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Abstract. In an edge-colored graph, the cost incurred at a vertex on a
path when two incident edges with different colors are traversed is called
reload or changeover cost. The Minimum Changeover Cost Arborescence
(MinCCA) problem consists in finding an arborescence with a given
root vertex such that the total changeover cost of the internal vertices
is minimized. It has been recently proved by Gözüpek et al. [14] that
the MinCCA problem is FPT when parameterized by the treewidth and
the maximum degree of the input graph. In this article we present the
following results for MinCCA:

• the problem is W[1]-hard parameterized by the treedepth of the
input graph, even on graphs of average degree at most 8. In partic-
ular, it is W[1]-hard parameterized by the treewidth of the input
graph, which answers the main open problem of [14];

• it is W[1]-hard on multigraphs parameterized by the tree-cutwidth
of the input multigraph;

• it is FPT parameterized by the star tree-cutwidth of the input graph,
which is a slightly restricted version of tree-cutwidth. This result
strictly generalizes the FPT result given in [14];

• it remains NP-hard on planar graphs even when restricted to
instances with at most 6 colors and 0/1 symmetric costs, or when
restricted to instances with at most 8 colors, maximum degree
bounded by 4, and 0/1 symmetric costs.
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1 Introduction

The cost that occurs at a vertex when two incident edges with different colors
are crossed over is referred to as reload cost or changeover cost in the literature.
This cost depends on the colors of the traversed edges. Although the reload cost
concept has important applications in numerous areas such as transportation
networks, energy distribution networks, and cognitive radio networks, it has
received little attention in the literature. In particular, reload/changeover cost
problems have been investigated very little from the perspective of parameterized
complexity; the only previous work we are aware of is the one in [14].

In heterogeneous networks in telecommunications, transiting from a technol-
ogy such as 3G (third generation) to another technology such as wireless local
area network (WLAN) has an overhead in terms of delay, power consumption
etc., depending on the particular setting. This cost has gained increasing impor-
tance due to the recently popular concept of vertical handover [6], which is a
technique that allows a mobile user to stay connected to the Internet (without
a connection loss) by switching to a different wireless network when necessary.
Likewise, switching between different service providers even if they have the same
technology has a non-negligible cost. Recently, cognitive radio networks (CRN)
have gained increasing attention in the communication networks research com-
munity. Unlike other wireless technologies, CRNs are envisioned to operate in
a wide range of frequencies. Therefore, switching from one frequency band to
another frequency band in a CRN has a significant cost in terms of delay and
power consumption [2,13]. This concept has applications in other areas as well.
For instance, the cost of transferring cargo from one mode of transportation
to another has a significant cost that outweighs even the cost of transporting
the cargo from one place to another using a single mode of transportation [19].
In energy distribution networks, transferring energy from one type of carrier to
another has an important cost corresponding to reload costs [8].

The reload cost concept was introduced in [19], where the considered problem
is to find a spanning tree having minimum diameter with respect to reload cost.
In particular, they proved that the problem cannot be approximated within a
factor better than 3 even on graphs with maximum degree 5, in addition to
providing a polynomial-time algorithm for graphs with maximum degree 3. The
work in [8] extended these inapproximability results by proving that the problem
is inapproximable within a factor better than 2 even on graphs with maximum
degree 4. When reload costs satisfy the triangle inequality, they showed that the
problem is inapproximable within any factor better than 5/3.

The work in [10] focused on the minimum reload cost cycle cover problem,
which is to find a set of vertex-disjoint cycles spanning all vertices with min-
imum total reload cost. They showed an inapproximability result for the case
when there are 2 colors, the reload costs are symmetric and satisfy the trian-
gle inequality. They also presented some integer programming formulations and
computational results.

The authors in [12] study the problems of finding a path, trail or walk con-
necting two given vertices with minimum total reload cost. They present several
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polynomial and NP-hard cases for (a)symmetric reload costs and reload costs
with(out) triangle inequality. Furthermore, they show that the problem is poly-
nomial for walks, as previously mentioned by [19], and re-proved later for directed
graphs by [1].

