The Libre-Office ILP solver

An company has the opportunity of investing in $n \in \mathbb{N}_{+}$different projects, if a project $j(j \in\{1,2, \ldots, n\})$ is selected it generates a profit $p_{j} \in \mathbb{R}_{+}$and it has a costs $w_{j} \in \mathbb{R}_{+}$. The company has a total budget $c \in \mathbb{R}_{+}$and its goal is to determine a subset of projects of maximum total profit that respects its budget.

Questions

1. Write a integer linear programming (ILP) model to determine a subset of projects of maximum total profit which can be selected by the company, i.e,. a subset of projects of total cost no larger than the budget. Identify the decisions that must be taken and the corresponding decision variables. Identify and comment the objective function of the problem and the constraints.
2. Consider now the instance in which there are five projects ($n=5$) with the following profits and costs:

j	1	2	3	4	5
p_{j}	8	6	14	6	2
w_{j}	3	3	9	5	2

The budget of the company is $c=11$.

Write the ILP model for this instance and find an optimal solution and the optimal solution value using the ILP solver of Libre-Office.
3. Consider now these additional constraints to be added to the ILP model of the previous instance:

- at most two out of the five projects can be selected;
- if project 2 is selected, then project 4 must also be selected;
- if project 1 is selected, then project 3 cannot be selected.

Find an optimal solution and the optimal solution value using the ILP solver of Libre-Office.

Solution

1. We introduce the following n binary variables:

$$
x_{j}=\left\{\begin{array}{ll}
1 & \text { if project } j \text { is selected } \\
0 & \text { otherwise }
\end{array} \quad \forall j \in\{1,2, \ldots, n\},\right.
$$

Using these variables, an ILP model for the problem reads as follows:

$$
\begin{align*}
\max & \sum_{j=1}^{n} p_{j} x_{j} \tag{1a}\\
\text { subject to } & \sum_{j=1}^{n} w_{j} x_{j} \leq c, \tag{lb}\\
& x_{j} \in\{0,1\}, \quad j \in\{1,2, \ldots, n\} . \tag{1c}
\end{align*}
$$

The objective function (1a) maximizes the total profit of the selected projects. Constraint (1b) ensures that the budget is respected. Finally constraints (1C) define the variables of the ILP model.
2. The ILP model (1) for the specific instance reads as follows:

$$
\begin{aligned}
& \max 8 x_{1}+6 x_{2}+14 x_{3}+6 x_{4}+2 x_{5} \\
& 3 x_{1}+3 x_{2}+9 x_{3}+5 x_{4}+2 x_{5} \leq 11 \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4}, \quad x_{5} \in\{0,1\}
\end{aligned}
$$

We now show how to compute an optimal solution of the ILP model for the previous instance using the ILP solver of Libre-Office. The spreadsheet of the model is presented by the following figure, the yellow cells represent the values of the five variables of the ILP model.

	A	B	c	D	E	F	c	н	1	J	K
1		ILP MODEL									
2											
3		x1	x2	x3	x4	x5					
4											
5		8	6	\| 14	6	6 2					
6								obj function value			
7		0	0	0	0	0		0			
8											
9		3	3	3 9	5	5 L			<=	11	
10											

Using the SUMPRODUCT function, we can compute the objective function value of the problem in function of the values given to the variables and the objective-function vector as follows:

Using again the SUMPRODUCT function, we can also compute the left-hand-side of the constraint in function of the values given to the variables and the constraint vector as follows:

The ILP solver of Libre-Office is then called as follows:

Tools Window Help	
Spelling...	F7
\checkmark Automatic Spell Checking	Shift+F7
Thesaurus...	Ctri+F7
Language	*
AutoCorrect Options...	
\checkmark Autolnput	
ImageMap	
Redact	
Auto-Redact	
Goal Seek...	
Solver...	
Detective	-
Scenarios...	
Forms	*
Share Spreadsheet...	
Protect Sheet...	
Protect Spreadsheet Structure...	
Macros	*
Extension Manager...	Ctri+Alt + E
Customize...	
Options...	Alt+F12

The information of the model are given to the solver in the following manner:

