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a b s t r a c t

A vertex in a graph totally dominates another vertex if they are adjacent. A sequence of
vertices in a graph G is called a total dominating sequence if every vertex v in the sequence
totally dominates at least one vertex that was not totally dominated by any vertex that
precedes v in the sequence, and at the end all vertices of G are totally dominated. While
the length of a shortest such sequence is the total domination number of G, in this paper
we investigate total dominating sequences of maximum length, which we call the Grundy
total domination number, γ t

gr(G), of G. We provide a characterization of the graphs G for
which γ t

gr(G) = |V (G)| and of those for which γ t
gr(G) = 2. We show that if T is a nontrivial

tree of order nwith no vertexwith two ormore leaf-neighbors, then γ t
gr(T ) ≥

2
3 (n+1), and

characterize the extremal trees. We also prove that for k ≥ 3, if G is a connected k-regular
graph of order n different from Kk,k, then γ t

gr(G) ≥ (n+⌈
k
2 ⌉−2)/(k−1) if G is not bipartite

and γ t
gr(G) ≥ (n+2⌈ k

2 ⌉−4)/(k−1) if G is bipartite. The Grundy total domination number
is proven to be bounded from above by two times the Grundy domination number, while
the former invariant can be arbitrarily smaller than the latter. Finally, a natural connection
with edge covering sequences in hypergraphs is established, which in particular yields the
NP-completeness of the decision version of the Grundy total domination number.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The concept of edge covering sequences was introduced in [3] to shed more light on the possible procedures of
determining the edge cover number of a hypergraph (edge cover number is the cardinality of a smallest set of (hyper)edges
in a hypergraph whose union equals the set of its vertices). Of particular interest is the maximum length of a sequence, in
which one only uses themost basic greedy condition that each edgemust contain a vertex that is not contained in the edges
that precede it, and is called the Grundy covering number of a hypergraph. (The name arises from the Grundy coloring
number, which is the maximum number of colors that are used in a greedy coloring algorithm. The concept of Grundy
colorings was introduced back in the 1970s [5] and has been investigated in many papers.) In [3] the main focus was on
dominating sequences (of vertices) in graphs, which can be viewed precisely as edge covering sequences of the hypergraph
of closed neighborhoods of the graph. The longest possible dominating sequences were determined in several classes of
graphs (e.g. trees, split graphs, cographs), while it was shown that this problem is NP-complete, even when restricted to
chordal graphs [3].
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In this paperwe introduce and investigate total dominating sequences in graphs,which arise from thehypergraphof open
neighborhoods of a graph. Total domination is one of the classical concepts in graph theory, having numerous applications
and connections with other parameters. It was recently surveyed in the monograph [12]. The total domination number,
γt(G), of a graph G with no isolated vertices is the smallest cardinality of a set of vertices S such that every vertex of G
has a neighbor in S. (If the condition only requires that vertices from V (G) \ S have a neighbor in S, then the resulting
invariant is the domination number γ (G) of G.) It is well-known that for every graph G with no isolated vertices we have
γ (G) ≤ γt(G) ≤ 2γ (G). One of the central problems in this area is to determine good upper bounds for the total domination
number of a graph in terms of its order. Cockayne, Dawes, and Hedetniemi [7] showed that if G is connected of order n ≥ 3,
then γt(G) ≤

2
3n. Several authors [1,6,18] showed that if G is a graph of order n with minimum degree at least 3, then

γt(G) ≤
1
2n. Thomassé and Yeo [17] showed that if G is a graph of order nwith minimum degree at least 4, then γt(G) ≤

3
7n.

We now introduce our main invariant, which is defined for all graphs G without isolated vertices. Let S = (v1, . . . , vk)
be a sequence of distinct vertices of G. The corresponding set {v1, . . . , vk} of vertices from the sequence S will be denoted
byS. The sequence S is a legal (open neighborhood) sequence if

N(vi) \

i−1
j=1

N(vj) ≠ ∅ (1)

holds for every i ∈ {2, . . . , k}. If, in addition,S is a total dominating set of G, then we call S a total dominating sequence of G.
If S is a legal sequence, then we will say that vi footprints the vertices from N(vi) \∪

i−1
j=1 N(vj), and that vi is the footprinter of

every vertex u ∈ N(vi) \ ∪
i−1
j=1 N(vj). That is, vi footprints vertex u if vi totally dominates u, and u is not totally dominated by

any of the vertices that precede vi in the sequence. Thus the function fS : V (G) →S thatmaps each vertex to its footprinter is
well defined. Clearly the length k of a total dominating sequence S is bounded from below by the total domination number,
γt(G), of G. On the other hand, the maximum length of a total dominating sequence in G will be called the Grundy total
domination number of G and will be denoted by γ t

gr(G). The corresponding sequence will be called a Grundy total dominating
sequence of G.

The paper is organized as follows. In the next section we fix the notation and state some preliminary results and
observations. In particular we prove an upper bound for the Grundy total domination number in terms of the order and
minimum degree of a graph, and a lower bound in terms of the order and maximum degree. Section 3 considers two
total domination chains that arise from some invariants related to the Grundy total domination number, notably the
total domination number, the game total domination number, and the upper total domination number. In Section 4 we
characterize two extremal families of graphs, that is, the graphs whose Grundy total domination number is equal to 2,
and the graphs whose Grundy total domination number is equal to their order. While the former are exactly complete
multipartite graphs, the latter family can only be described in a more involved fashion, which in the class of trees reduces to
exactly the trees having a perfect matching; this result is established in Section 5. This section also contains the proof of the
lower bound γ t

gr(T ) ≥
2
3 (n + 1), where T is an arbitrary tree, together with the characterization of the trees attaining this

bound. Section 6 contains our most involved result, which is the lower bound for the Grundy total domination number of
regular graphs, when complete bipartite graphs are excluded. In Section 7 the bounds between the Grundy total domination
number and the Grundy domination number are discussed, while Section 8 connects the new concept with edge covering
sequences of hypergraphs. As a result of these connections, we first establish the existence of total dominating sequences in
G of arbitrary length between γt(G) and γ t

gr(G), and then we prove the NP-completeness of the corresponding Grundy total
domination problem. We conclude in the last section with some open problems that arise throughout the paper.

2. Notation and preliminary results

For notation and graph theory terminology, we in general follow [12]. We assume throughout the remainder of the
paper that all graphs considered are without isolated vertices. The degree of a vertex v in G, denoted dG(v), is the number of
neighbors, |NG(v)|, of v in G. The minimum andmaximum degree among all the vertices of G are denoted by δ(G) and ∆(G),
respectively. A leaf is a vertex of degree 1, while its neighbor is a support vertex. A strong support vertex is a vertex with at
least two leaf-neighbors. The subgraph induced by a set S of vertices of G is denoted by G[S]. A non-trivial graph is a graph
on at least two vertices.

A cycle on n vertices is denoted by Cn and a path on n vertices by Pn. A star is a tree K1,n for some n ≥ 1. A complete
k-partite graph is a graph that can be partitioned into k independent sets, so that every pair of vertices from two different
independent sets is adjacent. A complete multipartite graph is a graph that is complete k-partite for some k. In particular,
complete bipartite and complete graphs are in the family of complete multipartite graphs.