The work in [9] introduced the Minimum Changeover Cost Arborescence
(MinCCA) problem. Given a root vertex, MinCCA problem is to find an
arborescence with minimum total changeover cost starting from the root vertex.
They proved that even on graphs with bounded degree and reload costs adher-
ing to the triangle inequality, MinCCA on directed graphs is inapproximable
within β log log(n) for β > 0 when there are two colors, and within n1/3−ε for
any ε > 0 when there are three colors. The work in [15] investigated several
special cases of the problem such as bounded cost values, bounded degree, and
bounded number of colors. In addition, [15] presented inapproximability results
as well as a polynomial-time algorithm and an approximation algorithm for the
considered special cases.

In this paper, we study the MinCCA problem from the perspective of para-
meterized complexity; see [3,5,7,17]. Unlike the classical complexity theory,
parameterized complexity theory takes into account not only the total input size
n, but also other aspects of the problem encoded in a parameter k. It mainly
aims to find an exact resolution of NP-complete problems. A problem is called
fixed parameter tractable (FPT) if it can be solved in time f(k) ·p(n), where f(k)
is a function depending solely on k and p(n) is a polynomial in n. An algorithm
constituting such a solution is called an FPT algorithm for the problem. Analo-
gously to NP-completeness in classical complexity, the theory of W[1]-hardness
can be used to show that a problem is unlikely to be FPT, i.e., for every algorithm
the parameter has to appear in the exponent of n. The parameterized complex-
ity of reload cost problems is largely unexplored in the literature. To the best
of our knowledge, [14] is the only work that focuses on this issue by studying
the MinCCA problem on bounded treewidth graphs. In particular, [14] showed
that the MinCCA problem is in XP when parameterized by the treewidth of
the input graph and it is FPT when parameterized by the treewidth and the
maximum degree of the input graph. In this paper, we prove that the MinCCA
problem is W[1]-hard parameterized by the treedepth of the input graph, even
on graphs of average degree at most 8. In particular, it is W[1]-hard parame-
terized by the treewidth of the input graph, which answers the main open issue
pointed out by [14]. Furthermore, we prove that it is W[1]-hard on multigraphs
parameterized by the tree-cutwidth of the input multigraph. On the positive
side, we present an FPT algorithm parameterized by the star tree-cutwidth of
the input graph, which is a slightly restricted version of tree-cutwidth that we
introduce here. This algorithm strictly generalizes the FPT algorithm given in
[14]. We also prove that the problem is NP-hard on planar graphs, which are
also graphs of bounded decomposability, even when restricted to instances with
at most 6 colors and 0/1 symmetric costs. In addition, we prove that it remains
NP-hard on planar graphs even when restricted to instances with at most 8
colors, maximum degree bounded by 4, and 0/1 symmetric costs.
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The rest of this paper is organized as follows. In Sect. 2 we introduce some
basic definitions and preliminaries as well as a formal definition of the MinCCA
problem. We present our hardness results in Sect. 3. Finally, Sect. 4 concludes the
paper. Due to space limitations, the proofs of the results marked with ‘[�]’, our
algorithmic results with respect to star tree-cutwidth, as well as several figures,
can be found in the full version of the article, which is permanently available at
[arXiv:1605.00532].

2 Preliminaries

We say that two partial functions f and f ′ agree if they have the same value
everywhere they are both defined, and we denote it by f ∼ f ′. For a set A and
an element x, we use A + x (resp., A − x) as a shorthand for A ∪ {x} (resp.,
A \ {x}). We denote by [i, k] the set of all integers between i and k inclusive,
and [k] = [1, k].

Graphs, Digraphs, Trees, and Forests. Given an undirected (multi)graph
G = (V (G), E(G)) and a subset U ⊆ V (G) of the vertices of G, δG(U) :=
{uu′ ∈ E(G) | u ∈ U, u′ /∈ U} is the cut of G determined by U , i.e., the set of
edges of G that have exactly one end in U . In particular, δG(v) denotes the set
of edges incident to v in G, and dG(v) := |δG(v)| is the degree of v in G. The min-
imum and maximum degrees of G are defined as δ(G) := min {dG(v) | v ∈ V (G)}
and Δ(G) := max {dG(v) | v ∈ V (G)} respectively. We denote by NG(U) (resp.,
NG[U ]) the open (resp., closed) neighborhood of U in G. NG(U) is the set of ver-
tices of V (G) \ U that are adjacent to a vertex of U , and NG[U ] := NG(U) ∪ U .
When there is no ambiguity about the graph G we omit it from the subscripts.
For a subset of vertices U ⊆ V (G), G[U ] denotes the subgraph of G induced
by U .

