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A sequence of vertices in a graph G without isolated vertices is called a total dominating 
sequence if every vertex v in the sequence has a neighbor which is adjacent to no vertex 
preceding v in the sequence, and at the end every vertex of G has at least one neighbor in 
the sequence. Minimum and maximum lengths of a total dominating sequence is the total 
domination number of G (denoted by γt(G)) and the Grundy total domination number of G
(denoted by γ t

gr(G)), respectively. In this paper, we study graphs where all total dominating 
sequences have the same length. For every positive integer k, we call G a total k-uniform 
graph if every total dominating sequence of G is of length k, that is, γt(G) = γ t

gr(G) = k. 
We prove that there is no total k-uniform graph when k is odd. In addition, we present 
a total 4-uniform graph which stands as a counterexample for a conjecture by [11] and 
provide a connected total 8-uniform graph. Moreover, we prove that every total k-uniform, 
connected and false twin-free graph is regular for every even k. We also show that there is 
no total k-uniform chordal connected graph with k ≥ 4 and characterize all total k-uniform 
chordal graphs.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). The neighborhood of a vertex v ∈ V (G), denoted by 
N(v), is the set of vertices adjacent to v . The closed neighborhood of a vertex v ⊆ V (G), denoted by N[v], is N(v) ∪ {v}. 
A subset A of V (G) is called a dominating set of G if every vertex in V (G)\A has at least one neighbor in A. If G has no 
isolated vertices, a subset A ⊆ V (G) is called a total dominating set of G if every vertex of V (G) is adjacent to at least one 
member of A. The total domination number of G with no isolated vertices, denoted by γt(G), is the minimum size of a total 
dominating set of G .

A sequence S = (v1, . . . , vk) of distinct vertices of G is a legal (open neighborhood) sequence if

N(vi)\
i−1⋃

j=1

N(v j) �= ∅
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https://doi.org/10.1016/j.disc.2021.112492
0012-365X/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.disc.2021.112492
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2021.112492&domain=pdf
mailto:sbahadir@ybu.edu.tr
mailto:didem.gozupek@gtu.edu.tr
mailto:odogan13@ku.edu.tr
https://doi.org/10.1016/j.disc.2021.112492
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holds for every i ∈ {2, . . . , k}. If, in addition, {v1, . . . , vk} is a total dominating set of G , then we call S a total dominating 
sequence of G. The maximum length of a total dominating sequence in G is called the Grundy total domination number of G
and it is denoted by γ t

gr(G).
It is clear that the length of a total dominating sequence in G is at least γt(G), and any permutation of a minimum 

total dominating set of G forms a total dominating sequence attaining this lower bound. In this paper, we study graphs in 
which the Grundy total domination number is equal to the total domination number. A graph G is called total k-uniform if 
γt(G) = γ t

gr(G) = k. In other words, a graph G is total k-uniform if and only if every total dominating sequence is of length k. 
Total k-uniform graphs are indeed total domination version of k-uniform graphs introduced in [10]. A sequence (v1, . . . , vk)

is called dominating closed neighborhood sequence if {v1, . . . , vk} is a dominating set and N[vi]\ 
⋃i−1

j=1 N[v j] �= ∅ holds for 
every i ∈ {2, . . . , k}. A graph is called k-uniform whenever every dominating closed neighborhood sequence is of length k. 
k-uniform graphs with k ≤ 3 are characterized in [6], whereas the work in [10] provided the complete characterization of 
k-uniform graphs.

Numerous variants of Grundy total domination such as Grundy domination, Z-Grundy domination and L-Grundy domi-
nation exist in the literature [6,5,3,4]. The work in [4] investigated the relations between these types of Grundy domination 
as well as the relation between the Z-Grundy domination number and the zero forcing number of a graph.

The concept of total domination in graphs was introduced in 1980 [9] and has been studied extensively in the literature 
(see [13]). The parameter γ t

gr(G) was first introduced by [7], who obtained bounds on γ t
gr(G) for trees and regular graphs in 

terms of other graph variants. The decision versions of both the total domination number and the Grundy total domination 
number are NP-complete [7]. Indeed, the problem of finding the Grundy total domination number is NP-hard in bipartite 
graphs [7] and split graphs [8], while it is solvable in polynomial time in trees, bipartite distance-hereditary graphs, and 
P4-tidy graphs [8].