Two distinct vertices u and v of a graph G are open twins if N(u) = N(v). A graph is open twin-free if it has no open twins.
We remark that a tree is open twin-free if and only if it has no strong support vertex.

A total dominating set of a graph Gwith no isolated vertex is a set S of vertices of G such that every vertex is adjacent to a
vertex in S; that is, every vertex has a neighbor in S. If we only require that every vertex outside S has a neighbor in S, then S
is called a dominating set of G. The upper total domination number, Γt(G), of G is the maximum cardinality of a minimal total
dominating set in G.
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Given a subset X of vertices in a graph G, a legal sequence S of G is a total dominating sequence of X if S totally dominates
the set X and each vertex of the sequence S footprints a vertex of X not footprinted by any vertex preceding it in S. In
particular, if X = V (G), then S is a total dominating sequence of G.

For a matchingM in a graph G a vertex incident to an edge ofM is called strong if its degree is 1 in the subgraph G[V (M)].
The matching M is called a strong matching (also called an induced matching in the literature) if every vertex in V (M) is
strong. The number of edges in a maximum strong matching of G is the strong matching number, νs(G), of G. The strong
matching number is studied, for example, in [13,14]. As defined in [9], M is a semistrong matching if every edge in M has a
strong vertex. The number of edges in a maximum semistrong matching of G is the semistrong matching number, νss(G), of G.

We are now in a position to present some preliminary results and observations on the Grundy total domination number
of a graph. Recall that all graphs in this paper have no isolated vertex. Let G be a graph, and let H be an induced subgraph of
G that contains no isolated vertex. Every Grundy total dominating sequence in H is either a total dominating sequence of G
or can be extended to a total dominating sequence of G, implying that γ t

gr(G) ≥ γ t
gr(H). This implies the following result.

Observation 2.1. For every graph G, γ t
gr(G) ≥ max {γ t

gr(H)}, where the maximum is taken over all induced subgraphs H of G
with no isolated vertex.

If M is a maximum strong matching in a graph G, then the subgraph, H = G[V (M)], of G induced by the edges of M is
isomorphic to νs(G) disjoint copies of K2, implying by Observation 2.1 that γ t

gr(G) ≥ γ t
gr(H) = 2νs(G). Thus, the Grundy total

domination number of a graph is at least twice its strong matching number.

Observation 2.2. For every graph G, γ t
gr(G) ≥ 2νs(G).

We present next the following general lower bound on the Grundy total domination number of a graph in terms of its
order and maximum degree.

Proposition 2.3. If G is a graph of order n with maximum degree ∆(G) = ∆, then γ t
gr(G) ≥

n
∆
. Further, if G is connected and

γ t
gr(G) =

n
∆
, then G = K∆,∆.

Proof. The lower bound follows immediately from the observation that γ t
gr(G) ≥ γt(G) and the well-known observation

(see, [12]) that γt(G) ≥ n/∆. Suppose that G is connected and γ t
gr(G) = n/∆. Let S be an arbitrary total dominating sequence

of G and let |S| = k. The setS is a total dominating set of G. Consequently, γ t
gr(G) ≥ k ≥ γt(G) ≥ n/∆. This implies that

every total dominating sequence is a Grundy total dominating sequence. As S is a Grundy total dominating sequence and
k = n/∆, every vertex v inS footprints exactly ∆ vertices. It follows that G is ∆-regular. We show that G = K∆,∆. Suppose,
to the contrary, that G ≠ K∆,∆. Let v1 be an arbitrary vertex of G. Since G is a connected∆-regular graph, there exists a vertex
v2 in G different from v1 with the property that v2 has a neighbor in N(v1) and a neighbor not in N(v1). But then there exists
a total dominating sequence of G starting with the vertices v1 and v2 as its first two vertices such that v2 footprints strictly
less than ∆ vertices, a contradiction. Therefore, if γ t

gr(G) = n/∆, then G = K∆,∆. �

The following general upper bound on the Grundy total domination number of a graph is in terms of its order and
minimum degree.

Proposition 2.4. If G is a graph of order n, then γ t
gr(G) ≤ n − δ(G) + 1.

Proof. Let S = (s1, . . . , sk) be a Grundy total dominating sequence of G. Let u be a vertex footprinted in the last step, that
is, u ∈ f −1

S (sk). Since u is not totally dominated before the last step, we have N(u) ∩ {s1, . . . , sk−1} = ∅, and so

|{s1, . . . , sk−1}| = k − 1 ≤ n − d(u).

Thus, γ t
gr(G) = k ≤ n − δ(G) + 1. �

The upper bound from Proposition 2.4 is clearly achieved by complete graphs and by the graph 2K3 + e. Note that
|V (G)| − δ(G) + 1 can be at most |V (G)|, which is achieved when δ(G) = 1. Graphs G with γ t

gr(G) = |V (G)| will be studied
in Section 4.

3. Total domination chains

If S is a sequence of vertices in a graph G such thatS is a minimal total dominating set in G of maximum cardinality
Γt(G), then S is a total dominating sequence of G since each vertex in S footprints, among other vertices, the vertices that it
uniquely totally dominates in the setS. This implies that Γt(G) ≤ γ t

gr(G). This gives rise to the following total domination
chain.

Observation 3.1. For every graph G, γt(G) ≤ Γt(G) ≤ γ t
gr(G).
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(a) G3 . (b) G4 .

Fig. 1. The graphs G3 and G4 .

A natural problem is to characterize the connected graphs for which we have equality throughout the inequality chain
given in the statement of Observation 3.1; that is, graphs G for which γt(G) = γ t

gr(G). In Section 4, we characterize graphs G
with γt(G) = γ t

gr(G) = 2. These are shown (in Theorem 4.4) to be precisely the complete multipartite graphs. The following
result shows that there is no graph G satisfying γt(G) = γ t

gr(G) = 3.

Theorem 3.2. If G is a graph with γt(G) = 3, then γ t
gr(G) > 3.

Proof. Let G be a graph with γt(G) = 3. Let S = {a, b, c} be a minimum total dominating set of G. Since G[S] contains no
isolated vertex, either G[S] = P3 or G[S] = K3. If G[S] = P3, then renaming vertices if necessary, we may assume that G[S]
is the path abc. If G[S] = K3, then G[S] is the 3-cycle abca. In both cases, by the minimality of the set S, there is a vertex a′

outside S that is adjacent to a but to no other vertex of S. Suppose that G[S] = P3. Let H be the subgraph of G induced by
{a′, a, b, c}. Then, H is isomorphic to P4, and by Observation 2.1 and the observation that γ t

gr(P4) = 4, γ t
gr(G) ≥ γ t

gr(H) = 4.
Hence we may assume that every minimum total dominating set in G induces a K3, for otherwise γ t

gr(G) > 3 as desired. By
assumption, the set S ′

= {a′, a, b} which induces a path P3 is not a total dominating set in G. Let c ′ be a vertex not totally
dominated by S ′. Since S is a total dominating set of G, this implies that c ′ is a vertex outside S that is adjacent to c but to no
other vertex of S. But then a′acc ′ is an induced P4 in G, implying once again that γ t

gr(G) ≥ γ t
gr(P4) = 4. �

Infinite families {Gm}m≥3 of connected graphs with both total domination number and Grundy total domination number
equal to 4 can be constructed as follows. Let m be an integer such that m ≥ 3. For each i with 1 ≤ i ≤ m, let Xi and Yi be
nonempty sets of vertices such that the sets X1, . . . , Xm, Y1, . . . , Ym are pairwise disjoint. Let X = ∪

m
i=1 Xi and Y = ∪

m
i=1 Yi.

