproximable within any constant factor less than 2 unless PP
= NP. We have also presented an approximation algorithm
for this problem with approximation ratio depending on the
maximum possible data rates of the secondary users. We have
evaluated the average-case behavior of our approximation
algorithm and demonstrated that it provides reasonable av-
erage case minimum throughput performance. Moreover, we
have discussed some special cases of the MMFS problem and
elaborated on their combinatorial properties. Then, we have
proved that the PFS problem is also NP-Hard in the strong
sense and inapproximable within any additive constant less
than log(4/3). Furthermore, we have proposed more efficient
integer programming formulations for all the three problems.

Our study indicates that MMFS is computationally very
hard. This problem cannot be approximated within any constant
factor less than 2 even in very special cases. Moreover, the
theoretical computer science community has still been unable
to find efficient approximation algorithms for the problem.
The computational complexity of this problem together with
its practical importance in cognitive radio networks call for
heuristic techniques that provide efficient suboptimal solutions.
On the other hand, as the objective function of PFS behaves
more smoothly than the objective function of MMFS, we were
unable to show the same hardness results by applying similar
techniques. We conjecture that MMFS is at least as hard to ap-
proximate as PFS. To settle this conjecture is an open problem.
It is not clear whether MMFS is strictly harder to approximate
than PFS. To answer these questions, to design approximation
algorithms for PFS, and to design efficient heuristics for both
MMEFS and PFS problems is subject of future work.
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