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Given an edge-colored graph, an internal vertex of a path experiences a reload cost if 
it lies between two consecutive edges of different colors. The value of the reload cost 
depends only on the colors of the traversed edges. The reload cost concept has important 
applications in dynamic networks, such as transportation networks and dynamic spectrum 
access networks. In the minimum changeover cost arborescence (MinCCA) problem, we seek 
a spanning tree of an edge-colored graph, in which the sum of reload costs of all internal 
vertices, starting from a given root, is minimized. In general, MinCCA is known to be hard 
to approximate within factor n1−ε , for any ε > 0, on a graph of n vertices.
We first show that MinCCA can be optimally solved in polynomial-time on cactus graphs. 
Our main result is an optimal polynomial-time algorithm for graphs of bounded treewidth, 
thus establishing the solvability of our problem on a fundamental subclass of graphs. Our 
results imply that MinCCA is fixed parameter tractable when parameterized by treewidth 
and the maximum degree of the input graph.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Background

Reload cost in an edge-colored graph refers to the cost incurred when crossing a vertex along a path where the incident 
edges have distinct colors. The value of the reload cost depends on the colors of the crossed edges. Two common models 
relate to this concept: the reload cost model, and the changeover cost model. In the former, the cost is proportional to 
the amount of commodity flowing through the edges, whereas in the latter, the cost is independent of the amount of 
commodity.

The reload cost concept has important applications in transportation networks and in dynamic spectrum access net-
works. Different modes of transportation can be represented by different edge colors. Loading and unloading of cargo at 
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Fig. 1. An application for MinCCA: Energy-efficient broadcasting of control traffic in a multi-hop cognitive radio network.

transfer points has a significant cost, which can be represented using reload costs [21]. Dynamic spectrum access networks 
aim to address the inefficient spectrum usage in wireless networks by having intelligent wireless devices that dynamically 
and opportunistically use the frequency bands that are temporarily unused by the licensed owners. Available spectrum re-
sources change dynamically and the intelligent wireless devices, called cognitive radios, need to sense the environment and 
dynamically adapt their communication parameters according to the network and user demands, as well as time-varying 
spectrum availability [1,20]. Unlike other wireless networks, dynamic spectrum access networks use a wide range of spec-
trum. Therefore, the assigned frequency bands can be significantly far away from each other. Consequently, switching from 
one frequency band to another in a dynamic spectrum access network has a significant cost in terms of delay and energy 
consumption [3,5,15]. The concept of reload cost has applications also in telecommunication and in energy distribution 
networks. In communication networks, the cost of switching between different technologies or service provider networks 
corresponds to reload cost. In energy distribution networks, transfer of energy from one type of carrier to another leads to 
energy loss corresponding to reload cost.

1.2. Related work

While reload costs naturally arise in numerous applications, the resulting optimization problems received little attention 
so far. The notion of reload cost was introduced in [21], where the authors considered the problem of finding a spanning tree 
having minimum diameter with respect to reload cost. In particular, they proved that this problem cannot be approximated 
within any polynomial-time computable function f (n) on a graph of n vertices. They also showed that the problem cannot 
be approximated within ratio better than 3, even on graphs with maximum degree 5, and proposed a polynomial-time 
algorithm for graphs having maximum degree 3. These results were complemented in [10] by showing that, for arbitrary 
reload costs, the problem cannot be approximated within factor better than 2, even on graphs with maximum degree 4. For 
reload costs satisfying the triangle inequality, the problem cannot be approximated within ratio better than 5/3.

The paper [12] considers the minimum reload cost cycle cover problem, which is to find a set of vertex disjoint cycles 
spanning all vertices, i.e., a 2-factor, with minimum total reload cost. The authors prove that the problem is NP-hard in 
the strong sense and inapproximable within factor 1/ε for any ε > 0, even when the number of colors is 2 and the reload 
costs are symmetric in addition to satisfying the triangle inequality. The paper also presents some integer programming 
formulations and computational results.

In [14], the authors study the problem of finding a path, trail, or walk of minimum total reload cost between two given 
vertices. They consider (a)symmetric reload costs and reload costs with(out) triangle inequality. In particular, they identify 
numerous polynomial and NP-hard cases. They prove that the case of walks is solvable in polynomial time, as earlier pointed 
out in [21], and re-proved later for directed graphs in [2].

The paper [13] studies the problem of finding a spanning tree that minimizes the sum of reload costs over the paths 
between all pairs of vertices. The authors give a proof of NP-hardness, as well as some integer programming formulations 
for this problem. The paper [2] presents various path, tour, and flow problems related to reload costs. One of the studied 
problems is minimum reload cost path-tree, which is to find a spanning tree that minimizes the total reload cost from a 
source vertex to all other vertices. The paper shows that the problem is hard to approximate within any polynomial-time 
computable function on directed graphs.

The paper [11] studies a closely related yet different problem, called minimum changeover cost arborescence (MinCCA). The 
goal is to find a spanning tree that minimizes the sum of the reload costs due to traversing all internal vertices, where 
the sum is independent of the amount of commodity traversing the edges. This problem is the focus of our study. Fig. 1
depicts an example application scenario, i.e., energy-efficient broadcasting of control traffic in a multi-hop cognitive radio 
network, where each wireless link is associated with a frequency that is determined according to the spectrum availabilities. 
The source node aims to form a broadcasting tree to send its control traffic to all other nodes. Each control traffic flow at 
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each vertex causes an energy consumption, whose value depends on the frequencies of the incident links that are traversed. 
Energy consumption cost of switching between frequency f i and f j is | j − i| unit(s) ∀i, j. The MinCCA problem corresponds 
to finding a broadcasting tree from the source node to all other nodes, such that the total energy consumption due to 
frequency switching is minimized. The bold edges indicate the optimum solution of the MinCCA problem in this instance, 
which has value 7, since the changeover cost incurred at nodes a, b, f is 1, and at nodes c, d is 2.

The authors in [11] consider directed graphs and show that even on graphs with bounded degree and reload costs 
adhering to the triangle inequality, MinCCA is hard to approximate within factor β log log(n) for β > 0, when there are only 
2 colors, and n

1
3 −ε , for any ε > 0, when there are 3 colors. In [16], we derived several inapproximability results, as well 

as polynomial-time algorithms for some special cases of MinCCA. In particular, we showed that MinCCA is polynomial-time 
solvable for the special case of cactus graphs where the number of cycles each vertex can belong to is bounded by some 
constant. In this work, we extend this result to any cactus graphs, as well as to the fundamental class of graphs of bounded 
treewidth.