A bipartite graph G with V (G) = X ∪ Y is obtained by adding the edge xy if and only if x ∈ Xi and y ∈ Yj for some i and j
such that i ≠ j. It is easy to see that γt(G) = 4. Furthermore, every total dominating sequence S of G satisfiesS = {a, b, c, d}
where a ∈ Xi, b ∈ Xj, c ∈ Yr , d ∈ Ys, for any choice of {i, j, r, s} such that i ≠ j and r ≠ s. In fact, any permutation of such
a set of four vertices is a total dominating sequence of G. Hence, γt(G) = 4 = γ t

gr(G). Define Gm to be the class of all such
graphs constructed in this way. We note that the 6-cycle is the smallest graph in the family G3. The graphs G3 ∈ G3 and
G4 ∈ G4 shown in Fig. 1(a) and 1(b), are examples of this construction. We state our observation formally as follows.

Observation 3.3. There are infinitely many connected graphs G with γ t
gr(G) = γt(G) = 4.

The domination game in graphs was introduced in [4] and extensively studied afterwards (see, for example, [8,15]). The
total version of the domination game was investigated in [10,11]. This game is played on a graph G by two players, named
Dominator and Staller. They alternately take turns choosing vertices of G such that each chosen vertex totally dominates at
least one vertex not totally dominated by the vertices previously chosen. Dominator’s goal is to totally dominate the graph
as fast as possible, and Staller wishes to delay the process as long as possible. The game total domination number, γtg(G),
of G is the number of vertices chosen when Dominator starts the game and both players play optimally. Every sequence
of vertices generated by Dominator and Staller in the total domination game is a total dominating sequence, implying the
following result.

Observation 3.4. For every graph G with no isolated vertex, γt(G) ≤ γtg(G) ≤ γ t
gr(G).

We remark that the difference between the game total domination number and the Grundy total domination number
can be arbitrarily large. For example, for k ≥ 2, if G is the graph of order n = 2k+ 1 obtained from k disjoint copies of K3 by
identifying one vertex from each copy of K3 into a common vertex (of degree 2k), then γtg(G) = 2 and γ t

gr(G) = n − 1.

4. Graphs with large or small Grundy total domination number

In this sectionwe provide a characterization of the graphs G for which γ t
gr(G) = |V (G)| and of those for which γ t

gr(G) = 2.
The latter value of γ t

gr(G) is the least possible, since γ t
gr(G) ≥ γt(G) ≥ 2. We begin with a lemma that will be used in

characterizing the graphs of order n that also have Grundy total domination number n.

Lemma 4.1. Let G be a graph of order n such that γ t
gr(G) = n and let S = (v1, . . . , vn) be a Grundy total dominating sequence

of G. If x and y are any two vertices of G such that x footprints y with respect to S, then y also footprints x with respect to S.

dgozu
Vurgu

dgozu
Vurgu

dgozu
Vurgu
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Proof. Since S = (v1, . . . , vn) is a total dominating sequence of G, it follows that each vertex of G footprints exactly one
vertex with respect to S. This means that the footprinter function fS : V (G) → S is injective. Let

−→
G be the directed graph

that has vertex set V (G) and that has {(fS(u), u) | u ∈ V (G)} as its set of directed edges. In
−→
G each vertex has in-degree 1

and out-degree 1. Consequently,
−→
G is the disjoint union of directed cycles. Let x1 . . . xkx1 be any one of these directed cycles.

We may assume without loss of generality that x1 is the first of the vertices in {x1, . . . , xk} to appear in S. In particular, x1
footprints x2 and xk since x1 is adjacent to both x2 and xk. That is, fS(x2) = x1 = fS(xk). We conclude that k = 2. Hence,

−→
G is

the disjoint union of directed cycles of order 2. Thus, if a vertex x footprints a vertex y, then y also footprints x. �

Theorem 4.2. If G is a graph of order n, then γ t
gr(G) = n if and only if there exists an integer k such that n = 2k, and the vertices

of G can be labeled x1, . . . , xk, y1, . . . , yk in such a way that
• xi is adjacent to yi for each i,
• {x1, . . . , xk} is an independent set, and
• yj is adjacent to xi implies i ≥ j.

Proof. If the vertices of a graph G can be labeled as in the statement of the theorem, then it is straightforward to check that
S = (x1, . . . , xk, yk, . . . , y1) is a total dominating sequence in G, and hence γ t

gr(G) = n.
For the converse we assume that γ t

gr(G) = n. Let S = (s1, . . . , sn) be any Grundy total dominating sequence of length
n in G. The first vertex of S must have degree 1 since it footprints exactly one vertex. Label this first vertex x1 and label the
vertex it footprints y1. By Lemma 4.1 we know that y1 footprints x1. Delete x1 and y1 from the sequence S and label the first
vertex that appears in the resulting sequence x2. Let y2 be the unique vertex that x2 footprints; that is, y2 = f −1

S (x2). By
Lemma 4.1 y2 ∉ {x1, y1} and y2 = fS(x2). Once again we delete both x2 and y2 from the sequence. Continuing in this fashion
by choosing the first vertex of the remaining sequence to be xi, denoting f −1

S (xi) by yi and reasoning as above, we see that
all vertices of G will be labeled and deleted from the sequence. It follows that n is even, say n = 2k. Let X = {x1, . . . , xk}
and let Y = {y1, . . . , yk}. By the way the vertices were labeled it is clear that xi and yi are adjacent whenever 1 ≤ i ≤ k.
Suppose 1 ≤ i < j ≤ k. Since xi does not footprint xj with respect to S we know that xi and xj are not adjacent in G. Thus, X
is independent. Moreover, yj is footprinted by xj so is not adjacent to xi for i < j. �

Clearly, the graphs from Theorem 4.2 all contain a perfect matching (it is given by the edges xiyi, for i = 1, . . . , k). In
an arbitrary graph the Grundy total domination number need not be bounded from below by the number of vertices in a
matching. The class of complete multipartite graphs contains graphs with arbitrarily large matching number, and yet each
has Grundy total domination number 2. However, the Grundy total domination number is bounded below by the number of
vertices in a semistrongmatching. Indeed, the next result follows immediately by applyingObservation 2.1 and Theorem4.2.

Corollary 4.3. If G is a graph, then γ t
gr(G) ≥ 2νss(G).

In the next result we characterize the graphs with the smallest possible total Grundy domination number, which is 2.

Theorem 4.4. If G is a graph, then γ t
gr(G) = 2 if and only if G is a complete multipartite graph.

Proof. It is clear that if G is a complete multipartite graph, then γ t
gr(G) = 2.

For the converse, let G be a graphwith γ t
gr(G) = 2.We first note that if x and y are adjacent vertices, then {x, y} is a (total)

dominating set of G, since S = (x, y) is a legal sequence, and so it must be a total dominating sequence. Next, we observe
that if x and y are two nonadjacent vertices, then N(x) = N(y). Indeed, otherwise S = (x, y) or S ′

= (y, x) would be a legal
sequence but not total dominating sequence, because x and y are not totally dominated by the set {x, y}. Hence, if A is a
maximal independent set in G, then the neighborhoods N(x) of all vertices x from A coincide.