A digraph T is a rooted tree or arborescence if its underlying graph is a tree
and it contains a root vertex denoted by root(T ) with a directed path from every
other vertex to it. Every other vertex v �= root(T ) has a parent in T , and v is a
child of its parent.

A rooted forest is the disjoint union of rooted trees, that is, each connected
component of it has a root, which will be called a sink of the forest.

Tree Decompositions, Treewidth, and Treedepth. A tree decomposition
of a graph G = (V (G), E(G)) is a tree T , where V (T ) = {B1, B2, . . .} is a set of
subsets (called bags) of V (G) such that the following three conditions are met:

1.
⋃

V (T ) = V (G).
2. For every edge uv ∈ E(G), u, v ∈ Bi for some bag Bi ∈ V (T ).
3. For every Bi, Bj , Bk ∈ V (T ) such that Bk is on the path PT (Bi, Bj), Bi ∩

Bj ⊆ Bk.

The width ω(T ) of a tree decomposition T is defined as the size of its largest
bag minus 1, i.e., ω(T ) = max {|B| | B ∈ V (T )}−1. The treewidth of a graph G,
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denoted as tw(G), is defined as the minimum width among all tree decomposi-
tions of G. When the treewidth of the input graph is bounded, many efficient
algorithms are known for problems that are in general NP-hard. In fact, most
problems are known to be FPT when parameterized by the treewidth of the
input graph. Hence, what we prove in this paper, i.e., the MinCCA problem is
W[1]-hard when parameterized by treewidth, is an interesting result.

The treedepth td(G) of a graph G is the smallest natural number k such that
each vertex of G can be labeled with an element from {1, . . . , k} so that every
path in G joining two vertices with the same label contains a vertex having
a larger label. Intuitively, where the treewidth parameter measures how far a
graph is from being a tree, treedepth measures how far a graph is from being a
star. The treewidth of a graph is at most one less than its treedepth; therefore,
a W[1]-hardness result for treedepth implies a W[1]-hardness for treewidth.

Tree-Cutwidth. We now explain the concept of tree-cutwidth and follow the
notation in [11]. A tree-cut decomposition of a graph G is a pair (T,X ) where
T is a rooted tree and X is a near-partition of V (G) (that is, empty sets are
allowed) where each set Xt of the partition is associated with a node t of T .
That is, X = {Xt ⊆ V (G) : t ∈ V (T )}. The set Xt is termed the bag associated
with the node t. For a node t of T we denote by Yt the union of all the bags
associated with t and its descendants, and Gt = G[Yt]. cut(t) = δ(Yt) is the set
of all edges with exactly one endpoint in Yt.

The adhesion adh(t) of t is |cut(t)|. The torso of t is the graph Ht obtained
from G as follows. Let t1, . . . , t� be the children of t, Yi = Yti for i ∈ [�] and
Y0 = V (G) \ (Xt ∪�

i=1 Yi). We first contract each set Yi to a single vertex yi,
by possibly creating parallel edges. We then remove every vertex yi of degree 1
(with its incident edge), and finally suppress every vertex yi of degree 2 having
2 neighbors, by connecting its two neighbors with an edge and removing yi.
The torso size tor(t) of t is the number of vertices in Ht. The width of a tree-
cut decomposition (T,X ) of G is maxt∈V (T ){adh(t), tor(t)}. The tree-cutwidth
of G, or tcw(G) in short, is the minimum width of (T,X ) over all tree-cut
decompositions (T,X ) of G.

Figure 1 shows the relationship between the graph parameters that we con-
sider in this article. As depicted in Fig. 1, tree-cutwidth provides an intermedi-
ate measurement which allows either to push the boundary of fixed parameter
tractability or strengthen W[1]-hardness result (cf. [11,16,20]). Furthermore,
Fig. 1 also shows that treedepth and tree-cutwidth are unrelated.

