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Abstract

The Grundy domination number, γgr(G), of a graph G is the maximum
length of a sequence (v1, v2, . . . , vk) of vertices in G such that for every i ∈
{2, . . . , k}, the closed neighborhoodN [vi] contains a vertex that does not belong
to any closed neighborhood N [vj ], where j < i. It is well known that the
Grundy domination number of any graph G is greater than or equal to the
upper domination number Γ(G), which is in turn greater than or equal to the
independence number α(G). In this paper, we initiate the study of the class
of graphs G with Γ(G) = γgr(G) and its subclass consisting of graphs G with
α(G) = γgr(G). We characterize the latter class of graphs among all twin-free
connected graphs, provide a number of properties of these graphs, and prove
that the hypercubes are members of this class. In addition, we give several
necessary conditions for graphsG with Γ(G) = γgr(G) and present large families
of such graphs.

Keywords: Grundy domination, independence number, upper domination num-
ber, bipartite graph

AMS subject classification: 05C69, 05C75

1 Introduction

Given a graph G, a set D is a dominating set if every vertex in V (G) − D has
a neighbor in D. The domination number of G is defined as γ(G) = min{|D| :
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D is a dominating set of G}. A vertex x dominates a vertex y if y is a neighbor of
x or y = x. Building a dominating set in G can be viewed as a process of adding
vertices from G to D one by one so that each time a vertex x is added to D it
dominates a vertex that was not dominated by vertices added to D before x. The
size of a largest dominating set obtained by such a process is the Grundy domination
number, γgr(G), of G. Grundy domination was introduced in [7] and studied by a
number of authors, see [3–5,10,11,17,18] for a selection of papers on this parameter.

It follows from the definitions that γ(G) ≤ γgr(G) in any graph G, and often the
Grundy domination number is much larger than the domination number of G. In the
seminal paper from 2014 [7], the question of which graphs G enjoy γ(G) = γgr(G)
was considered. It was proved that γ(G) = γgr(G) = 1 only in complete graphs
and γ(G) = γgr(G) = 2 precisely in graphs G whose complement G is the disjoint
union of one or more complete bipartite graphs. A few years later, Erey proved that
the mentioned classes of graphs are the only connected graphs in which equality
γ(G) = γgr(G) = 2 holds [16]. We mention that an analogous question for two
related parameters, the total domination number and the Grundy total domination
number, was intensively studied [2, 9, 13], yet a complete characterization seems to
be elusive.

Since the complete characterization of the graphs G with γ(G) = γgr(G) has been
found, natural questions appear by involving graph parameters that lie between γ
and γgr. Two such important parameters (namely, the independence number α(G)
and the upper domination number Γ(G)) will be considered in this paper, and graphs
G in which γgr(G) is equal to one of these parameters will be studied. In the next two
subsections, we (1) give some necessary definitions and present basic observations
that arise, and (2) formulate the main results of the paper and its organization.

1.1 Definitions and preliminaries

Let G be a finite, simple graph with vertex set V (G) and edge set E(G). (When
there is no chance of confusion we will shorten this notation by setting V = V (G)
and E = E(G).) The order of G will be denoted by n(G). For a vertex x ∈ V , the
open neighborhood of x is the set N(x) defined by N(x) = {w ∈ V : xw ∈ E}. The
closed neighborhood N [x] is N(x) ∪ {x}. The open neighborhood of a set A ⊆ V is
N(A) = ∪a∈AN(a) and its closed neighborhood is N [A] = N(A) ∪ A. Two vertices
u and v of G are twins if N [u] = N [v], and we say G is twin-free if it has no twins.
For a ∈ A, the private neighborhood of a (with respect to A) is denoted by pn[a,A]
and is defined by pn[a,A] = {w ∈ V : N [w] ∩ A = {a}}. Any vertex in pn[a,A] is
called a private neighbor of a with respect to A. The subgraph of G induced by A
is denoted by G〈A〉, and for a positive integer n, we will use [n] to denote the set of
positive integers not larger than n.