Let A be a maximal independent set in G, and x ∈ A. We claim that N(x) ∪ A = V (G). Suppose that there is a vertex
y ∉ N(x)∪A. Since y is not adjacent to x, itmust be adjacent to some x′

∈ A, otherwise Awould not be amaximal independent
set. But then x and x′ are two nonadjacent vertices with N(x) ≠ N(x′), a contradiction. Therefore, N(x) ∪ A = V (G).

Since A was an arbitrarily chosen maximal independent set, we conclude that G can be partitioned into maximal
independent sets, each of which is adjacent to all other vertices not in that set. This implies that G is the join of these
maximal independent sets, and is thus a complete multipartite graph. �

5. Trees

A rooted tree distinguishes one vertex r called the root. Following the notation of [12], for each vertex v ≠ r of T , the
parent of v is the neighbor of v on the unique (r, v)-path, while a child of v is any other neighbor of v. As observed earlier,
the graphs G satisfying γ t

gr(G) = n all contain a perfect matching. In the case of trees this condition is also sufficient.

Theorem 5.1. If T is a tree of order n, then γ t
gr(T ) = n if and only if T has a perfect matching.

dgozu
Vurgu
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Fig. 2. The operation O1 .

Proof. If γ t
gr(T ) = n, then by Theorem 4.2, T has a perfect matching. Hence it suffices for us to show that for a tree T with a

perfect matching, γ t
gr(T ) = n. Let T be such a tree with a perfect matchingM , and note that n = 2k for some natural number

k. Choose an arbitrary vertex r of T and make T a rooted tree with root r . Let L be a linear order of vertices of T with the
property that every child appears in the order before its parent (it is easy to see that L exists and also easy to construct it,
by starting with leaves of T , deleting them, and continuing in the same fashion). Now, let (c1, . . . , ck) be the suborder of L,
obtained by choosing the vertices from T that are matched with respect to M with their parent. Similarly, let (pk, . . . , p1)
be the suborder of the dual Ld of L (obtained by reversing the order of L), in which the vertices from T that are matched with
respect toM with their child are chosen. It is easy to see that S = (c1, . . . , ck, pk, . . . , p1) is total dominating sequence of T
(each ci footprints its parent, and each pj footprints its child that it is matched to with respect toM). �

As an immediate consequence of Observation 2.1 and Theorem 5.1, we determine the Grundy total domination number
of a path.

Corollary 5.2. For n ≥ 2 even, γ t
gr(Pn) = n, while for n ≥ 3 odd, γ t

gr(Pn) = n − 1.

We remark that a tree is open twin-free if and only if it has no strong support vertex. We next determine a lower bound
on the Grundy total domination number of a treewith no strong support vertex in terms of its order, andwe characterize the
trees that achieve this lower bound. We remark that the requirement that the tree has no strong support vertex is essential
here. For example, a star K1,n has Grundy total domination number 2 and therefore there is no constant c > 0 such that
γ t
gr(T ) ≥ c|V (T )| for every star T .
For this purpose, we define a family T of trees as follows. Let T be the family of trees that contain a path P2 and are closed

under the operation O1, which extends a tree T ′ by adding a path v1v2v3 and the edge vv1 to a support vertex v in the tree
T ′. The operation O1 is illustrated in Fig. 2, where here v′ is a leaf-neighbor of v in T ′. We remark that if T ∈ T has order n,
then n ≡ 2 (mod 3). The two smallest trees in the family T are the path P2 and the path P5.

Proposition 5.3. If T ∈ T has order n, then γ t
gr(T ) =

2
3 (n + 1).

Proof. We proceed by induction on the order n ≥ 2 of a tree T ∈ T . If n = 2, then T = P2 and γ t
gr(T ) = 2 =

2
3 (n + 1).

This establishes the base case. Suppose that n > 2 and every tree T ′
∈ T of order n′ < n satisfies γ t

gr(T
′) =

2
3 (n

′
+ 1). Let

T ∈ T be a tree of order n. By construction of the family T , the tree T is obtained from a tree T ′
∈ T by adding a path v1v2v3

and the edge vv1 to a support vertex v in the tree T ′. Let v′ be a leaf-neighbor of v in the tree T ′. Let T ′ have order n′, and so
n′

= n − 3.
Every total dominating sequence of T ′ can be extended to a total dominating sequence of T by adding to it the vertices

v1 and v2, and so γ t
gr(T ) ≥ γ t

gr(T
′) + 2. Conversely, suppose that S is a Grundy total dominating sequence of T (of maximum

length). Suppose that the vertex v1 appears in the sequence S. The vertex v1 footprints v or v2. If v1 footprints v, then the
leaf v′ does not appear in the sequence S and we can replace v1 in S with the vertex v′ (and leave all other entries in the
sequence unchanged). If v1 footprints v2, then the leaf v3 does not appear in the sequence S and we can replace v1 in S with
the vertex v3 (and leave all other entries in the sequence unchanged). In both cases, we produce a new legal sequence, S∗, of
T . If S∗ is not a total dominating sequence of T , then it can be extended to a total dominating sequence of T , contradicting the
fact that S is a Grundy total dominating sequence. Hence, S∗ is a total dominating sequence of T , implying that it is a Grundy
total dominating sequence. Therefore, we can choose the sequence S so that v1 does not appear in the sequence S. With this
choice of the sequence S, both v2 and v3 appear in the sequence S. Removing the vertices v2 and v3 from S produces a total
dominating sequence of T ′, implying that γ t

gr(T
′) ≥ γ t

gr(T ) − 2. Consequently, γ t
gr(T ) = γ t

gr(T
′) + 2. Applying the inductive

hypothesis to the tree T ′
∈ T , γ t

gr(T
′) =

2
3 (n

′
+ 1) =

2
3 (n − 2), and so γ t

gr(T ) = γ t
gr(T

′) + 2 =
2
3 (n + 1). �

Recall that if T is a tree of order n ≥ 3, then γt(T ) ≤
2
3n. In contrast, we show next that γ t

gr(T ) > 2
3n for a tree T of

order n ≥ 3 with no strong support vertex.

Theorem 5.4. If T is a nontrivial tree of order n with no strong support vertex, then γ t
gr(T ) ≥

2
3 (n + 1), with equality if and

only if T ∈ T .

Proof. We proceed by induction on the order n ≥ 2 of a nontrivial tree. If n = 2, then T = P2, γ t
gr(T ) = 2 =

2
3 (n + 1)

and T ∈ T . This establishes the base case. Assume that n ≥ 3 and every nontrivial tree of order less than n with no strong
support vertex satisfies the statement of the theorem. Let T be a nontrivial tree of order n with no strong support vertex.
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Since T has no strong support vertex, T is not a star and diam(T ) ≥ 3. If diam(T ) = 3, then T = P4 and, by Corollary 5.2,
γ t
gr(T ) = 4 > 2

3 (n + 1). Hence we may assume that diam(T ) ≥ 4. In particular, n ≥ 5.
We now root the tree T at a leaf r on a longest path in T . Let u be a vertex at maximum distance from r . Necessarily, u is

a leaf. Thus, dT (u, r) = diam(T ) ≥ 4. Let v be the parent of u, let w be the parent of v, and let x be the parent of w. Since u is
a vertex at maximum distance from the root r , every child of v is a leaf. By supposition, T has no strong support vertex, and
so dT (v) = 2.