1.3. Our contribution

In this paper, we study the minimum changeover cost arborescence problem on undirected graphs. In solving MinCCA, our 
algorithms for cactus graphs and for graphs with bounded treewidth make non-trivial use of dynamic programming. To 
the best of our knowledge, the complexity of MinCCA in graphs of bounded treewidth is studied here for the first time. 
Moreover, except for the results in [16], we are not aware of any previous studies of MinCCA on special graph classes. 
Given the hardness results for general graphs, an important contribution of this paper is in establishing the polynomial 
solvability of MinCCA on a fundamental subclass of graphs. Our results imply that MinCCA is fixed parameter tractable when 
parameterized by treewidth and the maximum degree of the input graph.3

2. Preliminaries

Graphs, digraphs, trees, forests:

Given an undirected graph G = (V (G), E(G)) and a subset U ⊆ V (G) of the vertices of G , δG(U ) def= {
uu′ ∈ E(G) : u ∈ U ,

u′ /∈ U
}

is the cut of G determined by U , i.e., the set of edges of G that have exactly one end in U . In particular, δG (v)

denotes the set of edges incident to v in G , and dG (v) def= |δG(v)| is the degree of v in G . The minimum and maximum degrees

of G are defined as δ(G) def= min {dG (v)|v ∈ V (G)} and �(G) def= max {dG(v)|v ∈ V (G)}, respectively. We denote by NG(U )

(resp., NG [U ]) the open (resp., closed) neighborhood of U in G . NG (U ) is the set of vertices of V (G) \ U that are adjacent to a 
vertex of U , and NG [U ] def= NG(U ) ∪ U . When there is no ambiguity about the graph G we omit it from the subscripts. For a 
subset of vertices U ⊆ V (G), G[U ] denotes the subgraph of G induced by U . Given a tree T and two vertices v1, v2 ∈ V (T ), 
we denote by P T (v1, v2) the path between v1 and v2 in T .

We use similar notations for digraphs. The sets of incoming arcs and outgoing arcs of a vertex v are denoted by δ(in)
G (v)

and δ(out)
G (v), respectively. We denote by d(in)

G (v) and d(out)
G (v) the in and out degrees of v . The degree of a vertex in a 

digraph is its degree in the underlying graph, i.e., dG(v) = d(in)
G (v) + d(out)

G (v). A vertex v is a source (resp., sink) of a 

digraph G if d(in)
G (v) = 0 (resp., d(out)

G (v) = 0). We denote the set of sources and the set of sinks of a graph G by SRC(G) def={
v ∈ V (G)|d(in)

G (v) = 0
}

and SNK(G) def=
{

v ∈ V (G)|d(out)
G (v) = 0

}
, respectively. N(in)

G (U ) is the set of vertices of V (G) \ U

having an outgoing arc to a vertex of U , and N(out)
G (U ), N(in)

G [U ], N(out)
G [U ] are defined similarly. The inbound induced subgraph

G[U , in] is the subgraph of G that consists of all arcs incoming to a vertex of U and all vertices that are endpoints of these 
arcs.

A digraph is a rooted tree or arborescence if its underlying graph is a tree and it contains a root vertex which is a source 
with a directed path to every other vertex. We denote by root(T ) the unique source vertex of the rooted tree T . Every other 
vertex v �= root(T ) has in degree 1. In this case we denote by inT (v) the unique arc of δ(in)

T (v). We term the other endpoint 
of inT (v) as the parent of v and denote it by parentT (v). We say that v is a child of parentT (v) in T .

Given two graphs G and G ′ , their union is G ∪ G ′ def= (V (G) ∪ V (G ′), E(G) ∪ E(G ′)). A rooted forest is the disjoint union of 
rooted trees. Clearly, the number of sources of a rooted forest is equal to the number of the trees. We use the tree notation 
also for forests, whenever appropriate. For a set A and an element x, we use A + x (resp., A − x) as a shorthand for A ∪ {x}
(resp., A \ {x}).

Biconnected components and block trees:
A vertex separator of graph is a set of vertices whose removal (along with its incident edges), increases the number of 
connected components of the graph. A cut vertex of a graph is a vertex separator consisting of a single vertex. Such a vertex 

3 We give the precise definition in Section 2.
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Fig. 2. A cactus graph, its block tree and its small tree decomposition.

is also termed an articulation point or separation vertex in the literature. A bridge in a connected graph is an edge whose 
removal disconnects the graph. A graph with no cut vertices is called biconnected or nonseparable. A maximal biconnected 
subgraph of a graph is called a biconnected component or a block [9]. Any connected graph G can be decomposed in linear 
time into a tree whose set of vertices consists of: a) the biconnected components of G , and b) its cut vertices. This tree is 
termed the block tree or superstructure of G . The set of edges of the block tree consists of edges connecting every cut vertex 
to the blocks it belongs to [9,18].

Tree decompositions and treewidth:
A tree decomposition of a graph G is a tree T , where V (T ) = {B1, B2, . . .} is a set of subsets (called bags) of V (G), such that 
the following three conditions are met:

1.
⋃

V (T ) = V (G).
2. For every edge uv ∈ E(G), u, v ∈ Bi for some bag Bi ∈ V (T ).
3. For every Bi, B j, Bk ∈ V (T ) such that Bk is on the path PT (Bi, B j), Bi ∩ B j ⊆ Bk .

The width ω(T ) of a tree decomposition T is defined as the size of its largest bag minus 1, i.e., ω(T ) =
max {|B| | B ∈ V (T )} − 1. The treewidth of a graph G , denoted as tw(G), is defined as the minimum width among all 
tree decompositions of G . When the treewidth of the input graph is bounded, many efficient algorithms are known for 
problems that are in general NP-hard. For instance, cactus graphs have treewidth 2. Fig. 2 illustrates a cactus graph, its 
block tree and its tree decomposition with width 2.
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A tree decomposition T of G is small if no proper subtree of T is a tree decomposition of G . In this work, we consider 
only small tree decompositions. Clearly, this does not affect the definition of treewidth, i.e., there is a small tree decomposi-
tion T of G such that ω(T ) = tw(G). This statement is true because if a tree decomposition T is not small, we can replace 
it with a proper subtree of it until such a subtree does not exist, i.e., the tree decomposition we obtain is small. Since every 
bag of the resulting tree T ′ is a bag of T , we have ω(T ′) ≤ ω(T ). For a subtree T ′ of a tree decomposition T of a graph 
G , we denote by T ′∗ the set of vertices of G that are in some bag of T ′ , i.e., T ′∗ def= ∪V (T ′). The following are well known 
properties of tree decompositions, which are included here for the sake of completeness.

Proposition 1. Let T be a tree decomposition of a graph G and B be a bag of T . Also, let T1, T2, . . . be the subtrees obtained by the 
removal of B from T . Then

(i) B is a vertex separator of G and it divides the graph into at least dT (B) components G1, G2, . . . where Gi = G[T ∗
i \ B].

(ii) Every vertex at distance 1 to a subgraph Gi is in B ∩ Bi where Bi is the unique neighbor of B in Ti .

Proof. (i) See, e.g., [19] p. 575. (ii) Let u be a vertex at distance 1 to some subgraph Gi . Then clearly u ∈ B because B is a 
separator. Let v be a neighbor of u in Gi . The edge uv is in some bag B ′ in Ti . Then u is in B ′ and also in all bags between 
B and B ′ . In particular, u is in the neighbor of B on this path, i.e. in Bi . Therefore, u ∈ B ∩ Bi . �
Reload and changeover costs:
We follow the notation and terminology of [21] where the concept of reload cost was defined. We consider edge colored 
graphs G , where the colors are taken from a finite set X and χ : E(G) → X is the coloring function. Given a coloring function 
χ , we denote by Eχ

x , or simply by Ex the set of edges of E colored x. Gx = (V (G), E(G)x) is the subgraph of G having the 
same vertex set as G , but only the edges colored x.

The costs are given by a non-negative function c : X2 →N0 satisfying

i) c(x1, x2) = c(x2, x1) for every x1, x2 ∈ X .
ii) c(x, x) = 0 for every x ∈ X .