Reload and Changeover Costs. We follow the notation and terminology of
[19] where the concept of reload cost was defined. We consider edge colored
graphs G, where the colors are taken from a finite set X and χ : E(G) → X is
the coloring function. Given a coloring function χ, we denote by Eχ

x , or simply
by Ex the set of edges of E colored x, and Gx = (V (G), E(G)x) is the subgraph
of G having the same vertex set as G, but only the edges colored x. The costs
are given by a non-negative function cc : X2 → N0 satisfying
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tw

tcw

tw + Δ

td

Fig. 1. Relationships between several graph parameters. A being a child of B means
that every graph class with bounded A has also bounded B [11]

1. cc(x1, x2) = cc(x2, x1) for every x1, x2 ∈ X.
2. cc(x, x) = 0 for every x ∈ X.

The cost of traversing two incident edges e1, e2 is cc(e1, e2) := cc(χ(e1), χ(e2)).
The changeover cost of a path P = (e1 − e2 − . . . − e�) of length � is cc(P ) :=
∑�

i=2 cc(ei−1, ei). Note that cc(P ) = 0 whenever � ≤ 1.
We extend this definition to trees as follows: Given a directed tree T rooted

at r, (resp., an undirected tree T and a vertex r ∈ V (T )), for every outgoing
edge e of r (resp., incident to r) we define prev(e) = e, and for every other edge
prev(e) is the edge preceding e on the path from r to e. The changeover cost
of T with respect to r is cc(T, r) :=

∑
e∈E(T ) cc(prev(e), e). When there is no

ambiguity about the vertex r, we denote cc(T, r) by cc(T ).

Statement of the Problem. The MinCCA problem aims to find a spanning
tree rooted at r with minimum changeover cost [9]. Formally,

MinCCA
Input: A graph G = (V,E) with an edge coloring function χ : E → X, a
vertex r ∈ V and a changeover cost function cc : X2 → N0.
Output: A spanning tree T of G minimizing cc(T, r).

3 Hardness Results

In this section we prove several hardness results for the MinCCA problem.
Our main result is in Subsect. 3.1, where we prove that the problem is W[1]-
hard parameterized by the treedepth of the input graph. We also prove that
the problem is W[1]-hard on multigraphs parameterized by the tree-cutwidth of
the input graph. Both results hold even if the input graph has bounded average
degree. Finally, in Subsect. 3.2 we prove that the problem remains NP-hard on
planar graphs.
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3.1 W[1]-hardness with Parameters Treedepth and Tree-Cutwidth

We need to define the following parameterized problem.

Multicolored k-Clique
Input: A graph G, a coloring function c : V (G) → {1, . . . , k}, and a positive
integer k.
Parameter: k.
Question: Does G contain a clique on k vertices with one vertex from each
color class?

Multicolored k-Clique is known to be W[1]-hard on general graphs, even
in the special case where all color classes have the same number of vertices [18],
and therefore we may make this assumption as well.

Theorem 1. The MinCCA problem is W[1]-hard parameterized by the
treedepth of the input graph, even on graphs with average degree at most 8.

Proof. We reduce from Multicolored k-Clique, where we may assume that
k is odd. Indeed, given an instance (G, c, k) of Multicolored k-Clique, we
can trivially reduce the problem to itself as follows. If k is odd, we do nothing.
Otherwise, we output (G′, c′, k + 1), where G′ is obtained from G by adding a
universal vertex v, and c′ : V (G′) → {1, . . . , k + 1} is such that its restriction to
G equals c, and c(v) = k + 1.

Given an instance (G, c, k) of Multicolored k-Clique with k odd, we
proceed to construct an instance (H,X,χ, r, cc) of MinCCA. Let V (G) = V1 

V2 
 · · · 
 Vk, where the vertices of Vi are colored i for 1 ≤ i ≤ k. Let W be an
arbitrary Eulerian circuit of the complete graph Kk, which exists since k is odd.
If V (Kk) = {v1, . . . , vk}, we can clearly assume without loss of generality1 that
W starts by visiting, in this order, vertices v1, v2, . . . , vk, v1, and that the last
edge of W is {v3, v1}. For every edge {vi, vj} of W , we add to H a vertex si,j .
These vertices are called the selector vertices of H. For every two consecutive
edges {vi, vj}, {vj , v�} of W , we add to H a vertex vi,�

j and we make it adjacent
to both si,j and sj,�. We also add to H a new vertex v0,2

1 adjacent to s1,2, a
new vertex v3,0

1 adjacent to s3,1, and a new vertex r adjacent to v0,2
1 , which will

be the root of H. Note that the graph constructed so far is a simple path P on
2
(
k
2

)
+ 2 vertices. We say that the vertices of the form vi,�

j are occurrences of
vertex vj ∈ V (Kk). For 2 ≤ j ≤ k, we add an edge between the root r and the
first occurrence of vertex vj in P (note that the edge between r and the first
occurrence of v1 already exists).