Various bounds for Grundy total domination number have been obtained for several graph classes such as regular graphs 
and graph products [2,7]. The work in [7] also characterized the graphs where the Grundy total domination number attains 
its trivial upper bound |V (G)|. In their work, it is additionally shown that complete multipartite graphs are the only total 
2-uniform graphs and there are no total 3-uniform graphs. In this paper, we generalize their result for total 3-uniform 
graphs and prove that there does not exist any total k-uniform graph when k is odd and hence, we partially solve the open 
problem (characterizing the graphs G such that γt(G) = γ t

gr(G) = k for k ≥ 4) posed by [7]. We also obtain that removing 
all vertices with the same neighborhood but except one from a connected total k-uniform graph gives rise to a regular 
graph.

Paper [11] characterized total 4-uniform bipartite graphs, showed that there is no connected total 4-uniform chordal 
graph and established a correspondence between regular total 6-uniform bipartite graphs and some certain finite projective 
planes. The authors also claimed that any connected total 4-uniform graph is bipartite. In this paper, we disprove their 
conjecture by exhibiting a graph with fifteen vertices. We additionally prove that there are no connected total k-uniform 
chordal graphs when k ≥ 4; hence, we classify all total k-uniform chordal graphs.

The remainder of this paper is organized as follows. In Section 2 we provide a reduction from total k-uniform graphs to 
total (k − 2)-uniform graphs, which is essential to this paper and implies that there does not exist a total k-uniform graph 
when k is odd. In Section 3, we present a connected, non-bipartite and total 4-uniform graph together with a connected 
total 8-uniform graph. In Section 4, we show that connected, false twin-free and total k-uniform graphs are regular. Sec-
tion 5 contains the complete characterization of total k-uniform chordal graphs. Discussion and conclusions are provided in 
Section 6.

2. A reduction from total k-uniform graphs to total (k-2)-uniform graphs

If G is a graph with no isolated vertices, then every legal sequence in G which is not a total dominating sequence can 
be extended to a total dominating sequence of G . Moreover, a graph G contains a total dominating sequence if and only if 
G has no isolated vertices. We shall implicitly make use of these observations in the sequel.

A graph all of whose minimal total dominating sets are of the same size is called a well-totally-dominated graph (see 
[1]). Well-totally-dominated graphs are initially introduced and studied in [12]. Notice that any permutation of a minimal 
total dominating set generates a total dominating sequence and therefore, every total k-uniform graph is a well-totally-
dominated graph; that is, the family of total k-uniform graphs is a subset of well-totally-dominated graphs. It is shown in 
[12] that removing two adjacent vertices together with their neighbors from a well-totally-dominated graph gives rise to 
another well-totally-dominated graph as long as the resulting graph has no isolated vertex. Based on this idea, we show 
some lemmas which are essential for the main results in this paper.

Lemma 2.1. If v1 v2 is an edge of a total k-uniform graph G where k ≥ 2, then G\(N[v1] ∪ N[v2]) has no isolated vertices.

Proof. Suppose that G\(N[v1] ∪ N[v2]) has an isolated vertex v0. Notice that v0 is adjacent to none of v1 and v2, but every 
neighbor of v0 is adjacent to v1 or v2. In other words, v0 /∈ N[v1] ∪ N[v2] and N(v0) ⊆ N(v1) ∪ N(v2).

Since v1 ∈ N(v2)\N(v1), (v1, v2) is a legal sequence and can be extended to a total dominating sequence of G , say 
(v1, v2, . . . , vk). Note that vi �= v0 for every 3 ≤ i ≤ k as N(v0) ⊆ N(v1) ∪ N(v2).
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Now consider the sequence (v0, v1, v2, . . . , vk). Since v2 ∈ N(v1)\N(v0), v1 ∈ N(v2)\(N(v0) ∪ N(v1)) and

N(vi)\ ∪i−1
j=0 N(v j) = N(vi)\ ∪i−1

j=1 N(v j) �= ∅
holds for every 3 ≤ i ≤ k, (v0, v1, v2, . . . , vk) is a legal sequence. Moreover, the set {v0, . . . , vk} is also a total dominating 
set as it contains a total dominating set {v1, . . . , vk}. Therefore, (v0, . . . , vk) is a total dominating sequence of length k + 1, 
contradiction. �
Lemma 2.2. Let G be a total k-uniform graph with no isolated vertices where k ≥ 3. If uv ∈ E(G), then G\(N[u] ∪ N[v]) is a total 
(k − 2)-uniform graph with no isolated vertex.