- the cell of the objective function value is put into the "Target cell"
- the sense of the objective function is determined in "Optimize results to" ("Maximum" in this case)
- the cells representing the values of the variables of the problem are put into "By changing cells"
- the information related to the constraints of the model are given to the solver in the part "Limiting conditions". Each constraint is inserted by giving two cells, i.e., the left-hand-side of the constraint and the right-and-side of the constraint. Then the type of the constraint is imposed (in this case " \leq ").
- finally, since all the variables are binary, the cells of the values of the variables are set as "Binary"

Pressing the button"Solve", the solver computes an optimal solution and the optimal solution value of the ILP model as shown in the following figure:

An optimal solution is:

$$
x_{1}^{*}=1, x_{2}^{*}=1, x_{3}^{*}=0, x_{4}^{*}=1, x_{5}^{*}=0 .
$$

The optimal solution value is $z(\operatorname{ILP})=20$
3. The ILP model with the additional constraints reads as follows:

$$
\begin{aligned}
& \max 8 x_{1}+6 x_{2}+14 x_{3}+6 x_{4}+2 x_{5} \\
& 3 x_{1}+3 x_{2}+9 x_{3}+5 x_{4}+2 x_{5} \leq 11 \\
& x_{1}+x_{2}+x_{3}+x_{4}+x_{5} \leq 2 \\
& x_{2}-x_{4} \quad \leq \quad 0 \\
& x_{1}+x_{3} \quad \leq 1 \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4}, \quad x_{5} \in \quad\{0,1\}
\end{aligned}
$$

The spreadsheet of the model is presented by the following figure：

	A	в	c	D	E	F	－	H I	J	к
1	ILP MODEL									
2										
3		x1	x2	x3	x4	x5				
4										
5		8	6	－ 14	6	2				
6								obj function value		
7		0	0	0	0	0		0		
8										
9		3	3	39	5	2		$0<=$	11	
10		1	1	1	1	1		$0<=$	2	
11		0	1	10	－1	0		$0<=$	0	
12		1	0	1	0	0		$0<=$	1	

The constraints can be inserted altogether as follows：

	A	в	c	D		E	F		c		H	1	J	K
1	ILP MODEL													
2														
3		x1	x2	x3	x4	X	x5							
4														
5		8		6 14		6	2							
6											obj function value			
7		0		0 0		0	0				0			
8														
9												＜＝	11	
10				solver					\times			＜＝	2	
11	Target cell	\＄H57							4			＜＝	0	
12	Optimize result to	－Maxi	imum									＜	1	
13		\bigcirc Mini	mum											
14		\bigcirc value							\square^{4}					
15	By changing cells	sbst：Sf							\square					
16	By changing celis	SBST．S												
17	Limiting Condition													
18	Cell reference			Operator		Value								
19	SHS9：SHST2		4	\ll		\＄．59：\＄	SJ\＄12	4	細					
20	S857：S5s 7		${ }_{8}$	Binary－				4	露					
21			4	＜				\square	閏					
22			${ }^{4}$	＜				\square	硘					
23	Help			Options．．．			close	Solv						

And this is the new optimal solution and the optimal solution value of the ILP model with the additional constraints:

	A	в	c	D	E	F		\bigcirc		н	1	J	K
1	ILP MODEL												
2													
3		x1	x2	x3	x4 \times	x5							
4													
5		8	6	- 14	6	2							
6										obj function value			
7		0	0	1	1 0	1				16			
8													
9		,		1	Tu					11		11	
10				solver				\times			<=	2	
11	Target cell	\$HST						7			<=	0	
12	optimize result to	- Maxin	mum								<=	1	
13		$\bigcirc \mathrm{Minin}$	mum										
14				olving Resut	sut	\times							
15		Solving suc	uccessfully	lily finished.									
16	By changing cells	Result: 16						4					
17	Limititing conditic Cell reference												
18	Celtreference	want to re	restore pre	revious valu	ves?								
19		Restore	e Previous		Keep Result								
20													
21			\square	<			\square^{4}	䓵					
22			4	<			4	䛛					
23	Help			Options...		close	Solve						
2													

A new optimal solution is:

$$
x_{1}^{*}=0, x_{2}^{*}=0, x_{3}^{*}=1, x_{4}^{*}=0, x_{5}^{*}=1
$$

The new optimal solution value is $z($ ILP $)=16$.