The first k selector vertices, namely s1,2, s2,3, . . . , sk−1,k, sk,1 will play a spe-
cial role that will become clear later. To this end, for 1 ≤ i ≤ k, we add an edge

1 This assumption is not crucial for the construction, but helps in making it concep-
tually and notationally easier.
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between the selector vertex si,i (mod k)+1 and each of the occurrences of vi that
appear after si,i (mod k)+1 in P . These edges will be called the jumping edges
of H.

Let us denote by F the graph constructed so far. Finally, in order to construct
H, we replace each vertex of the form vi,�

j in F with a whole copy of the vertex
set Vj of G and make each of these new vertices adjacent to all the neighbors
of vi,�

j in F . This completes the construction of H. Note that td(H) ≤
(
k
2

)
+ 1,

as the removal of the
(
k
2

)
selector vertices from H results in a star centered at r

and isolated vertices.
We now proceed to describe the color palette X, the coloring function χ, and

the cost function cc, which altogether will encode the edges of G and will ensure
the desired properties of the reduction. For simplicity, we associate a distinct
color with each edge of H, and thus, with slight abuse of notation, it is enough
to describe the cost function cc for every ordered pair of incident edges of H. We
will use just three different costs: 0, 1, and B, where B can be set as any real
number strictly greater than

(
k
2

)
. For each ordered pair of incident edges e1, e2

of H, we define

cc(e1, e2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if e1 = {x̂, si,j} and e2 = {si,j , ŷ} is a jumping edge such that
x̂, ŷ are copies of vertices x, y ∈ Vi, respectively, with x �= y, or
if e1 = {r, x̂} and e2 = {x̂, s1,2}, where x̂ is a copy of a vertex
x ∈ V1, or
if e1 and e2 are the two edges that connect a vertex in a copy
of a color class Vi to a selector vertex.

1, if e1 = {x̂, si,j} and e2 = {si,j , ŷ}, where x̂ is a copy of a vertex
x ∈ Vi and ŷ is a copy of a vertex y ∈ Vj such that {x, y} ∈ E(G).

B, otherwise.

This completes the construction of (H,X,χ, r, cc), which can be clearly per-
formed in polynomial time.

Claim 1 [�]. The average degree of H is bounded by 8.

We now claim that H contains and arborescence T rooted at r with cost at
most

(
k
2

)
if and only if G contains a multicolored k-clique2. Note that the simple

path P described above naturally defines a partial left-to-right ordering among
the vertices of H, and hence any arborescence rooted at r contains forward and
backward edges defined in an unambiguous way. Note also that all costs that
involve a backward edge are equal to B, and therefore no such edge can be
contained in an arborescence of cost at most

(
k
2

)
.

2 If the costs associated with colors are restricted to be strictly positive, we can just
replace cost 0 with cost ε, for an arbitrarily small positive real number ε, and ask
for an arborescence in H of cost strictly smaller than

(
k
2

)
+ 1.
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Suppose first that G contains a multicolored k-clique with vertices
v1, v2, . . . , vk, where vi ∈ Vi for 1 ≤ i ≤ k. Then we define the edges of the
spanning tree T of H as follows. Tree T contains the edges of a left-to-right path
Q that starts at the root r, contains all

(
k
2

)
selector vertices and connects them,

in each occurrence of a set Vi, to the copy of vertex vi defined by the k-clique.
Since in Q the selector vertices connect copies of pairwise adjacent vertices of
G, the cost incurred so far by T is exactly

(
k
2

)
. For 1 ≤ i ≤ k, we add to Q the

edges from r to all vertices in the first occurrence of Vi that are not contained in
Q. Note that the addition of these edges to T incurs no additional cost. Finally,
we will use the jumping edges to reach the uncovered vertices of H. Namely, for
1 ≤ i ≤ k, we add to T an edge between the selector vertex si,i (mod k)+1 and all
occurrences of the vertices in Vi distinct from vi that appear after si,i (mod k)+1.
Note that since the jumping edges in T contain copies of vertices distinct from
the the ones in the k-clique, these edges incur no additional cost either. There-
fore, cc(T, r) =

(
k
2

)
, as we wanted to prove.