Let T1 = T − {u, v} and let T1 have order n1. Then, n1 = n − 2 ≥ 3. Suppose that the tree T1 has no strong
support vertex. If n1 = 3, then T1 ∼= P3 and T1 has a strong support vertex, a contradiction. Hence, n1 ≥ 4. Applying
the inductive hypothesis to T1, γ t

gr(T1) ≥
2
3 (n1 + 1) =

2
3 (n − 1). Let S ′

= (v1, . . . , vk) be a Grundy total dominating
sequence of T1, and so k = γ t

gr(T1). Then the sequence S = (u, v1, . . . , vk, v) is a total dominating sequence of T of
length k + 2 = γ t

gr(T1) + 2 ≥
2
3 (n − 1) + 2 =

2
3 (n + 2), implying that γ t

gr(T ) > 2
3 (n + 1). Hence, we may assume

that the tree T1 has a strong support vertex, for otherwise γ t
gr(T ) > 2

3 (n + 1), as desired.
Since T has no strong support vertex but the tree T1 has a strong support vertex, the vertex w is necessarily a leaf in

T1 and its parent, namely x, is a strong support vertex in T1. Let w′ be the leaf-neighbor of x in T1 different from w. We
now consider the tree T ′

= T − {u, v, w}. Let T ′ have order n′, and so n′
= n − 3 ≥ 2. If T ′ has a strong support vertex,

then such a vertex is also a strong support vertex of T , a contradiction. Hence, T ′ has no strong support vertex. Applying
the inductive hypothesis to T ′, γ t

gr(T
′) ≥

2
3 (n

′
+ 1) =

2
3 (n − 2). Let S ′

= (v1, . . . , vk) be a Grundy total dominating
sequence of T ′, and so k = γ t

gr(T
′). Then, the sequence S = (u, v1, . . . , vk, v) is a total dominating sequence of T of

length k+ 2 = γ t
gr(T

′) + 2 ≥
2
3 (n− 2) + 2 =

2
3 (n+ 1), implying that γ t

gr(T ) ≥
2
3 (n+ 1). This establishes the desired lower

bound.
Finally, suppose that γ t

gr(T ) =
2
3 (n+ 1). This implies that γ t

gr(T
′) =

2
3 (n

′
+ 1). By the inductive hypothesis, T ′

∈ T . Since
T can be obtained from the tree T ′

∈ T by applying operation O1 to the support vertex x of T ′, the tree T ∈ T . Conversely,
by Proposition 5.3, if T ∈ T has order n, then γ t

gr(T ) =
2
3 (n + 1). �

We remark that the result in Theorem 5.4 does not hold for general bipartite graphs that are open twin-free. For k ≥ 2,
consider the bipartite graph Gk formed by taking as one partite set, a set A of 2k − 1 elements, and as the other partite set a
set B whose vertices correspond to all the k-element subsets of A, and joining each element of A to those subsets to which
it belongs. Let S be a Grundy total dominating sequence of Gk. Every set of k vertices chosen from A totally dominates the
set B, and so S contains at most k vertices of A. The first vertex of B that appears in S totally dominates k vertices of A. At
most k − 1 additional vertices of B appear in the sequence S in order to totally dominate the remaining k − 1 vertices of
A. Therefore, the sequence S contains at most k vertices from B, and so γ t

gr(Gk) ≤ 2k. It is a simple exercise to show that

γ t
gr(Gk) ≥ 2k, implying that γ t

gr(Gk) = 2k. However, Gk has order 2k − 1 +


2k−1

k


and minimum degree δ(Gk) = k. This

implies that no minimum degree is sufficient to guarantee that the Grundy total domination number of a general bipartite
graph that is open twin-free is bounded below by a constant times its order. We state this formally as follows.

Observation 5.5. There is no constant c > 0 such that γ t
gr(G) ≥ c|V (G)| for every bipartite graph G that is open twin-free.

6. Regular graphs

In this section, we establish a lower bound on the Grundy total domination number of a k-regular graph. It is only of
interest to consider values of k ≥ 2 since if k = 1, then γt(G) = γ t

gr(G) = n. We begin by determining the Grundy total
domination number of a 2-regular graph.

Proposition 6.1. For n ≥ 3 odd, γ t
gr(Cn) = n − 1, while for n ≥ 4 even, γ t

gr(Cn) = n − 2.

Proof. For n ≥ 3, let Cn be a cycle given by v1v2 . . . vnv1. Suppose, firstly, that n is odd. Then, Cn contains as an induced
subgraph a path Pn−1 on an even number of vertices. Thus, by Observation 2.1 and Corollary 5.2, γ t

gr(Cn) ≥ γ t
gr(Pn−1) =

n − 1. Conversely, since the first vertex in every total dominating sequence of Cn footprints two vertices, we note that
γ t
gr(Cn) ≤ n − 1. Consequently, γ t

gr(Cn) = n − 1 for n odd. Suppose next that n ≥ 4 is even. Let A and B be the two partite
sets of Cn, and let S be a Grundy total dominating sequence of Cn. The first vertex in S that footprints a vertex of A belongs to
B and footprints two vertices of A. The first vertex in S that footprints a vertex of B belongs to A and footprints two vertices
of B. Thus, at least two vertices in S footprint two vertices, implying that γ t

gr(Cn) ≤ n − 2. Since (v1, v2, . . . , vn−2) is a total
dominating sequence of Cn, γ t

gr(Cn) ≥ n − 2. Consequently, γ t
gr(Cn) = n − 2 for n even. �

As a consequence of a result due to Chvátal and McDiarmid [6], if G is a k-regular graph of order n, then γt(G) ≤

(⌊ k+2
2 ⌋/⌊ 3k

2 ⌋) n. In [16] it was shown that for every k-regular graph G of order n with no isolates, Γt(G) ≤ n/(2 −
1
k ). In

contrast to these upper bounds on the total and upper total domination numbers of regular graphs, we establish a lower
bound on the Grundy total domination number of a regular graph. As a special case of Proposition 2.3, we have the following
lower bound on the Grundy total domination number of a regular graph.
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Corollary 6.2. For k ≥ 1, if G is a k-regular connected graph of order n, then γ t
gr(G) ≥

n
k , with equality if and only if G = Kk,k.

We show next that the lower bound of Corollary 6.2 can be improved considerably if the k-regular graph is different from
Kk,k. By Proposition 6.1, it is only of interest to consider the case when k ≥ 3.

Theorem 6.3. For k ≥ 3, if G is a connected k-regular graph of order n different from Kk,k, then

γ t
gr(G) ≥


n +

 k
2


− 2

k − 1
if G is not bipartite

n + 2
 k

2


− 4

k − 1
if G is bipartite.

Proof. For k ≥ 3, let G be a connected k-regular graph of order n different from Kk,k. We consider two cases.
Case 1. G is not a bipartite graph. Since G is connected, there exists a pair of vertices of G that are not open twins but have at

least one common neighbor. Among all such pairs of vertices of G, let v1 and v2 be chosen to have the maximum number of
common neighbors. We construct a total dominating sequence of G as follows. Let v1 and v2 be the first and second vertices,
respectively, in the sequence. We note that since v1 and v2 have at least one common neighbor, the vertex v2 footprints at
most k − 1 vertices. We now extend the subsequence S2 = (v1, v2) to a total dominating sequence of G as follows.