At this point we note that our algorithms do not rely on any one of the above properties of the cost function and they 
will work on other cost functions, too. We assume without loss of generality that the minimum non-zero cost value is 1

and we denote the maximum cost value as Cmax
def= maxx1,x2∈X c(x1, x2). The cost of traversing two incident edges e1, e2 is 

c(e1, e2) 
def= c(χ(e1), χ(e2)).

We say that an instance satisfies the triangle inequality, if (in addition to the above) the cost function satisfies

iii) c(e1, e3) ≤ c(e1, e2) + c(e2, e3) whenever e1, e2 and e3 are incident to the same vertex.

The changeover cost of a path P = (e1 − e2 − . . . − e�) of length � is c(P ) def= ∑�
i=2 c(ei−1, ei). Note that c(P ) = 0 whenever 

� ≤ 1.
We extend this definition to trees as follows: Given a directed tree T rooted at r, (resp., an undirected tree T and a 

vertex r ∈ V (T )), for every outgoing edge e of r (resp., incident to r) we define prev(e) = e. For every other edge, prev(e) is 
the edge preceding e on the path from r to e. The changeover cost of T with respect to r is c(T , r) def= ∑

e∈E(T ) c(prev(e), e). 
When there is no ambiguity about the vertex r, we denote c(T , r) by c(T ).

Problem statement:
The MinCCA problem aims to find a spanning tree rooted at r with minimum changeover cost [11]. Formally,

MinCCA (G, X, χ, r, c)
Input: A graph G = (V , E) with an edge coloring function χ : E → X , a vertex r ∈ V and a reload cost function c :
X2 →N0.
Output: A spanning tree T of G .
Objective: Minimize c(T , r).

Parameterized complexity:
In parameterized complexity theory, the complexity of an algorithm is expressed as a function of both the size n of the 
input and a parameter k depending on the input. A problem is called fixed parameter tractable (FPT) if it can be solved in 
time f (k) · p(n), where f is a function depending solely on k and p is a polynomial in n. A problem is in XP if it can be 
solved in time n f (k) . We show that MinCCA when parameterized by tw(G) is in XP, and that it is FPT when parameterized 
by tw(G) + �(G).
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Algorithm 1 FindMinCCACactus(G, X, χ, r, c).
Initialization:

1: V (G) ← V (G) + r′ .
2: E(G) ← E(G) + rr′ .
3: Br ← G[{r, r′}].
4: T ← the block tree of G rooted at Br .

Dynamic Programming:
5: for all vertices U in a postorder traversal of T except Br do
6: if U is a cut vertex s of G then
7: Let B1, . . . , Bk be the children of s in T .
8: for all e ∈ δB(s)(s) do

9: OPT(s, e) = ∑k
i=1 OPT(Bi , e).

10: else  U is a block B of G
11: for all e′ ∈ δB(s(B))(s(B)) do
12: Let s1, . . . , sk be the cut vertices of G in B except s(B).

13: OPT(B, e′) = minT ′ is a spanning tree of B

(
c(T ′ + e′) + ∑k

i=1 OPT(si , inT ′ (si))
)

.

Find Optimum:
14: return OPT(r, rr′).

3. Bounded treewidth graphs

In this section, we present a polynomial-time algorithm for MinCCA for any graph whose treewidth is bounded by some 
constant. As a warm up, in Section 3.1 we start with an optimal polynomial-time algorithm for cactus graphs, for which the 
treewidth is at most 2 [7] (see Fig. 2). In Section 3.2, we generalize this algorithm to obtain an optimal algorithm for graphs 
of bounded treewidth. Our algorithms make non-trivial use of dynamic programming.

3.1. An algorithm for cactus graphs

In this section, we present a polynomial-time algorithm for cactus graphs. A cactus graph is a graph in which any pair 
of simple cycles have at most one vertex in common; in other words, every edge in a cactus graph belongs to at most one 
simple cycle. An alternative definition of a cactus graph states that a graph is a cactus if every block of it is either an edge 
or a cycle [17]. We will start by observing that a solution of MinCCA has a very simple structure when the input graph 
is a cactus. Exploiting this simple structure, we devise a dynamic programming algorithm that traverses the block tree of 
the graph in a bottom-up manner, and computes at each block a small set of (in fact one or two) optimal solutions. In the 
following paragraph, we describe the structure of the solution.

Let (G, X, χ, r, c) be an instance of MinCCA, and let T be the block tree of G . Consider a spanning tree T of G rooted 
at r and a block B of T . Let also Br be an arbitrary block containing r. It is easy to see that T [B] is a spanning tree of B . 
The root rB of this tree is the cut vertex that is adjacent to B on the path from Br to B in T . When G is a cactus graph, B
is either an edge or a cycle. When B is an edge, there is only one possible tree spanning B , i.e., the tree consisting of the 
unique edge of B where the direction is from rB outwards. When B is a cycle there are |V (B)| possible spanning trees, one 
per every edge of B whose removal from B leads to a spanning tree of B . Therefore, in order to compute a spanning tree, 
and in particular a minimum changeover cost tree T of a cactus graph G , one has to choose one edge per each cycle C of 
G to be absent in T .

The main difficulty in finding an optimal solution is that the decisions about which edges of the cycle should be in the 
optimal solution are not independent of each other. We now observe that the decision in one cycle affects the decision in 
another cycle only when the two cycles intersect (in a cut vertex). Let s be a cut vertex separating two cycles C1, C2 where 
C1 is closer to r than C2. Let e11 and e12 be the edges incident to s in C1. Clearly, inT (s) ∈ {e11, e12}, and the decision on 
C2 is affected only by the value of inT (s). Once this edge is given, we can make a correct decision on C2. This observation 
suggests a dynamic programming algorithm that will compute an optimal solution based on two different assumptions, i.e. 
inT (s) = e11 and inT (s) = e12.

The pseudocode of this algorithm (FindMinCCACactus) is given in Algorithm 1. For ease of exposition, we add a vertex 
r′ to G together with the edge rr′ . Then i) r is a cut vertex, and ii) Br is the block consisting of the edge rr′ . We direct T
so that Br is its root. This is done in lines 1–4.

We now proceed with the details of bottom-up traversal of the block tree T that is done by the loop in line 5. A vertex 
of T is either a cut-vertex of G or a block of G . For a cut vertex s, we denote by B(s) the block parentT (s) and for a block 
B we denote by s(B) the cut vertex parentT (B). Consider a cut vertex s and an edge e in B(s) incident to s. We denote by 
OPT(s, e) the cost of an optimal tree that starts with the edge e and spans all the blocks in the subtree of s. Similarly, for a 
block B and an edge e incident to s(B) in B(s(B)), we denote by OPT(B, e) the cost of an optimal tree that starts with the 
edge e and spans all the blocks in the subtree of B .

When the algorithm encounters a cut vertex s with children B1, . . . , Bk in T during its bottom-up traversal, it uses the 
following simple fact that follows from the definitions (lines 7–9).
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Fig. 3. A cycle block of a cactus graph together with an edge e′ of a potential spanning tree entering this block and an edge e of the cycle that does not 
belong to the spanning tree.

OPT(s, e) =
k∑

i=1

OPT(Bi, e).

In the rest of the discussion, we describe the behavior of Algorithm 1 when it encounters a block B during its traversal. 
Recall that our goal is to compute the best tree spanning all vertices in B and in all blocks traversed so far, assuming 
that this spanning tree is connected to the solution by a given edge e′ . We consider two disjoint cases that are also 
complementary by the definition of a cactus graph.

