Domination Parameters in Graphs

Definitions

Domination

- A set $D \subseteq V$ is a dominating set of G = (V, E) if each vertex of V D is adjacent to a vertex of D.
- The size of a smallest dominating set of G is the domination number of G and is denoted by $\gamma(G)$

Roman Domination

- A Roman dominating function (RDF) on a graph G is a function $f: V \to \{0, 1, 2\}$ satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2.
- The Roman domination number, denoted $\gamma_R(G)$, is the minimum weight of an RDF in G; that is, $\gamma_R(G) = \min\{\bigcup_{v \in V} f(v) : f \text{ is a RDF in } G\}.$

Weakly Connected Domination

- The subgraph weakly induced by D is the graph $\langle D \rangle_w = (N[D], E_w)$, where E_w consists of all edges in E having at least one vertex in D.
- A set D is a weakly connected set if $\langle D \rangle_w$ is connected.
- A set $D \subseteq V$ is a weakly connected dominating set (WCDS) of G if D is dominating and $\langle D \rangle_w$ is connected.
- The weakly connected domination number of G, denoted $\gamma_{wc}(G)$, is the minimum cardinality of a WCDS.

Weakly Connected Roman Domination

- A function $f: V \to \{0, 1, 2\}$ is a weakly connected Roman dominating function in G (WCRDF) if each vertex $u \in V_0$ is adjacent to a vertex $v \in V_2$ and the subgraph $\langle V_1 \cup V_2 \rangle_w$ is connected in G.
- The weakly connected Roman domination number, denoted $\gamma_R^{wc}(G)$, is the minimum weight of a WCRDF in G.

Certified Domination

- A subset D of V is a certified dominating set of G if D is a dominating set and every vertex belonging to D has either zero or at least two neighbours in V D.
- The cardinality of a minimum certified dominating set in G is called the *certified domination number* of G and is denoted $\gamma_{cer}(G)$.

(1,2)-Domination

- A set $D \subseteq V$ is a (1,2)-dominating set if each vertex v of V-D has a neighbour in D as well as another vertex of D is at a distance not greater than 2 from v.
- The (1,2)-domination number, denoted by $\gamma_{1,2}(G)$, is the cardinality of a smallest (1,2)-dominating set of G.