Conversely, suppose now that H has an arborescence T rooted at r with
cost at most

(
k
2

)
. Clearly, all costs incurred by the edges in T are either 0 or

1. For a selector vertex si,j , we call the edges joining si,j to the vertices in the
occurrence of Vi right before si,j (resp., in the occurrence of Vj right after si,j)
the left (resp., right) edges of this selector vertex.

Claim 2 [�]. Tree T contains exactly one left edge and exactly one right edge of
each selector vertex of H.

By Claim 2, tree T contains a path Q′ that chooses exactly one vertex from
each occurrence of a color class of G. We shall now prove that, thanks to the
jumping edges, these choices are coherent, which will allow us to extract the
desired multicolored k-clique in G.

Claim 3. For every 1 ≤ i ≤ k, the vertices in the copies of color class Vi

contained in Q′ all correspond to the same vertex of G, denoted by vi.

Proof. Assume for contradiction that for some index i, the vertices in the copies
of color class Vi contained in Q′ correspond to at least two distinct vertices vi

and v′
i of G, in such a way that vi is the selected vertex in the first occurrence

of Vi, and v′
i occurs later, say in the jth occurrence of Vi. Therefore, the copy

of vi in the jth occurrence of Vi does not belong to path Q′, so for this vertex
to be contained in T , by construction it is necessarily an endpoint of a jumping
edge e starting at the selector vertex si,i (mod k)+1. But then the cost incurred
in T by the edges e′ and e, where e′ is the edge joining the copy of vi in the first
occurrence of Vi to the selector vertex si,i (mod k)+1, equals B, contradicting the
hypothesis that cc(T, r) ≤

(
k
2

)
. ��

Finally, we claim that the vertices v1, v2, . . . , vk defined by Claim 3 induce a
multicolored k-clique in G. Indeed, assume for contradiction that there exist two
such vertices vi and vj such that {vi, vj} /∈ E(G). Then the cost in T incurred
by the two edges connecting the copies of vi and vj to the selector vertex si,j
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(by Claim 2, these two edges indeed belong to T ) would be equal to B, contract-
ing again the hypothesis that cc(T, r) ≤

(
k
2

)
. This concludes the proof of the

theorem. ��
In the next theorem we prove that the MinCCA problem is W[1]-hard on

multigraphs parameterized by the tree-cutwidth of the input graph. Note that
this result does not imply Theorem1, which applies to graphs without multiple
edges.

Theorem 2 [�]. The MinCCA problem is W[1]-hard on multigraphs parame-
terized by the tree-cutwidth of the input multigraph.

3.2 NP-hardness on Planar Graphs

In this subsection we prove that the MinCCA problem remains NP-hard on
planar graphs. In order to prove this result, we need to introduce the Planar
Monotone 3-sat problem. An instance of 3-sat is called monotone if each
clause is monotone, that is, each clause consists only of positive variables or
only of negative variables. We call a clause with only positive (resp., negative)
variables a positive (resp., negative) clause. Given an instance φ of 3-sat, we
define the bipartite graph Gφ that has one vertex per each variable and each
clause, and has an edge between a variable-vertex and a clause-vertex if and only
if the variable appears (positively or negatively) in the clause. A monotone recti-
linear representation of a monotone 3-sat instance φ is a planar drawing of Gφ

such that all variable-vertices lie on a path, all positive clause-vertices lie above
the path, and all negative clause-vertices lie below the path. In the Planar
Monotone 3-sat problem, we are given a monotone rectilinear representation
of a planar monotone 3-sat instance φ, and the objective is to determine whether
φ is satisfiable. Berg and Khosravi [4] proved that the Planar Monotone
3-sat problem is NP-complete.

Theorem 3. The MinCCA problem is NP-hard on planar graphs even when
restricted to instances with at most 6 colors and 0/1 symmetric costs.