– B consists of an edge e: In this case one endpoint of e is s(B). Let s1 be the other endpoint of e (which is also a cut 
vertex). Moreover, s1 is an endpoint of e′ . Then

OPT(B, e′) = c(e′, e) + OPT(s1, e).

– B is a cycle C : Consult Fig. 3 for the discussion of this case. Let s1, . . . , sk be the cut vertices of G in C different from 
s(B). For an arbitrary edge e ∈ E(C), consider the path C − e and the subpath of C − e between s(B) and si . Let ei,e be 
the edge incident to si on this path. Then, assuming that there is an optimal spanning tree T with T [B] = C − e, we 
have

OPT(B, e′) = c(C − e + e′) +
k∑

i=1

OPT(si, ei,e).

Since T [B] = C − e for at least one edge e of C , we conclude that

OPT(B, e′) = min
e∈E(C)

(
c(C − e + e′) +

k∑
i=1

OPT(si, ei,e)

)
.

In fact, the above two cases can be combined into one case by observing that in both cases we actually consider all 
spanning trees of B with the addition of the edge e′ . Lines 11–13 of Algorithm 1 use this observation to treat both cases 
in a unified way. This unification leads to the main idea of the algorithm for bounded treewidth graphs presented in 
Section 3.2. As for the running time, we note that the number of vertices of the block tree is linear in the input size, and 
at each such vertex the number of operations is at most quadratic in the size of the block or linear in the degree of the cut 
vertex. Therefore, the running time of the algorithm is polynomial in the input size.

Theorem 1. MinCCA is solvable in polynomial time for graphs where the number of spanning trees in every block is polynomial, and 
in particular for cactus graphs.

3.2. An algorithm for bounded treewidth graphs

In order to develop a dynamic programming algorithm similar to that given in Section 3.1, we need to show how a 
solution (i.e., a spanning tree) can be obtained from partial solutions. Clearly, these partial solutions are forests. In order 
to proceed in a recursive manner, we have to analyze the decomposition of a forest into sub-forests as implied by a tree 
decomposition. We start by introducing notations that we use in this section. We proceed by showing some simple facts 
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Table 1
Frequently used symbols and notations.

Symbol Meaning

G The graph of the input instance.
r The root vertex of G .
X The set of available colors.
χ The edge-coloring of G .
T A small tree decomposition of G .
Br The bag of T containing r.
SRC(F ) The set of sources of the forest F .
TB The descendants of the bag B in T (including itself).
B∗ The set of vertices of all bags in TB .
F(B) The set of all forests that span B and some neighbors of B such that these neighbors are their sources.
F(B∗) The set of all forests that span B∗ and some neighbors of B∗ such that these neighbors are their sources.
F(F ) The set of all forests whose vertices are the sources of the forest F .
F |U The partial order obtained by restricting the partial order F to the set U .
F ′ ∼ (F , f ) (F , F ′, f are forests and f ∈ F(F ))

F ′ ∪ F is a forest and the partial order that this forest induces on the sources of F is a subgraph of f .
cU (F ) The partial cost of the forest F that takes into account only the cost of edges joining vertices of U .
OPT(B, F , f ) (F ∈ F(B∗), f ∈ F(F ))

The minimum cost of a forest in F(B∗) that extends F and induces the partial order f on its sources.

related to these definitions and give an overview of the proof as well as the algorithm. Finally, we describe the algorithm 
and its proof.

More definitions and notations: Let G be the input graph and let T be a small tree decomposition of G with the smallest 
width. For simplicity, we direct T so that it is rooted at some bag B that contains r. All trees and forests considered in 
this section are rooted. The ancestor-descendant relation between the vertices of a rooted forest is clearly a partial order. 
We refer to a forest also as the partial order it induces. Two forests on the same set of vertices are equal if and only if the 
partial orders they induce are equal. Given a forest F and U ⊆ V (F ), F |U is a forest with vertex set U and uu′ is an arc of 
F |U if and only if u is the first vertex in U on the path from u′ to the root of its tree in F . In other words, the partial order 
F |U is the partial order F restricted to U .

For a nonempty and proper subset U of vertices of G , F(U ) is the set of all non-trivial forests F with the following 
properties: a) sources of F are absent in U but are neighbors (in F ) of some vertex in U ; b) F spans all vertices in U . 
Formally,

F(U )
def= {F is a forest of G : U ⊆ V (F ) ⊆ NG [U ], SRC(F ) = V (F ) \ U , δ(F ) > 0} .

For a bag B ∈ V (T ) we denote by TB the subtree of T consisting of B and its descendants. The set B∗ def= ∪TB consists 
of all the vertices in the bags of TB . Clearly, B ⊆ B∗ . Given a bag B of T , and a forest F ∈F(B) we define F(F ) as follows:

F(F )
def= {

f is a forest of G : V ( f ) = SRC(F ), SRC( f ) = SRC(F ) \ B∗} .

Note that F is not an empty forest since it spans B; thus, it has at least one source, implying that V ( f ) �= ∅, which in turn 
implies that SRC( f ) �= ∅.

Let F ∈ F(B), and f ∈ F(F ). We say that a forest F ′ is compatible with F and f , and denote as F ′ ∼ (F , f ) if F ∪ F ′ is 
a forest and (F ∪ F ′)

∣∣
V ( f ) is a subgraph of f .

Table 1 summarizes the notations used in this section.

Proposition 2.

SRC(F ) ∩ U ⊆ SRC( F |U ).

Moreover, if SRC(F ) ⊆ U then

SRC(F ) = SRC( F |U ).

Proof. To see the first inequality, let u ∈ SRC(F ) ∩ U . As u is minimal in the partial order F it is also minimal in the partial 
order F |U . Therefore, SRC(F ) ∩ U ⊆ SRC( F |U ). If SRC(F ) ⊆ U , every source of F is an element of U . Clearly, these are exactly 
the minimal elements of F |U . �

We note that every forest of F(U ) can be obtained by choosing a parent for every u ∈ U from its neighbors. Therefore,

|F(U )| ≤
∏

dG(u) ≤ �(G)|U |.

u∈U
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Fig. 4. An example for the decomposition of a forest F ∗ ∈ F(B∗). All vertices in the figure together with the solid arcs constitute the forest F ∗ . s1 and s2

are the sources of F ∗ . All vertices except these two are in B∗ and they are partitioned into four sets, namely B , B∗
1 \ B , B∗

2 \ B , and B∗
3 \ B . The dark vertices 

in B are those that are common with at least one of the bags B1, B2, B3. We note that every vertex at distance 1 from B∗ \ B is dark. The forest F consists 
of all bold arcs, i.e. those that are entirely in B or enter B . F has four sources, namely s1, s2, s3 and s4. F ∗

1 consists of all arcs that are entirely in B∗
1 or 

enter it. In the figure, those are all arcs within the leftmost triangle, together with e1, e2 and e3. Note that e3 is in F , F ∗
1 and F ∗

2 , while e4 is also in a 
similar situation. Consider the sources of F , namely s1, s2, s3 and s4 as vertices of F ∗: s1 is the closest ancestor of s3 and s2 is the closest ancestor of s4. 
This relation is drawn by the two dashed edges that constitute the forest f . Note that e7 connects two dark vertices of B and it contributes (the same) 
cost to F and F ∗

3 . Lemma 2 takes such redundancies into account when computing the cost of F ∗ .