Proof. First note that {u, v} is not a total dominating set of G since k ≥ 3, and hence G\(N[u] ∪ N[v]) is not the empty 
graph. Moreover, by Lemma 2.1 we have that G\(N[u] ∪ N[v]) has no isolated vertex. Let (v1, . . . , vm) be any total domi-
nating sequence of G\(N[u] ∪ N[v]). It is easy to verify that (v1, . . . , vm, u, v) is a total dominating sequence of G . Thus, we 
get m + 2 = k, that is, m = k − 2, and the result follows. �

Now, for odd k ≥ 3, applying Lemma 2.2 (k − 1)/2 times beginning with a total k-uniform graph yields a total 1-uniform 
graph, which does not exist since γt(G) ≥ 2 for every G with no isolated vertex. Consequently, we obtain the following 
result:

Theorem 2.3. There does not exist a total k-uniform graph where k is an odd positive integer.

Theorem 3.2 in [6] implies that for every l with γt(G) ≤ l ≤ γ t
gr(G) there exists a total dominating sequence of length l

in G (which is also Corollary 8.2 in [7]). Combining this fact with Theorem 2.3 we obtain the following result:

Corollary 2.4. Every graph with no isolated vertex has a total dominating sequence of even length.

Remark 2.5. Note that Corollary 2.4 can also be proven by using the ideas in the proofs of Lemma 2.1 and Lemma 2.2.

Two distinct vertices u and v of a graph G are called false twins if N(u) = N(v). A graph is false twin-free if it has 
no false twins. Now notice that removing one of the false twins or creating a false twin of a vertex changes neither the 
total domination number nor the Grundy total domination number. Therefore, the question of characterizing total k-uniform 
graphs is only interesting for false twin-free graphs.

Let Gk be the family of total k-uniform and false twin-free graphs for every even k. By Theorem 4.4 in [7] we see that 
the family of total 2-uniform graphs is the set of all complete multipartite graphs (including complete graphs). Therefore, 
G2 is the set of complete graphs with at least two vertices.

Lemma 2.6. Let k ≥ 4 be an even integer and G ∈ Gk. Then for any edge uv ∈ E(G) the graph G\(N[u] ∪ N[v]) is also false twin-free.

Proof. Let H = G\(N[u] ∪ N[v]). To the contrary, assume that H has some false twins, say w and w ′ . Since w and w ′ are 
not false twins in G , there exists a vertex x in V (G)\{w, w ′} adjacent to exactly one of them. Without loss of generality 
suppose that xw ∈ E(G) and xw ′ /∈ E(G). Note that x is not in V (H) as w and w ′ are false twins in H . Moreover, it is clear 
that x /∈ {u, v} and therefore, x belongs to (N(u) ∪ N(v))\{u, v}.

By Lemma 2.2 we have that H is a total (k − 2)-uniform graph. Thus, H has a total dominating sequence of length k − 2
starting with w , say (w = w1, . . . , wk−2).

Now consider the sequence S = (w ′, w1, . . . , wk−2, u, v). Since x is a neighbor of w1 but not of w ′ , we have 
N(w1)\N(w ′) �= ∅. On the other hand, as w ′ and w1 are false twins in H and (w1, . . . , wk−2) is a legal sequence in H , 
we see that (w ′, w1, . . . , wk−2) is a legal sequence in G . Moreover, as u ∈ N(v) and v ∈ N(u) are adjacent to no vertex in 
V (H), we obtain that S is a legal sequence in G . In addition, it is clear that {w ′, w1, . . . , wk−2, u, v} is a total dominating 
set of G and hence, S is a total dominating sequence of G of length k + 1, contradiction. �

Combining the results in Lemmas 2.2 and 2.6 yields the following result.