Suppose that the current sequence is given by Si = (v1, v2, . . . , vi) for some i ≥ 2. Let Bi be the set of all vertices totally
dominated by at least one vertex inSi = {v1, v2, . . . , vi}. Suppose that Bi ≠ V (G), and soSi = {v1, v2 . . . , vi} is not a total
dominating set of G. We show that there must exist a vertex with at least one neighbor in Bi and at least one neighbor not in
Bi. Suppose this is not the case. Since G is connected and Bi ≠ V (G), there is at least one vertex not in Bi that is adjacent to a
vertex of Bi. Let Ai be the set of all vertices of G that have a neighbor in Bi but do not belong to the set Bi. By our supposition,
every vertex in the set Ai has all its k neighbors in Bi. Further, Ai ∩ Bi = ∅. If a vertex in Bi has at least one neighbor in Ai
but fewer than k neighbors in Ai, then such a vertex has a neighbor in Bi and a neighbor not in Bi, a contradiction. Therefore,
every vertex in Bi that has a neighbor in Ai has all its k neighbors in Ai. The connectivity and the k-regularity of G therefore
imply that G is a bipartite graph (with partite sets Ai and Bi), a contradiction. Therefore, there is a vertex with at least one
neighbor in Bi and at least one neighbor not in Bi. As the (i + 1)st vertex in our sequence, we choose such a vertex, say vi+1,
that footprints as few vertices as possible, and let Si+1 = (v1, . . . , vi, vi+1). Since vi+1 has at least one neighbor in Bi, the
vertex vi+1 footprints at most k − 1 vertices.

Continuing in this way, let S = St = (v1, v2, . . . , vt) be the final resulting sequence of length t . Then, S is a total
dominating sequence. Further, the vertex v1 footprints k vertices, while every other vertex in the sequence footprints at
most k − 1 vertices. We proceed further with the following claim.

Claim A. At least one of the vertices v2 or vt footprints at most ⌊
k
2⌋ vertices.

Proof of Claim A. Suppose, to the contrary, that both v2 and vt footprint at least ⌊
k
2⌋ + 1 vertices. In particular, since v2

footprints at least ⌊
k
2⌋ + 1 vertices this implies that v1 and v2 have at most k − ⌊

k
2⌋ − 1 = ⌈

k
2⌉ − 1 ≤ ⌊

k
2⌋ common

neighbors.
We consider the final vertex in the sequence S, namely the vertex vt . Let U be the set of vertices footprinted by vt and let

F = V (G) \ U . Thus, every vertex in F is footprinted by some vertex vi, where 1 ≤ i ≤ t − 1. By supposition, |U| ≥ ⌊
k
2⌋ + 1.

If a vertex v ∈ U is adjacent to some other vertex of U , then we would have chosen the vertex v instead of the vertex
vt since v footprints at most |U| − 1 vertices which is fewer vertices than are footprinted by the vertex vt , a contradiction.
Therefore, U is an independent set.

Let v ∈ U and let X = N(v). We note that X ⊆ F and |X | = k. If a vertex x ∈ X is not adjacent to every vertex in
U , then we would have chosen the vertex x instead of the vertex vt since x footprints at most |U| − 1 vertices once again
contradicting our choice of the vertex vt . Therefore, every vertex in X is adjacent to every vertex in U .

Suppose that two vertices, x1 and x2 say, in X are adjacent. Then, x1 and x2 are not open twins. Further, the vertices x1
and x2 have at least |U| ≥ ⌊

k
2⌋ + 1 common neighbors. However as observed earlier, v1 and v2 have at most ⌊

k
2⌋ common

neighbors. This contradicts our choice of v1 and v2 as a pair of vertices that are not open twins with the maximum number
of common neighbors. Therefore, X is an independent set.

Since G ≠ Kk,k and X is an independent set, there must exist a pair of vertices in X that are not open twins. However
such a pair of vertices in X have at least |U| ≥ ⌊

k
2⌋+ 1 common neighbors, once again contradicting our choice of v1 and v2.

We deduce, therefore, that at least one of the vertices v2 and vt footprints at most ⌊
k
2⌋ vertices. This completes the proof of

Claim A. �

Wenow return to the proof of Case 1. As observed earlier, by theway inwhich the sequence S is constructed, the vertex v1
footprints k vertices while every other vertex in the sequence footprints at most k−1 vertices. By Claim A, at least one of the
vertices v2 and vt footprints at most ⌊

k
2⌋ vertices. We note that the number of footprinted vertices is precisely the order of
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the graph, namely n. Thus, since the sequence S has length t , our earlier observations imply that n ≤ k+⌊
k
2⌋+(t−2)(k−1),

or, equivalently, γ t
gr(G) ≥ t ≥ (n + ⌈

k
2⌉ − 2)/(k − 1). This completes Case 1.

Case 2. G is a bipartite graph. Let G have partite sets A and B. We construct firstly a total dominating sequence, SA, of B.
Such a sequence SA satisfies SA ⊆ A and SA totally dominates the set B. Further, each vertex of the sequence SA footprints a
vertex of B not footprinted by any vertex preceding it in SA.

SinceG is connected andG ≠ Kk,k, there exists a pair of vertices in A that are not open twins but have at least one common
neighbor. Among all such pairs of vertices of G, let a1 and a2 be chosen to have themaximum number of common neighbors.
We construct a total dominating sequence, SA of B as follows. Let a1 and a2 be the first and second vertices, respectively, in
the sequence.We note that since a1 and a2 have at least one commonneighbor, the vertex a2 footprints atmost k−1 vertices.
We now extend the subsequence (a1, a2) using the same selectionmethod as in Case 1; that is, if the vertices in B are not yet
totally dominated by our chosen vertices selected fromA, we choose the next vertex in the sequence so that it is adjacent to at
least one vertex already footprinted and so that it footprints as few vertices (of B) as possible. Let SA = (a1, a2, . . . , at) be the
resulting subsequence of S such that every vertex in B is footprinted by some vertex in SA = {a1, a2, . . . , at}. An analogous,
but slightly simpler proof to that presented in the proof of Claim A in Case 1 shows that at least one of the vertices a2 and at
footprints at most ⌊

k
2⌋ vertices.

Claim B. At least one of the vertices a2 or at footprints at most ⌊
k
2⌋ vertices.

Proof of Claim B. Suppose, to the contrary, that both a2 and at footprint at least ⌊
k
2⌋ + 1 vertices. In particular, this implies

that a1 and a2 have at most ⌊
k
2⌋ common neighbors. Let U be the set of vertices footprinted by at and let F = B \ U . Thus,

every vertex in F is footprinted by some vertex ai, where 1 ≤ i ≤ t − 1. By supposition, |U| ≥ ⌊
k
2⌋ + 1. Let v ∈ U and let

X = N(v). We note that X ⊆ A and |X | = k. If a vertex x ∈ X is not adjacent to every vertex in U , then we would have
chosen the vertex x instead of the vertex at since x footprints fewer vertices than does at , contradicting our choice of the
vertex at . Therefore, every vertex in X is adjacent to every vertex in U . Since G ≠ Kk,k, there must exist a pair of vertices in X
that are not open twins. However such a pair of vertices in X have at least |U| ≥ ⌊

k
2⌋ + 1 common neighbors, contradicting

our choice of the pair a1 and a2. �

We now return to the proof of Case 2. By the way in which the sequence SA is constructed, the vertex a1 footprints k
vertices while every other vertex in the sequence SA footprints at most k− 1 vertices. By Claim B, at least one of the vertices
a2 and at footprints at most ⌊

k
2⌋ vertices. Analogously, we construct a total dominating sequence, SB = (b1, b2, . . . , br),

of A consisting only of vertices of B such that every vertex in A is footprinted by some vertex in SB. Further, the vertex b1
footprints k vertices while every other vertex in the sequence SB footprints at most k − 1 vertices and at least one of the
vertices b2 and br footprints at most ⌊

k
2⌋ vertices. Let S be the sequence obtained by combining the sequences SA and SB.