We now observe that every forest of F(F ) can be obtained by choosing a parent for every v ∈ SRC(F ) ∩ B∗ , from SRC(F ). 
Therefore,

|F(F )| ≤ (|SRC(F )| − 1)|SRC(F )|.

The decomposition of a solution: In this section, our goal is to develop a dynamic programming algorithm that traverses 
the tree decomposition T in a bottom-up manner, and computes at every bag a set of optimal solutions satisfying certain 
criteria. We start with Lemma 1 that shows how a forest of F(B∗) is decomposed into sub forests, namely into a forest 
of F(B) and forests of F(B∗

i ) for each child Bi of B . This lemma will also enable us to partition all forests of F(B∗) into 
equivalence classes. See Fig. 4 for an example. In Lemma 2, we develop a formula to decompose the cost of these forests in 
terms of the costs of its sub-forests. We use these results to calculate the cost of the best forest in each equivalence class. 
This is done in Lemma 3, which provides a recurrence formula for the costs of these best forests. The dynamic programming 
algorithm computes the best forest in each equivalence class via this recurrence formula.

Lemma 1. Let B be a bag of T with children B1, . . . , Bk in T . F ∗ ∈ F(B∗) if and only if there exist unique forests F , f , F ∗
1 , . . . , F ∗

k
such that

i) F ∗ = F ∪ (∪i∈[k] F ∗
i

)
ii) F ∈F(B)

iii) ∀i ∈ [k], F ∗
i ∈F(B∗

i )

iv) f ∈F(F )

v) ∀i ∈ [k], F ∗
i ∼ (F , f ).

Proof. (⇒) Let F ∗ ∈ F(B∗). We will show that the forests F = F ∗[B, in], f = F ∗|SRC(F ) and F ∗
i = F ∗[B∗

i , in] for every i ∈ [k]
are the unique forests that satisfy conditions i) through v).

i) As every arc of F ∗ is directed towards a vertex of B∗ and B∗ = B ∪ (∪i B∗
i

)
, we conclude that F ∗ = F ∪ (∪i∈[k] F ∗

i

)
.

ii) V (F ) ⊆ NG [B] by definition of F . To see that B ⊆ V (F ), let v ∈ B ⊆ B∗ . By the definition of F(B∗), this implies that 
v ∈ V (F ∗) \ SRC(F ∗). Let e = inF ∗ (v). Then, by the way F is built from F ∗ , e ∈ E(F ), implying that v ∈ V (F ). Therefore, 
B ⊆ V (F ) ⊆ NG [B].

Let v ∈ V (F ) \ B . By definition of F , v ∈ SRC(F ), i.e., d(in)
F (v) = 0. Conversely, let v ∈ SRC(F ) and assume that v ∈ B . 

Then v ∈ SRC(F ∗), contradicting the definition of F ∗ because F ∗ cannot have sources in B∗ . Therefore, SRC(F ) = V (F ) \ B . 
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Finally, F does not contain isolated vertices as implied by the definition of an inbound induced subgraph. We conclude that 
F ∈F(B).

iii) It can be shown that F ∗
i ∈F(B∗

i ) for every i ∈ [k] by replacing B with B∗
i and F with F ∗

i in the preceding arguments.
iv) Clearly, V ( f ) = SRC(F ) by the definition of f . It remains to show that SRC( f ) = SRC(F ) \ B∗ . Consider s ∈ SRC(F ∗) and 

an arc e = (s, v) ∈ E(F ∗). By definition of F ∗ , we have s ∈ NG [B∗] \ B∗ and v ∈ B∗ . Then, Proposition 1 implies that v ∈ B . 
Therefore, by definition of F we have e = (s, v) ∈ E(F ). As F is a subgraph of F ∗ , we conclude that s ∈ SRC(F ). Combining 
with s /∈ B∗ , we get

SRC(F ∗) ⊆ SRC(F ) \ B∗ ⊆ SRC(F ). (1)

Together with Proposition 2, this implies

SRC( f ) = SRC(F ∗). (2)

Now let s ∈ SRC(F ) \ B∗ . The definition of F ∗ implies that r ∈ SRC(F ∗). Therefore, SRC(F ) \ B∗ ⊆ SRC(F ∗). Recalling (1) and 
(2) we get

SRC( f ) = SRC(F ∗) = SRC(F ) \ B∗

as required.
v) Let i ∈ [k] and let F ′ = F ∪ F ∗

i . F ′ is a subgraph of F ∗ and is therefore a forest. Moreover, F ′∣∣
SRC(F )

is a subgraph of 
F ∗|SRC(F ) = f .

To show the uniqueness of F , assume F ′ ∈ F(B) satisfies the conditions stated for F . We have V (F ) \ SRC(F ) = B =
V (F ′) \ SRC(F ′). Therefore, v has an inbound arc e ∈ E(F ) ⊆ E(F ∗) if and only if it has an inbound arc e′ ∈ E(F ′) ⊆ E(F ∗). 
In this case, e = e′ since otherwise d(in)

F ∗ (v) ≥ 2. We conclude that E(F ) = E(F ′). Since none of F and F ′ contain isolated 
vertices (by definition of F(B)), we have F = F ′ . The uniqueness of each one of the forests F ∗

1 , . . . , F ∗
k is shown using the 

same argument.
We now show the uniqueness of f . Let f ′ ∈ F(F ) be a forest satisfying the conditions stated for f . As f , f ′ ∈ F(F )

we have V ( f ′) = SRC(F ) = V ( f ) and SRC( f ′) = SRC(F ) \ B∗ = SRC( f ) implying |E(F )| = ∣∣E(F ′)
∣∣. Therefore, it is sufficient to 

show that E( f ) ⊆ E( f ′). Let e ∈ E( f ) = E( F ∗|SRC(F )) with e = (u, v). Then, u is the closest ancestor of v in F ∗ that is in 
V ( f ). The path P from u to v starts with arcs from F and continues with arcs from F ∗

i \ F for some i ∈ [k]. Indeed, if P
contains arcs from distinct forests F ∗

i , F ∗
j , it will constitute a path between B∗

i and B∗
j in G \ B , contradicting Proposition 1. 

Therefore, u is the closest ancestor from V ( f )(= V ( f ′) = SRC(F )) of v in F ∪ F ∗
i , i.e., e is an arc of (F ∪ F ∗

i )
∣∣

V ( f ′) . As 
F ∗

i ∼ (F , f ′) this implies that e ∈ E( f ′).
(⇐) Let F , f , F ∗

1 , . . . , F ∗
k , F ∗ be forests satisfying conditions i) to v). We have to show that F ∗ ∈F(B∗).