Proposition 2.7. Let k ≥ 4 be an even integer. Let G ∈ Gk and uv be an arbitrary edge of G. Then G\(N[u] ∪ N[v]) is in Gk−2 .

3. Total k-uniform graphs with small k

In this section, we introduce a new connected total 4-uniform graph and based on this graph, we present a new con-
nected total 8-uniform graph.
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Fig. 1. A graph G and its bipartite double cover G × K2.

The graph Kn,n − M , where M is an arbitrary perfect matching of Kn,n , is called a crown graph on 2n vertices. Graphs 
which are isomorphic to Kn ∪ Km , where m, n ≥ 2, or a crown graph on at least 6 vertices are members of G4. It is easy 
to see that the former ones are the only disconnected graphs in G4. The work in [11] showed that the latter ones are the 
only bipartite graphs in G4 and conjectured that these are the only connected graphs belonging to G4. In this section, we 
disprove their conjecture by giving a counterexample which is the line graph of a complete graph with 6 vertices.

For a given graph G , its line graph L(G) is a graph such that each vertex of L(G) represents an edge of G; and two 
vertices of L(G) are adjacent if and only if their corresponding edges are incident. Particularly, in L(Kn) vertices are pairs of 
elements in {1, 2, . . . , n} and two vertices are adjacent when they have a common element.

Proposition 3.1. The graph L(K6) is total 4-uniform.

Proof. Notice that it suffices to prove that 4 ≤ γt(L(K6)) and γ t
gr(L(K6)) ≤ 4. We first show that γt(L(K6)) ≥ 4. On the con-

trary, suppose that L(K6) has a total dominating set of size 3, say S = {v1, v2, v3}. Recall that vertices in L(K6) correspond 
to sets of size two. As S is a total dominating set, one of the members of S is adjacent to both of the other members in S . 
Without loss of generality, assume that v1 is adjacent to both v2 and v3. Therefore, v1 ∩ v2 �= ∅ and v1 ∩ v3 �= ∅, and hence, 
|v1 ∪ v2| ≤ 3 and |v1 ∪ v2 ∪ v3| ≤ 4. Then a vertex v4 consisting of two elements in {1, 2, . . . , 6}\(v1 ∪ v2 ∪ v3) is adjacent 
to none of v1, v2 and v3, and thus we obtain a contradiction.

We next show that γ t
gr(L(K6)) ≤ 4. Assume to the contrary that L(K6) has a legal sequence (v1, v2, v3, v4, v5). Then v5

has a neighbor which is adjacent to none of v1, v2, v3 and v4, and hence, we obtain | ∪4
i=1 vi | ≤ 4. As v1, v2, v3 and v4 are 

distinct sets of size two, ∪4
i=1 vi cannot be of size 3 or less. Therefore, we see that | ∪4

i=1 vi | = 4. Since v4 has a neighbor 
which is adjacent to none of v1, v2 and v3, we have that v4 has an element not contained in ∪3

i=1 vi . Consequently, we 
get | ∪3

i=1 vi | = 3, which implies that v1 = {a, b}, v2 = {b, c} and v3 = {a, c} for some a, b, c ∈ {1, 2, . . . , 6}. Then, as v3 is 
contained in v1 ∪ v2, any neighbor of v3 is adjacent to v1 or v2, and thus, we obtain a contradiction with the assumption 
of (v1, v2, v3, v4, v5) being legal. �

Clearly L(K6) is connected and false twin-free but not a bipartite graph (as {1, 2}, {2, 3}, {1, 3} form a triangle) and 
therefore, it is a counterexample disproving Conjecture 3.2 in [11]. In other words, a connected total 4-uniform graph does 
not have to be a bipartite graph.