A set A of vertices is a dominating set of G if N [A] = V . A dominating set
A is a minimal dominating set if A − {a} does not dominate G for every a ∈ A.
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(Equivalently, pn[a,A] 6= ∅ for every a ∈ A.) Imposing this minimality condition
while not requiring the set to be dominating leads to the concept of irredundance.
The set A is irredundant in G if pn[a,A] 6= ∅ for every a ∈ A. Note that a dominating
set of G is a minimal dominating set only if it is a maximal irredundant set in G. The
domination number of G, denoted γ(G), is the minimum cardinality of a dominating
set of G. The upper domination number of G is the cardinality of a largest minimal
dominating set of G and is denoted Γ(G). The minimum cardinality of a maximal
irredundant set in G is the irredundance number of G and is denoted by ir(G)
while the upper irredundance number, IR(G), is the maximum cardinality of an
irredundant set in G. The independence number of G is denoted α(G) and is the
maximum cardinality of a subset of vertices in G that are pairwise nonadjacent; i(G)
denotes the independent domination number of G, which is the minimum cardinality
of a dominating set that is also independent. Equivalently, i(G) is the minimum
cardinality of a maximal independent set. If A is a minimal dominating set of
cardinality γ(G) (respectively, Γ(G)), then A will be called a γ(G)-set (respectively,
a Γ(G)-set). Similar language will be used for each of these other four graphical
invariants ir, i, α and IR. If I is an independent set in G, then x ∈ pn[x, I] for every
vertex x in I, which implies that I is irredundant. For any graph G, the following
well known and much studied string of inequalities

ir(G) ≤ γ(G) ≤ i(G) ≤ α(G) ≤ Γ(G) ≤ IR(G) (1)

follows from these definitions.
In what follows we will need the following result of Cockayne et al.

Theorem 1. ( [12, Theorem 5]) If G is a bipartite graph, then α(G) = Γ(G) =
IR(G).

Let S = (x1, . . . , xn) be a sequence of distinct vertices in G. We denote the
length of S by |S|. The set {x1, . . . , xn} whose elements are the vertices in S is
denoted by Ŝ. The sequence S is called a closed neighborhood sequence (or a legal
sequence) if

N [xi+1]−
i⋃

j=1

N [xj ] 6= ∅ (2)

for each i ∈ [n − 1]. That is, (x1, . . . , xn) is a closed neighborhood sequence if xi+1

has a private neighbor with respect to {x1, . . . , xi+1} for each i ∈ [n − 1]. We will
also say that xi+1 footprints the vertices from N [xi+1] −

⋃i
j=1N [xj] with respect

to S, and that xi+1 is the footprinter of any v ∈ N [xi+1] −
⋃i

j=1N [xj ]. If S is

a legal sequence and Ŝ is a dominating set of G, then S is called a dominating
sequence in G. It is clear that for a dominating sequence S each vertex in V has
a unique footprinter in Ŝ. Hence, the function fS : V → Ŝ that maps each vertex
to its footprinter is well defined. Clearly, a shortest possible dominating sequence
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has length γ(G). A longest possible dominating sequence in G is called a Grundy
dominating sequence, and its length is the Grundy domination number of G, denoted
γgr(G). Legal sequences were introduced in [7] as sequences of legal moves in the
domination game played on a graph. If Staller is the only player making moves, then
the length of the resulting dominating sequence is the Grundy domination number
of the graph. See the book [8] for more on domination game and its relations with
dominating sequences.

Note that any legal sequence in G can always be extended (if it is not already)
to a dominating sequence in G. Thus, any longest legal sequence in G is a Grundy
dominating sequence. A legal sequence that remains legal under any permutation
of its vertices is said to be commutative.

The next observation follows immediately from the definitions.

Observation 1. If S = (x1, . . . , xk) is a legal sequence in G such that Ŝ is irredun-
dant, then S is commutative.