We start by showing that F ∗ is a forest. Suppose that there is a vertex v ∈ V (F ∗) such that d(in)
F ∗ (v) ≥ 2. Let e1, e2 be 

two distinct arcs of δ(in)
F ∗ (v). Clearly, these two arcs are part of two different forests from F , F ∗

1 , . . . , F ∗
k . Moreover, none of 

these arcs is an arc of F because F ∗
i ∼ (F , f ) for every i ∈ [k]. Let without loss of generality, e1 (resp., e2) be an arc of 

F ∗
1 (resp., F ∗

2 ). Then, for i ∈ {1,2}, v /∈ SRC(F ∗
i ) implying v ∈ B∗

i . Therefore, v ∈ B∗
1 ∩ B∗

2 ⊆ B . Then, by definition of F(B), 
v ∈ V (F ) \ SRC(F ), i.e., there is an arc e ∈ V (F ) entering v . As e1 �= e2, without loss of generality e �= e1, contradicting the 
fact that the union of F and F1 is a forest. Therefore, d(in)

F ∗ (v) ≤ 1 for every vertex v of F ∗ . To conclude that F ∗ is a forest, 
it remains to show that F ∗ does not contain a cycle.

Assume by contradiction that F ∗ contains a cycle C . Then C is a directed cycle because otherwise there is a vertex 
v ∈ V (C) with d(in)

F ∗ (v) ≥ d(in)
C (v) = 2. Clearly, E(C) \ E(F ) �= ∅, because otherwise F contains a directed cycle. E(C) \ E(F ) is 

the union of the sets E(C) ∩ (
E(F ∗

i ) \ E(F )
)
. Moreover, these sets are disjoint since E(F ∗

i ) ∩ E(F ∗
j ) ⊆ E(F ). Furthermore, at 

least two of these sets are nonempty because otherwise C is contained in F ∪ F ∗
i for some i ∈ [k] constituting a contradiction 

to the fact that F ∗
i ∼ (F , f ). Consider two maximal non-trivial directed paths P , P ′ of C such that E(P ) ⊆ E(F ∗

i ) \ E(F ) and 
E(P ′) ⊆ E(F ∗

i′) \ E(F ). Moreover, let P and P ′ be two such paths that are consecutive in C in the order P , P ′. Let u, v (resp., 
u′v ′) be the start and end vertices of P (resp., P ′). These vertices appear in the order u, v, u′, v ′ in C . Note that the following 
argument is valid also for the case u′ = v in which there is no path of F separating the paths P and P ′ . Clearly, v �= v ′ as 
P ′ is non-trivial. Moreover, v, v ′ ∈ SRC(F ) because their unique inbound arcs are not in F . The vertex v is an ancestor of v ′
in F ∪ F ∗

i . As F ∗
i ∼ (F , f ), this implies that (v, v) is an arc of f . Repeating the same argument for the end vertices of all 

such maximal directed paths we conclude that f contains a directed cycle, contradicting the fact that f is a forest.
We proceed with the proof that the forest F ∗ ∈ F(F ∗). We have V (F ∗) = V (F ) ∪ (∪i∈[k]V (F ∗

i )
)
, B ⊆ V (F ) ⊆ NG [B], 

B∗
i ⊆ V (F ∗

i ) ⊆ NG [B∗
i ], and B∗ = B ∪ (∪i∈[k]B∗

i

)
. We conclude that B∗ ⊆ V (F ∗) ⊆ NG [B∗] as required.

Let v ∈ B∗ = B ∪(∪i∈[k]B∗
i

)
. If v ∈ B , then it is not a source of F , and if v ∈ B∗

i then it is not a source of F ∗
i . Therefore, it is 

not a source of F ∗ . We conclude that SRC(F ∗) ⊆ V (F ∗) \ B∗ . Now let v ∈ V (F ∗) \ B∗ . Then v is in at least one forest among 
the forests F , F ∗

1 , . . . , F ∗
k . If v ∈ V (F ) then as v /∈ B , we conclude that v ∈ SRC(F ). If v ∈ V (F ∗

i ) for some i ∈ [k] then as 
v /∈ B∗

i , we conclude that v ∈ SRC(F ∗
i ). To summarize, the inbound degree of v is zero in all forests it participates. Therefore, 

v ∈ SRC(F ∗) concluding that V (F ∗) \ B∗ ⊆ SRC(F ∗). Combining with SRC(F ∗) ⊆ V (F ∗) \ B∗ we get SRC(F ∗) = V (F ∗) \ B∗ , as 
required.

Finally, δ(F ∗) > 0 because δ(F ) > 0 and δ(F ∗) > 0 for every i ∈ [k]. �
i
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Fig. 5. The partition of B∗ used in the proof and the categorization of the arcs e ∈ E(F ∗) ∩ B∗ × B∗ according to this partition. The names of the forests 
next to the arcs are the forests that contain the arc. The numbers in parentheses refer to the case number in the proof.

We define the partial cost of a forest F on a subset U of its vertices as

cU (F )
def=

∑
e∈E(F )∩U×U

c(prev(e), e)

and provide in the following lemma a formula for the cost of a forest in terms of its sub-forests.

Lemma 2. Let B be a bag of T with children B1, . . . , Bk, and F ∗ ∈F(B∗). Let F , F ∗
1 , . . . , F ∗

k be forests whose existences are guaranteed 
by Lemma 1. Then

c(F ∗) = c(F ) +
k∑

i=1

(
c(F ∗

i ) − cY (F ∗
i )

)
where Y = B ∩ (∪i∈[k]Bi).

Proof. We will show that every arc of F ∗ contributes the same value to both sides of the equation. Let e ∈ E(F ∗) and 
e = (u, v). We first note that for any sub-forest F ′ of F ∗ that contains the arc e, either u is a source of F ′ in which case the 
contribution of e to the cost of F ′ is zero, or inF ′ (e) = inF ∗ (e), in which case the contributions of e to the costs of F ′ and 
F ∗ are equal.

We note that v ∈ B∗ because v is not a source of F ∗ and F ∗ ∈ F(B∗). If u /∈ B∗ , then u is a source of F ∗ . Therefore, for 
every sub-forest F ′ of F ∗ , either e is not part of F ′ or the cost of e in F ′ is zero, i.e., e contributes zero to both sides of 
the equality. In the rest of the proof we assume that u, v ∈ B∗ . For this purpose, we partition B∗ into the following k + 2

sets of vertices: X
def= B \ ∪i∈[k]Bi , Y

def= B ∩ (∪i∈[k]Bi
)
, Z1

def= B∗
1 \ B, . . . , Zk

def= B∗
k \ B . Let also Z

def= ∪i∈[k] Zi . It follows from 
the definitions that X , Y and Z are pairwise disjoint. Moreover, B∗ = X ∪ Y ∪ Z because B∗ = B ∪ (∪i∈[k]B∗

i ). We also note 
that since B is a vertex separator of G (Proposition 1), Zi ∩ Z j = ∅ for any i �= j. Therefore, {X, Y , Z1, . . . , Zk} is a partition 
of B∗ . For the same reason, e /∈ X × Z and e /∈ Zi × Z j whenever i �= j. Fig. 5 categorizes all the arcs e ∈ E(F ∗) ∩ (B∗ × B∗)
according to their endpoints.

We consider all possible cases of the endpoints of the arc e = (u, v) of F ∗ that connects two vertices of B∗ = X ∪ Y ∪ Z :

1. v ∈ X : In this case for every i, e /∈ E(F ∗
i ) and e ∈ E(F ). Moreover, as v ∈ B , v is a source of neither F nor F ∗ . Therefore, 

e contributes the same cost to both F and F ∗ .
2. v ∈ Z : In this case e ∈ E(F ∗

i ) for exactly one i ∈ [k], and e /∈ E(F ). Moreover, as v ∈ B∗
i , v is not a source of F ∗

i . Therefore, 
e contributes the same cost to both F ∗

i and F ∗ . Finally, as e /∈ Y × Y , it does not contribute to cY (F ∗
i ).