Proof. We reduce from the Planar Monotone 3-sat problem. Given a
monotone rectilinear representation of a planar monotone 3-sat instance φ, we
build an instance (H,X,χ, r, f) of MinCCA as follows. We denote the variable-
vertices of Gφ as {x1, . . . , xn} and the clause-vertices of Gφ as {C1, . . . , Cm}.
Without loss of generality, we assume that the variable-vertices appear in the
order x1, . . . , xn on the path P of Gφ that links the variable-vertices. For every
variable-vertex xi of Gφ, we add to H a gadget consisting of four vertices
x�

i , x
r
i , x

+
i , x−

i and five edges {x�
i , x

+
i }, {x+

i , xr
i }, {xr

i , x
−
i }, {x−

i , x�
i}, {x+

i , x−
i }.

We add to H a new vertex r, which we set as the root, and we add the edge
{r, x�

1}. For every i ∈ {1, . . . , n − 1}, we add to H the edge {xr
i , x

�
i+1}. We add

to H all clause-vertices C1, . . . , Cm. For every i ∈ {1, . . . , n}, we add an edge
between vertex x+

i and each clause-vertex of Gφ in which variable xi appears
positively, and an edge between vertex x−

i and each clause-vertex of Gφ in which
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variable xi appears negatively. This completes the construction of H. Since Gφ

is planar and all positive (resp., negative) clause-vertices appear above (resp.,
below) the path P , it is easy to see that the graph H is planar as well.

We define the color palette as X = {1, 2, 3, 4, 5, 6}. Let us now describe the
edge-coloring function χ. For every clause-vertex Cj , we color arbitrarily its three
incident edges with the colors {4, 5, 6}, so that each edge incident to Cj gets a
different color. For every i ∈ {1, . . . , n}, we define χ({x�

i , x
+
i }) = χ({xr

i , x
−
i }) =

1, χ({x+
i , xr

i }) = χ({x−
i , x�

i}) = 2, and χ({x+
i , x−

i }) = 3. We set χ({r, x�
1}) = 4

and for every i ∈ {1, . . . , n − 1}, χ({xr
i , x

�
i+1}) = 4. Finally, we define the cost

function cc to be symmetric and, for every i ∈ {1, 2, 3, 4, 5, 6}, we set cc(i, i) = 0.
We define cc(1, 2) = 1 and cc(1, 3) = cc(2, 3) = 0. For every i ∈ {4, 5, 6}, we set
cc(1, i) = cc(2, i) = 0 and cc(3, i) = 1. Finally, for every i, j ∈ {4, 5, 6} with i �= j
we set cc(i, j) = 1. The following claim concludes the proof.

Claim 4 [�]. H contains an arborescence T rooted at r with cost 0 if and only
if the formula φ is satisfiable. ��

Note that the above proof actually implies that MinCCA cannot be approxi-
mated to any positive ratio on planar graphs in polynomial time, since an optimal
solution has cost 0. We do not know whether such a strong inapproximability
result holds even if we do not allow to use costs 0 among different colors.

In the next theorem we present a modification of the previous reduction
showing that the MinCCA problem remains hard even if the maximum degree
of the input planar graph is bounded.

Theorem 4 [�]. The MinCCA problem is NP-hard on planar graphs even when
restricted to instances with at most 8 colors, maximum degree bounded by 4, and
0/1 symmetric costs.

4 Conclusions and Further Research

In this article we proved several hardness results for the MinCCA problem. In
particular, we proved that the problem is W[1]-hard parameterized by treewidth
on general graphs, and that it is NP-hard on planar graphs, but we do not know
whether it is W[1]-hard parameterized by treewidth (or treedepth) on planar
graphs.

On the other hand, we provided an FPT algorithm for a restricted version
of tree-cutwidth, and we proved that the problem is W[1]-hard on multigraphs
parameterized by tree-cutwidth. While we were not able to prove this W[1]-
hardness result on graphs without multiple edges, we believe that it is indeed
the case. It would be natural to consider other structural parameters such as the
size of a vertex cover or a feedback vertex set.

Finally, it would be interesting to try to generalize our techniques to prove
hardness results or to provide efficient algorithms for other reload cost problems
that have been studied in the literature [6,8,10,19].
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