Remark 3.2. Proposition 3.1 also plays a role in constructing a counterexample for the converse of the statement in Propo-
sition 2.7 as follows. Indeed, if G\(N[u] ∪ N[v]) is a graph in Gk−2 for any edge uv of G , then G does not have to be in Gk . 
As an example of G consider L(K9). For any two adjacent vertices {a, b} and {b, c} in L(K9), removing these two vertices 
together with their neighbors results in a graph isomorphic to L(K6), which is total 4-uniform. However, L(K9) is not a total 
k-uniform graph since ({1, 2}, {2, 3}, {3, 4}, {5, 6}, {6, 7}, {7, 8}) and ({1, 9}{2, 9}, . . . , {7, 9}) are total dominating sequences 
in L(K9) of lengths 6 and 7, respectively.

We next make use of product of graphs to obtain new total k-uniform graphs. The direct product G × H of graphs G
and H is a graph such that the vertex set of G × H is the Cartesian product V (G) × V (H) and vertices (g, h) and (g′, h′)
are adjacent in G × H if and only if gg′ ∈ E(G) and hh′ ∈ E(H). In particular, for a graph G where V (G) = {v1, v2, ..., vn}, 
the graph G × K2 (also called bipartite double cover of G) is a bipartite graph with parts {v ′

1, v ′
2, ..., v

′
n} and {v ′′

1, v ′′
2, ..., v ′′

n}
satisfying v ′

i, v
′′
j ∈ E(G × K2) if and only if vi, v j ∈ E(G). See Fig. 1 for an example of G × K2.

Theorem 3.3 (Theorem 5.29 in [14]). Let G and H be graphs with at least one edge. Then G × H is connected if and only if G and H are 
connected and at least one of them is non-bipartite. Furthermore, if both G and H are connected and bipartite, then G × H has exactly 
two components.
4
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Therefore, by Theorem 3.3 we observe that if G is a bipartite graph, then the graph G × K2 has two components, and 
it is easy to see that both are isomorphic to G . On the other hand, G × K2 is a connected graph when G is non-bipartite. 
Now, for a connected, non-bipartite and total k-uniform graph G , consider a total dominating sequence of G × K2. It is easy 
to verify that a subsequence of the vertices belonging to the same part corresponds to a total dominating sequence of G . 
Thus, since G is a total k-uniform graph, we conclude that any total dominating sequence of G × K2 has k elements from 
both parts and hence, it is a total 2k-uniform graph. Consequently, we obtain the following result which allows to create a 
connected total 2k-uniform graph based on a connected non-bipartite total k-uniform graph.

Theorem 3.4. If the graph G is connected, non-bipartite and total k-uniform, then G × K2 is a connected total 2k-uniform graph.

Remark 3.5. Note that Kn is a connected, non-bipartite and total 2-uniform graph when n ≥ 3, and a crown graph on 2n
vertices is indeed Kn × K2. Therefore, the fact that a crown graph on at least 6 vertices being a connected total 4-uniform 
graph is a simple application of Theorem 3.4.

Combining the results in Proposition 3.1 and Theorem 3.4, we obtain a connected total 8-uniform graph which does not 
appear in the literature.

Corollary 3.6. The graph L(K6) × K2 is connected and total 8-uniform.

4. Regularity

In this section, for every even positive integer k we show that any connected graph in Gk is regular. We start with 
studying bipartite graphs.

Proposition 4.1. Let G be a bipartite, connected, false twin-free and total k-uniform graph for some even positive integer k. Then, G is 
a regular graph.

Proof. The proof is by strong induction on k. For k = 2, such a graph is K2 and trivially it is regular. Now let k ≥ 4 be an 
even integer and assume that the statement is true for every positive even k′ less than k.

Let X and Y be the parts of G . Let u and v be two vertices of X having a common neighbor w ∈ Y . Since G ∈ Gk , 
Proposition 2.7 implies that the graph H = G\(N[u] ∪ N[w]) is in Gk−2. Let H1, . . . , Hr be components of H . Then, each 
Hi is bipartite, false twin-free and total ki -uniform for some even positive integer ki ≤ k − 2 < k. Therefore, the induction 
hypothesis implies that every Hi is regular. It is clear that parts of a bipartite regular graph are of the same size and hence, 
we see that the parts of H are of the same size as well. Consequently, we obtain |X | − |N(w)| = |Y | − |N(u)|. Similarly, by 
considering G\(N[v] ∪ N[w]) we get |X | − |N(w)| = |Y | − |N(v)| and thus, we have |N(u)| = |N(v)|. In other words, any 
two vertices in X sharing a common neighbor are of the same degree.