3. v ∈ Y , u ∈ X : In this case u is a source of F ∗
i for every i. Therefore, e contributes zero to the cost of every F ∗

i . Also, as 
in the previous case, e /∈ Y × Y , and it does not contribute to cY (F ∗

i ). As v ∈ B , e contributes the same cost to both F
and F ∗ .
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4. v ∈ Y , u ∈ Z : In this case u is a source of F . Moreover, e is in exactly one tree F ∗
i . Since u ∈ B∗ , it is not a source of F ∗

i . 
Therefore, it contributes the same cost to F ∗

i and F ∗ . Finally, as e /∈ Y × Y , it does not contribute to cY (F ∗
i ).

5. v ∈ Y , u ∈ Y : As e ∈ Y × Y , for every i ∈ [k], e contributes the same cost to F ∗
i and cY (F ∗

i ). Therefore, the contribution 
of e to the summation is zero. Finally, as u ∈ B , u is a source of neither F nor F ∗ , implying that it contributes the same 
cost to both F and F ∗ . �

For a forest F ∈ F(B) and f ∈ F(F ), let OPT(B, F , f ) be the minimum cost of a forest F ∗ ∈ F(B∗) that is compatible 
with (F , f ). Formally,

OPT(B, F , f )
def= min

F ∗∈F(B∗),F ∗∼(F , f )
c(F ∗).

The following lemma uses Lemma 2 and provides a recurrence formula for OPT(B, F , f ).

Lemma 3. Let B be a bag of T with children B1, . . . , Bk, F ∈F(B), and f ∈F(F ). Then,

OPT(B, F , f ) = c(F ) +
k∑

i=1

min
Fi∈F(Bi)

(
min

f i∈F(Fi),(Fi∪ f i)∼(F , f )
OPT(Bi, Fi, f i) − cY (Fi)

)

where Y is defined as in Lemma 2.

Proof. By definition and Lemmata 1 and 2, we have

OPT(B, F , f ) = min
F ∗∈F(B∗),F ∗∼(F , f )

c(F ∗)

= min
F ∗

1 ,...F ∗
k ,∀i∈[k](F ∗

i ∈F(B∗
i ),F ∗

i ∼(F , f ))

(
c(F ) +

k∑
i=1

(
c(F ∗

i ) − cY (F ∗
i )

))
.

= c(F ) +
k∑

i=1

αi

where

αi = min
F ∗

i ∈F(B∗
i ),F ∗

i ∼(F , f )

(
c(F ∗

i ) − cY (F ∗
i )

)
.

By categorizing forests F ∗
i according to the forests Fi and f i in their decomposition and noting that cY (F ∗

i ) = cY (Fi), we 
get

αi = min
Fi∈F(Bi), f i∈F(Fi)

(
min

F ∗
i ∈F(B∗

i ),F ∗
i ∼(F , f ),F ∗

i ∼(Fi , f i)

(
c(F ∗

i ) − cY (F ∗
i )

))
.

Claim. Let Fi, f i, F ∗
i1, . . . , F

∗
ik′ be the forests of the unique decomposition of F ∗

i as described by Lemma 1. Then F ∗
i ∼ (F , f ) if and only 

if (Fi ∪ f i) ∼ (F , f ).

Proof. As all graphs under consideration are subgraphs of forest F ∗ , they are forests.
(⇒) Assume F ∗

i ∼ (F , f ). Then (F ∗
i ∪ F )

∣∣
V ( f ) = (F ∗

i ∪ F )
∣∣
SRC(F )

is a subgraph of f . Let e = (u, v) ∈ E( (Fi ∪ f i ∪ F )|SRC(F )). 
Then there is a directed path P in Fi ∪ f i ∪ F from u to v where u, v ∈ SRC(F ). Consider an arc e′ = (y, z) of E( f i) \ E(Fi) \
E(F ). As f i = F ∗

i

∣∣
SRC(Fi)

, there is a path P ′ from y to z in F ∗
i . By replacing every such arc of P with the corresponding path, 

we obtain a path from u to v that is entirely in F ∪ F ∗
i . Then e = (u, v) is an arc of (F ∗

i ∪ F )
∣∣
SRC(F )

which is a subgraph 
of f . Therefore e ∈ E( f ). We conclude that (Fi ∪ f i ∪ F )|SRC(F ) is a subgraph of f , thus proving (Fi ∪ f i) ∼ (F , f ).

(⇐) Assume (Fi ∪ f i) ∼ (F , f ). Then (Fi ∪ f i ∪ F )|V ( f ) = (Fi ∪ f i ∪ F )|SRC(F ) is a subgraph of f . Let e = (u, v) ∈
E( (F ∗

i )
∣∣
SRC(F )

). Then there is a directed path P in F ∗
i from u to v where u, v ∈ SRC(F ) and x /∈ SRC(F ) for every internal 

vertex x of P (see Fig. 6). We will show that F ∪ Fi ∪ f i contains a path from u to v . Let x be any vertex of V (P ) \{u}∩ V (F ). 
Since x is not a source of V (F ) the arc entering x is in E(F ). Therefore, the path from u to x is in F . Let y be the last 
such vertex in P , i.e., the path from u to y is in F and none of the arcs of the sub-path P ′ of P from y to v are in F . 
Therefore, E(P ′) ⊆ E(F ∗

i ) \ E(F ). We will show that Fi ∪ f i contains a path from u to v . We note that y ∈ SRC(F ∗
i ) ⊆ SRC(Fi). 

Let y = x1, . . . , xk be the vertices of V (P ′) ∩ SRC(Fi). Since there is a path consisting of arcs of F ∗
i from xi to xi+1 for 

i ∈ [k − 1], (xi, xi+1) is an arc of f i . Therefore, there is a path from y to xk consisting of arcs of f i . We will now show that 
the sub-path of P ′ from xk to v consists of arcs of Fi . As xk ∈ SRC(Fi), this sub-path starts with a non-empty set of arcs from 
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Fig. 6. Constructing a path of F ∪ Fi ∪ f i from a path P of F ∪ F ∗
i .

Fi . Let (w, z) be the last arc of Fi in this sub-path. If z = v , we are done. Otherwise, z ∈ V (Fi) \ SRC(Fi) = Bi . Moreover, 
v ∈ SRC(F ) ∩ B∗

i ⊆ NG(B) ∩ B∗
i implying that v ∈ Bi . Therefore, v ∈ V (Fi) \ SRC(Fi). Then, there is an inbound arc of v in Fi . 

As F ∗
i is a forest, this arc is the last arc of P , contradicting the fact that z �= v . We have thus shown that there is a path 

from u to v consisting of arcs from F ∪ f i ∪ Fi . Therefore, (u, v) is an arc of Fi ∪ f i ∪ F |SRC(F ) . Since (Fi ∪ f i) ∼ (F , f ), (u, v)

is an arc of f . Therefore, (F ∗
i )

∣∣
SRC(F )

is a subgraph of f , i.e., F ∗
i ∼ (F , f ). �

We now proceed with the proof of the Lemma. Using the claim, the last equality can be rewritten as

αi = min
Fi∈F(Bi), f i∈F(Fi),(Fi∪ f i)∼(F , f )

(
min

F ∗
i ∈F(B∗

i ),F ∗
i ∼(Fi , f i)

c(F ∗
i ) − cY (Fi)

)

= min
Fi∈F(Bi), f i∈F(Fi),(Fi∪ f i)∼(F , f )

(OPT(Bi, Fi, f i) − cY (Fi))

= min
Fi∈F(Bi)

(
min

f i∈F(Fi),(Fi∪ f i)∼(F , f )
OPT(Bi, Fi, f i) − cY (Fi)

)
�

Algorithm 2 FindMinCCATreewidth(G, X, χ, r, c).
Initialization:

1: Compute a tree decomposition T of G of width tw(G).
2: Direct T such that the unique bag Br that contains r is the root.