Then, S is a total dominating sequence of G. Exactly two vertices in the sequence S footprint k vertices, two vertices in S
footprint at most ⌊

k
2⌋ vertices, and every other vertex in the sequence S footprints at most k− 1 vertices. Therefore, since S

has length ℓ = r + t , n ≤ 2k + 2(⌊ k
2⌋) + (ℓ − 4)(k − 1), and so

γ t
gr(G) ≥ ℓ ≥

n + 2
 k

2


− 4

k − 1
.

This completes the proof of Case 2, and of Theorem 6.3. �

As an immediate consequence of Theorem 6.3, we have the following result.

Corollary 6.4. For k ≥ 3, if G is a connected k-regular graph of order n different from Kk,k, then γ t
gr(G) ≥

n
k−1 , with strict

inequality if k ≥ 5.

In the special case of Corollary 6.4 when k = 3 and k = 4, we have the following results. Recall that if G is a cubic graph
of order n, then γt(G) ≤

1
2n.

Corollary 6.5. If G ≠ K3,3 is a connected cubic graph of order n, then γ t
gr(G) ≥

1
2n.

Recall that if G is a 4-regular graph of order n, then γt(G) ≤
3
7n.

Corollary 6.6. If G ≠ K4,4 is a connected 4-regular graph of order n, then γ t
gr(G) ≥

1
3n.

The connected cubic graphG4 shown in Fig. 1(b) of order n = 8 satisfies γ t
gr(G4) = 4 =

1
2n, while the connected 4-regular

graph G3 shown in Fig. 1(a) of order n = 12 satisfies γ t
gr(G3) = 4 =

1
3n. Thus, the bounds in Corollaries 6.5 and 6.6 are

achievable.
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7. Relations between γ t
gr(G) and γgr(G)

Let S = (v1, . . . , vk) be a sequence of distinct vertices of a graph G andS the corresponding set of vertices. This sequence
S is called a legal (closed neighborhood) sequence if

N[vi] \

i−1
j=1

N[vj] ≠ ∅, (2)

for every i ∈ {2, . . . , k}. If, in addition,S is a dominating set of G, then S is called a dominating sequence of G. The maximum
length of a dominating sequence in G is called the Grundy domination number of G and is denoted by γgr(G). See [3].

As a direct analogy with the well-known inequality γt(G) ≤ 2γ (G), which holds for an arbitrary graph Gwith no isolated
vertices, we prove a general upper bound on γ t

gr(G) in terms of γgr(G).

Theorem 7.1. If G is a graph, then γ t
gr(G) ≤ 2γgr(G), and the bound is sharp.

Proof. Let S = (s1, . . . , sk) be a total dominating sequence of G, where k = γ t
gr(G). We will prove that at most k/2 vertices

can be removed from S in such a way that the resulting sequence S ′ is a legal closed neighborhood sequence of G. We note
that a vertex si in the sequence S prevents S from being a legal closed neighborhood sequence only if N[si] \ ∪

i−1
j=1 N[sj] = ∅.

Since S is a total dominating sequence, we infer that in such a case si footprinted only vertices from S that precede si. That
is, f −1

S (si) ⊆ {s1, . . . , si−1}, where fS : V (G) →S is a footprinter function, mapping each vertex to its footprinter. Let

A = {si ∈ S : f −1
S (si) ⊆ {s1, . . . , si−1}}.

Suppose that for some vertex sj ∈ A, the set f −1
S (sj) ∩ A is not empty. Let si ∈ f −1

S (sj) ∩ A. Since sj ∈ A, the vertex si that
is footprinted by sj satisfies i < j. Since si ∈ A, the vertex si footprints some vertex st , where t < i. But then, when sj was
added to S, si was already totally dominated by st , a contradiction with si ∈ f −1

S (sj). Therefore, for every vertex sj ∈ A, the
set f −1

S (sj) ∩ A = ∅.
Suppose that si, sj ∈ A, where i < j. By definition of the set A, f −1

S (si) ⊆ {s1, . . . , si−1} and f −1
S (sj) ⊆ {s1, . . . , sj−1}.

Further, since every vertex is footprinted by a unique vertex in the sequence S, f −1
S (si) ∩ f −1

S (sj) = ∅. As observed earlier,
the set f −1

S (sj) ∩ A = ∅ for every sj ∈ A. The collection of sets {f −1
S (si) : si ∈ A} therefore forms a partition of a subset ofS \ A, and for each si ∈ A, |f −1

S (si)| ≥ 1. This readily implies that |A| ≤ k/2. It now follows that the sequence S ′, which is
obtained from S by deleting vertices from A, is a legal closed neighborhood sequence of G. This sequence S ′ can be extended
to a dominating sequence of G. Thus, γgr(G) ≥ k − |A| ≥ k −

k
2 =

k
2 =

1
2γ

t
gr(G). That the bound is sharp is shown by the

class of complete graphs, Kn with n ≥ 2, that satisfy γ t
gr(Kn) = 2 and γgr(G) = 1. �

On the other hand, a similar analog of the well-known lower bound γt(G) ≥ γ (G) does not hold for γ t
gr(G) in terms of

γgr(G). Moreover, there exists no positive constant c such that γ t
gr(G) ≥ cγgr(G) would hold in general. For instance, if G is

the star K1,n, then γ t
gr(G) = 2, while γgr(G) = n.

8. Edge covering sequences in hypergraphs

A connection between dominating sequences with covering sequences in hypergraphs was established in [3], and it can
bedone analogously for total dominating sequences.Wewill use this connection to obtain two results, one about the possible
lengths of total dominating sequences, and the other about NP-completeness of the decision version of this problem.

Recall that given a hypergraph H = (X, E) with no isolated vertices, an edge cover of H is a set of hyperedges from
E that cover all vertices of X . That is, the union of the hyperedges from an edge cover is the ground set X . The minimum
number of hyperedges in an edge cover of H is called the (edge) covering number of H and is denoted by ρ(H), cf. [2].
When a greedy algorithm is applied aiming to obtain an edge cover, hyperedges from H are picked one by one, resulting in
a sequenceC = (C1, . . . , Cr), where Ci ∈ E . In each step i, 1 ≤ i ≤ r , Ci is picked in such away that it covers some vertex not
captured by previous steps; that is, Ci \ (∪j<i Cj) ≠ ∅. If this condition is true for each i ∈ {2, . . . , r}, then we call C a legal
(hyperedge) sequence of H . If C = (C1, . . . , Cr) is a legal sequence and the set C = {C1, . . . , Cr} is an edge cover of H , then
C is called an edge covering sequence. If the algorithm happens to produce an optimal solution, then C is a minimum edge
cover of cardinality ρ(H), but in general r ≥ ρ(H). The maximum length r of an edge covering sequence of H is called the
Grundy covering number of H , and is denoted by ρgr(H).