Now, let u and v be any two vertices in X . Since G is connected, there exists a path u = x1, y1, x2, y2, . . . , xs−1, ys−1, xs =
v between u and v , where x1, . . . , xs ∈ X and y1, . . . , ys−1 ∈ Y . The result above yields that xi and xi+1 have the same degree 
for each i = 1, . . . , s −1 and thus, we obtain that any two vertices in X are of the same degree, that is, there exists a positive 
integer a such that |N(x)| = a for every x ∈ X . In a similar manner, we see that |N(y)| = b for every y ∈ Y for some positive 
integer b.

A double counting argument on the edges of G gives |X | · a = |Y | · b. Let d be the greatest common divisor of a and 
b. Then, a = da1 and b = db1 where a1 and b1 are relatively prime. Therefore, there exists a positive integer c such that 
|X | = b1c and |Y | = a1c. On the other hand, recall that we have |X | − |N(w)| = |Y | − |N(u)| where u ∈ X , w ∈ Y and 
uw ∈ E(G), which gives b1c − db1 = a1c − da1. Then, we have (c − d)(b1 −a1) = 0, that is, c = d or a1 = b1. As k �= 2, |X | > b
and hence, c > d. Therefore, we get a1 = b1 which yields that a = b and thus, G is regular. �
Theorem 4.2. For every positive even integer k, a connected, false twin-free and total k-uniform graph is regular.

Proof. Let G be a connected graph in Gk . If G is a bipartite graph, then Proposition 4.1 implies that G is regular. Suppose 
that G is non-bipartite. Then Theorem 3.4 yields that the graph G × K2 is connected and total 2k-uniform. Recall that by 
construction G × K2 is bipartite. Obviously, two vertices from different parts can not be false twins. Moreover, any two 
vertices belonging to the same part are not false twins since G is false twin-free and hence, we obtain that G × K2 is false 
twin-free as well. Then we can apply Proposition 4.1 on G × K2 and observe that it is regular which implies that G is 
regular. �
5. Total k-uniform chordal graphs

In this section, we characterize all total k-uniform chordal graphs. In [11] Theorem 3.3 states that there is no connected 
chordal graph G with γt(G) = γ t

gr(G) = 4. We extend their result and show that there is no connected total k-uniform 
5
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chordal graph when k ≥ 4. Notice that to show this result, it suffices to prove that Gk has no connected chordal graph for 
k ≥ 4.

Lemma 5.1. If G is a connected graph in Gk where k ≥ 4, then G has an induced C5 or C6 .

Proof. Let G be a connected graph in Gk with k ≥ 4. It is well-known that a graph is P3-free if and only if it is disjoint 
union of complete graphs. Then, since k ≥ 4, we see that G has an induced P3. Let u, v, w be an induced path in G (that 
is, uv, v w ∈ E(G) but uw /∈ E(G)). We show that H = G\(N[u] ∪ N[v] ∪ N[w]) has an isolated vertex. Suppose that H has 
no isolated vertices. Note that H is not the empty graph since k ≥ 4. Then, by Corollary 2.4 we see that H has a total 
dominating sequence (v1, . . . , vm) such that m is even. As G is false twin-free, N(u) �= N(w). Without loss of generality 
assume that w has a neighbor which is not adjacent to u. Then, it is easy to verify that (u, w, v, v1, . . . , vm) is a total 
dominating sequence of G and thus, we get m + 3 = k. However, m + 3 is odd and we get a contradiction. Consequently, 
there exists an isolated vertex z in H .