Dynamic Programming:
3: for all bag B �= Br , in the order of postorder traversal of T do
4: Y ← ∅.
5: for all child B ′ of B in T do
6: Y ← Y ∪ (B ∩ B ′).
7: for all F ∈ F(B), f ∈ F(F ) do
8: OPT(B, F , f ) ← c(F ).
9: for all child B ′ of B in T do

10: OPT(B, F , f )+ = minF ′∈F(B ′)
(
min f ′∈F(F ′),(F ′∪ f ′)∼(F , f ) OPT(B ′, F ′, f ′) − cY (F ′)

)
.

Find Optimum:
11: Let Bx be the child of Br in T .
12: Let fr be the trivial forest with V ( fr) = {r}, E( fr) = ∅.
13: return minF∈F(Bx) OPT(Bx, F , fr).

The algorithm: Algorithm FindMinCCATreewidth first computes a tree decomposition T of G in Line 1. It then performs 
a bottom-up traversal of the tree via the loop at Line 3. At each bag of T , the algorithm uses the result of Lemma 3 to 
compute the optimum for every equivalence class in the sub-loop at Line 7. Each equivalence class corresponds to a pair 
(F , f ) where F ∈ F(B) and f ∈ F(F ). The correctness of the algorithm follows directly from Lemma 3. We conclude with 
its time complexity as follows:

Theorem 2. FindMinCCATreewidth solves MinCCA in time O ∗((�(G) · tw(G))2(tw(G)+1)).

Proof. Without loss of generality we assume that dG (r) = 1 and that there is exactly one bag Br containing r in a tree 
decomposition T of G . Moreover, dT (Br) = 1. Indeed, given a graph G with a tree decomposition T and r ∈ V (G), we can 
build a graph G ′ such that V (G ′) = V (G) ∪ {

r′}, E(G ′) = E(G) ∪ {
er = rr′}. We color er using a new color whose reload cost 

is zero. A tree decomposition T ′ of G ′ can be obtained by adding the bag Br′ = {
r, r′} to T and making it adjacent to any 

bag containing r. The width of T ′ is equal to the width of T , since any bag contains at least two vertices.
The correctness of algorithm FindMinCCATreewidth is an immediate consequence of Lemmata 1 through 3 and the 

above discussion. In the sequel, we calculate its time complexity.
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The computation of a tree decomposition of G at Line 1 can be done in time linear in the size of G but exponential 
in tw(G), i.e. O ∗(2O (k)) [6]. This is less than the time complexity that we want to prove. It is also easy to see that the 
dominant part of the rest of the computation is at Line 10. We now calculate the time complexity contributed by this line.

For a bag B ∈ V (T ) we have |F(B)| ≤ �(G)|B| ≤ �(G)tw(G)+1. For any F ∈ F(B) we note that F has at most |B| sources 
since every source has at least one child in B . Therefore, |F(F )| ≤ (|SRC(F )| − 1)|SRC(F )| ≤ (|B| − 1)|B| ≤ tw(G)tw(G)+1. Thus, 
the number of pairs (F , f ) such that F ∈F(B), f ∈F(F ) is at most

�(G)tw(G)+1tw(G)tw(G)+1 = (�(G) · tw(G))tw(G)+1.

For every edge (B, B ′) of T , Line 10 is executed once per one such pair. Therefore, it is executed at most |E(T )| · (�(G) ·
tw(G))tw(G)+1 times.

We now bound the time complexity of one execution of Line 10. The dominant part of this line is the two loops 
calculating the minimum. This loop is executed as many times as the number of pairs F ′, f ′ such that F ′ ∈ F(B ′) and 
f ′ ∈ F(F ′), thus at most (�(G) · tw(G))tw(G)+1 times. Testing the condition (F ′ ∪ f ′) ∼ (F , f ) is equivalent to test whether 
F ′ ∪ f ′ ∪ F is a forest and (F ′ ∪ f ′ ∪ F )

∣∣
V ( f ) is a subgraph of f . The number of arcs of F ′ ∪ f ′ ∪ F is at most 

∣∣B ′∣∣+ ∣∣B ′∣∣+|B| ≤
3(tw(G) + 1) and every arc should be tested for being in E( f ), which can be done in time at most |E( f )| ≤ |B| ≤ tw(G) + 1. 
Therefore, the condition can be tested in time 3(tw(G) + 1)2. We conclude that the time complexity of one execution of 
Line 10 is O ((�(G) · tw(G))tw(G)+1 · (tw(G) + 1)2). Multiplying by the number of times this line is executed and omitting 
the polynomial factor |E(T )| · (tw(G) + 1)2, we get the claimed time complexity. �
Corollary 1. MinCCA is in FPT when parameterized by tw(G) + �(G).

Corollary 2. MinCCA is in XP when parameterized by tw(G).

4. Conclusion

In this paper, we studied the MinCCA problem on bounded treewidth graphs. We first proposed a polynomial-time 
optimal algorithm for cactus graphs (i.e., graphs of treewidth at most 2), and then generalized this result to obtain an 
optimal polynomial-time algorithm for any graph of bounded treewidth. The running time of our algorithm implies that
MinCCA is fixed parameter tractable when the parameter is tw(G) + �(G) where tw(G) and �(G) are the treewidth and 
the maximum degree of the input graph G , respectively. The question of whether MinCCA parameterized by the treewidth 
alone is in FPT remains open. Our dynamic programming algorithm can be modified so that �(G) is replaced by the number 
|X | of available of colors: Our algorithm extends forests by adding a parent to every source. For this purpose, we guess all 
possible parents, and the number of possibilities may be as much as �(G). We observe that the cost of the extension 
depends only on the colors of these edges. Therefore, instead of guessing parents, we can guess colors of the edge leading 
to the parent. This modification will make our algorithm an FPT with parameter tw(G) + |X |.

As an interesting direction for future work, we propose to study the solvability of MinCCA using monadic second-order 
logic with edge set quantification (MSO2). Recall the fundamental result of Courcelle [8], stating that for each graph property 
that can be formulated in MSO2, there is a linear time algorithm that verifies if the property holds for a given graph G , 
if we have a bounded width tree decomposition of G . This result has been extended also to optimization problems (see, 
e.g., [4]). We note that an MSO2 formulation may be useful already for input graphs whose edges are two-colored, which 
are not known to be in FPT.

Another avenue for further research is to investigate MinCCA on graphs of bounded cliquewidth. Alternatively, it would 
be interesting to consider MinCCA on grids and planar graphs, which have unbounded cliquewidth (and hence unbounded 
treewidth). Finding polynomial-time algorithms, or deriving NP-hardness results for these special graph classes, would shed 
more light on the combinatorial properties of MinCCA.
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