Let G be a graph with no isolated vertices, and let H = (V (G), N (G)), where N (G) denotes the set of all open
neighborhoods of vertices in G, be the open neighborhood hypergraph of G. Clearly there is a one-to-one correspondence
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between edge covering sequences in the hypergraph H and total dominating sequences in G. Hence, using the following
result from [3] we immediately derive Corollary 8.2.

Theorem 8.1. Let H be a hypergraph. For any number ℓ such that ρ(H) ≤ ℓ ≤ ρgr(H) there is an edge covering sequence of
H having length ℓ.

Corollary 8.2. Let G be a graph. For any number ℓ such that γt(G) ≤ ℓ ≤ γ t
gr(G) there is a total dominating sequence of G

having length ℓ.

In the remainder of this section we will consider the following computational complexity problem:

Grundy Total Domination Number
Input: A graph G = (V , E), and an integer k.

Question: Is γ t
gr(G) ≥ k?

It was shown in [3] that the Grundy Domination Number problem, which is the decision version of the Grundy
domination number, is NP-complete, by reduction from the following edge covering problem in hypergraphs

Grundy Covering Number in Hypergraphs
Input: A hypergraph H = (X, E), and an integer k.

Question: Is ρgr(H) ≥ k?

that was also shown to be NP-complete. (See [3, Theorem 4.2].) While the membership of Grundy Total Domination
Number in NP is trivial, we will show the NP-hardness of this problem by a reduction from Grundy Covering Number
in Hypergraphs.

Given a hypergraph H = (X, E) the incidence graph of H is the bipartite graph G = (V , E), whose vertex set V can
be partitioned into disjoint (independent) sets X and E , which correspond to the sets of vertices X and hyperedges E ,
respectively. A vertexx ∈ X is adjacent toB ∈ E if and only if x ∈ B. Using the definitions, we easily see thatS = (B1, . . . , Bt),
a sequence of vertices fromE , is a total dominating sequence ofX if and only if S = (B1, . . . , Bt) is an edge covering sequence
in H . Hence the Grundy covering number of a hypergraph H coincides with the maximum length of a total dominating
sequence of X in the incidence graph of H . In order to determine the Grundy total domination number of the incidence
graph of H we need to establish also the maximum length of a legal sequence of vertices fromX that totally dominates E .
For this we introduce a new notion as follows.

Given a hypergraph H = (X, E) a legal transversal sequence is a sequence S = (v1, . . . , vt) of vertices from X such that
for each i there exists an edge Ei ∈ E such that vi ∈ Ei and vj ∉ Ei for all j, j < i. That is, vi hits an edge Ei which was not hit by
any preceding vertices, and at the end every edge is hit by a vertex fromS. The longest possible legal transversal sequence
in a hypergraph H will be called a Grundy transversal sequence and its length the Grundy transversal number of H , denoted
τgr(H).

Proposition 8.3. The Grundy transversal number of an arbitrary hypergraph H equals the Grundy covering number of H ; in
symbols

τgr(H) = ρgr(H).

Proof. Let S = (v1, . . . , vt) be a Grundy transversal sequence in H , and let (E1, . . . , Et) be a legal sequence of edges in H
such that Ei was hit by vi (i.e. vi ∈ Ei) but was not hit by the vertices that precede vi in S. We claim that the sequence S ′ of
these edges in reverse order, that is S ′

= (Et , . . . , E1), is a Grundy covering sequence. Indeed, if Ei is an arbitrary edge in this
sequence, then vi ∈ Ei, but vi ∉ Ej for j > i, because in the transversal sequence S the set Ej was hit for the first time only
later, by the vertex vj. Hence, S ′ is an edge covering sequence, and ρgr(H) ≥ t = τgr(H).

For the converse the same idea can be used. Note that if S = (E1, . . . , Eu) is a Grundy covering sequence of H , and vi
is a vertex that is in Ei but is not in E1 ∪ · · · ∪ Ei−1 (for each i), then the sequence S ′

= (vu, . . . , v1) is a legal transversal
sequence. This implies τgr(H) ≥ u = ρgr(H). �

From Proposition 8.3, and the fact that the Grundy total domination number of the incidence graph of H coincides with
τgr(H) + ρgr(H) we derive the following result.

Theorem 8.4. If H is a hypergraph and G the incidence graph of H , then γ t
gr(G) = 2ρgr(H).

Since the reduction from a hypergraph to its incidence graph (which is bipartite) is efficiently computable, it follows that
Grundy Total Domination Number is NP-hard even in bipartite graphs.

Corollary 8.5. Grundy Total Domination Number is NP-complete, even when restricted to bipartite graphs.
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9. Open problems

We conclude with an open question and several open problems that we have yet to settle. By Observation 5.5, there is no
constant c > 0 such that γ t

gr(G) ≥ c|V (G)| for every bipartite graph G that is open twin-free. However, in our constructions
every vertex belongs to a 4-cycle. We pose the following question.

Question 1. Does there exist a positive constant c such that γ t
gr(G) ≥ c|V (G)| for every bipartite graph G with no 4-cycles and

with minimum degree at least 2?

By Proposition 2.4, if G is a graph of order n, then γ t
gr(G) ≤ n−δ(G)+1.We have yet to characterize the graphs achieving

equality in this upper bound.

Problem 1. Characterize the graphs G of order n for which γ t
gr(G) = n − δ(G) + 1.

Problem 2. Find an efficient algorithm to compute the Grundy total domination number for trees.

By Corollary 6.5, if G ≠ K3,3 is a connected cubic graph of order n, then γ t
gr(G) ≥

1
2n. We observed that this bound is

achievable.

Problem 3. Characterize the connected cubic graphs G ≠ K3,3 of order n for which γ t
gr(G) =

1
2n.

By Corollary 6.6, if G ≠ K4,4 is a connected 4-regular graph of order n, then γ t
gr(G) ≥

1
3n. We observed that this bound is

achievable.

Problem 4. Characterize the connected 4-regular graphs G ≠ K4,4 of order n for which γ t
gr(G) =

1
3n.

By Observation 3.1, for every graph G, γt(G) ≤ γ t
gr(G). By Theorem 4.4, the graphs G for which γt(G) = γ t

gr(G) = 2
are precisely the complete multipartite graphs. By Theorem 3.2, there is no graph G satisfying γt(G) = γ t

gr(G) = 3. By
Observation 3.3, there are infinitely many connected graphs G with γ t

gr(G) = γt(G) = 4. It remains an open problem to
characterize the graphs G for which γt(G) = γ t

gr(G) = k when k ≥ 4.

Problem 5. Characterize the graphs G such that γt(G) = γ t
gr(G) = k for k ≥ 4.

By Theorem 8.1, if G is a graph, then γ t
gr(G) ≤ 2γgr(G), and the class of complete graphs, Kn with n ≥ 2, achieve equality

in this bound. However, it remains an open problem to characterize the extremal graphs.

Problem 6. Characterize the graphs G for which γ t
gr(G) = 2γgr(G).
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