Lemma 2.1 implies that z is not an isolated vertex in G\(N[v] ∪ N[w]) and hence, z has a neighbor x such that x
is adjacent to only u among u, v and w . Similarly, G\(N[u] ∪ N[v]) has no isolated vertex and therefore, there exists a 
neighbor y of z which is adjacent to only w among u, v and w . Finally, if x and y are not adjacent, then the subgraph of 
G induced by {u, v, w, x, y, z} is a C6; and if x and y are adjacent, then the subgraph of G induced by {u, v, w, x, y, } is a 
C5. �

Notice that removing a false twin from a connected chordal graph does not affect the connectedness or being chordal. 
Then, since any total k-uniform graph has a subgraph in Gk , we obtain the following conclusion by Lemma 5.1:

Theorem 5.2. For any k ≥ 4, there does not exist a total k-uniform connected chordal graph.

Theorem 5.2 implies that a total k-uniform chordal graph must be union of k/2 number of total 2-uniform chordal 
graphs. On the other hand, it is clear that a complete multipartite graph is chordal if and only if at most one part has 2 or 
more vertices. We hereby obtain a complete characterization of total k-uniform chordal graphs:

Theorem 5.3. Let G be a graph without isolated vertices. G is a total k-uniform chordal graph if and only if G is disjoint union of 
complete multipartite graphs in which at most one part is of size greater than 1.

The girth of a graph G , denoted by g(G), is the length of a shortest cycle (if any) in G . Acyclic graphs (forests) are 
considered to have infinite girth. A graph isomorphic to K1,n for some n is called a star. Clearly, a complete multipartite 
graph is a tree only if it is a star. As a result, Lemma 5.1 yields the following result on the girth of a total k-uniform graph:

Theorem 5.4. If G is a total k-uniform graph, then either G is disjoint union of k/2 stars or g(G) ≤ 6.

6. Discussion and conclusions

Recall that for every integer l satisfying γt(G) ≤ l ≤ γ t
gr(G) there exists a total dominating sequence of length l in G ([6], 

[7]). Therefore, a graph is total k-uniform if and only if G has at least one total dominating sequence of length k but has no 
total dominating sequence of length k − 1 or k + 1. Thus, for a fixed positive integer k, the problem of determining whether 
a given graph is total k-uniform is clearly solvable in polynomial time. On the other hand, both of the problems of finding 
the total domination number and finding the Grundy total domination number of a given graph are NP-complete even in 
bipartite graphs (see, [15] and [7], respectively). One research direction is to solve the decision problem of determining 
whether a given graph is total k-uniform for some k. In this paper, we partially answered this problem by Theorem 5.3, 
which characterizes all total k-uniform chordal graphs.

In Section 3, we presented a non-bipartite, connected and total 4-uniform graph, which is a counterexample for a con-
jecture by [11]. Yet, we have been unable to characterize all total 4-uniform graphs and therefore, another potential research 
direction is to complete this task.

The connection between total 6-uniform graphs and the existence of finite affine planes provided in [11] is interesting 
and shows that finding connected total k-uniform graphs becomes more complicated as k gets larger. In Figure 1 of [11]
a connected total 6-uniform graph is presented. In Section 3, we provided a connected total 8-uniform graph. We believe 
that there exist connected total k-uniform graphs also for every even k ≥ 10 and finding such graphs is a topic of ongoing 
research.

In a total k-uniform graph, any legal sequence can be extended to a total dominating sequence irrespective of what the 
initial vertex is. Therefore, one would naturally expect a symmetrical structure in the graph. As one of the main results of 
this paper, we proved that every connected, false twin-free and total k-uniform graph is regular, which is a strong structural 
result for total k-uniform graphs and might help one to solve some of the research problems we posed.
6
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Paper [10] presents another version of total k-uniform graphs. A sequence (v1, . . . , vk) is called a dominating open neigh-
borhood sequence if {v1, . . . , vk} is a dominating set and N(vi)\ 

⋃i−1
j=1 N(v j) �= ∅ holds for every i ∈ {2, . . . , k}. A graph is 

called open k-uniform if every dominating open neighborhood sequence has length k. It is easy to see that (also remarked 
in [10]) every open k-uniform graph is also total k-uniform and hence, the family of open k-uniform graphs is a subclass 
of total k-uniform graphs. Therefore, all the results we obtain in this paper are valid for open k-uniform graphs as well. For 
example, there is no open k-uniform graph when k is odd. We believe that the methods we use in this paper can lead to a 
complete characterization of open k-uniform graphs.
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