If A is an irredundant set in G, then any permutation of the vertices in A forms
a legal sequence. If A is also a dominating set, then this sequence is a dominating
sequence. On the other hand, if A does not dominate G, then, as noted above, the
sequence can be extended to a dominating sequence in G. This immediately implies
that IR(G) ≤ γgr(G), and thus for any G, we have the following extension of (1)

ir(G) ≤ γ(G) ≤ i(G) ≤ α(G) ≤ Γ(G) ≤ IR(G) ≤ γgr(G). (3)

The join G⊕H of graphs G and H is the graph obtained from the disjoint union
of G and H by adding the edges from the set {gh : g ∈ V (G) and h ∈ V (H)}.
Given two graphs G and H, the Cartesian product G�H of G and H is the graph
with V (G�H) = V (G) × V (H) and (g, h)(g′ , h′) ∈ E(G�H) whenever (g = g′

and hh′ ∈ E(H)) or (gg′ ∈ E(G) and h = h′). Cartesian product is associative and
commutative. The k-cube, Qk, or the hypercube of dimension k, is the Cartesian
product of k copies of the graph K2.

1.2 Goal and brief outline of the paper

In this paper, we initiate the study of two natural classes of graphs that arise from
involving three invariants in the above inequality chain (3). Notably, we consider
the graphs G with Γ(G) = γgr(G), and the graphs G with α(G) = γgr(G).

It is easy to see that if u is a twin in the graph G, then Γ(G) = Γ(G − u)
and γgr(G) = γgr(G − u). Therefore, we will assume that all the graphs under
investigation are twin-free. Furthermore, Γ(G) = γgr(G) if and only if Γ(C) =
γgr(C), for each component C of G. With this in mind we let F denote the class of
twin-free, connected graphs G for which Γ(G) = γgr(G). In addition we let Fα be
the subclass of F consisting of those G ∈ F such that α(G) = γgr(G). Note that Fα
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is a proper subclass of F as can be seen by Γ(Kn�K2) = n = γgr(Kn �K2) and
α(Kn �K2) = 2.

Graphs in F and Fα are in some sense very special, since γgr(G) − Γ(G) and
γgr(G) − α(G) can be arbitrarily large. Indeed, consider the following family of
graphs. For each positive integer n let V (Gn) = {x1, . . . , xn, y1, . . . , yn, z1, . . . , zn}.
Both of the sets {y1, . . . , yn} and {z1, . . . , zn} induce a complete subgraph in Gn and
{x1, . . . , xn} is independent. The remaining edges of Gn are xiyi and yizi for each
i ∈ [n]. Now, γgr(Gn) = 2n, since S = (x1, x2, . . . , xn, y1, y2, . . . , yn) is a Grundy
dominating set. On the other hand, Γ(Gn) = n+ 1 and α(Gn) = n+ 1.

In Section 2 we consider the class F of graphs G with Γ(G) = γgr(G). Note
that any minimal dominating set D of size Γ(G) gives rise to the partition of G into
vertices in D, the private neighbor sets for all vertices in D, and the remaining ver-
tices (which are not in D and have at least two neighbors in D). We present several
necessary conditions that a graph in F must possess, which are expressed in terms
of the private neighborhoods of vertices in a minimal dominating set of size Γ(G).
While these conditions do not necessarily give rise to a characterization of graphs
in F , in Section 3 we present several families of graphs that belong to F or even to
Fα. We prove that the operation of join preserves the property of a graph being in
F , and provide necessary conditions on graphs G and H whose Cartesian product
G�H belongs to Fα. In addition, we use some connections with linear algebra to
prove that all hypercubes belong to Fα. Section 4 is about graphs in Fα and is
the most extensive one. We prove several necessary and sufficient conditions that a
triangle-free graph in Fα must possess. Most of these conditions are of structural
nature and can be expressed as properties that are related to a maximum indepen-
dent set of a graph. In particular, they lead to a characterization of bipartite graphs
in Fα whose girth is at least 6. Finally, in Theorem 20 we give our main result,
which is a characterization of graphs in Fα among all graphs. The characterization
is not structural, since it relies on specific properties that any legal closed neighbor-
hood sequence must possess. Nevertheless, it implies a characterization of n-crossed
prisms that belong to Fα. We conclude the paper with several remarks and open
problems.

2 The Class F

In this section, we derive a number of properties that hold for any Γ(G)-set if G ∈ F .
First we see that the class F coincides with the class of twin-free, connected graphs
whose upper irredundance number equals its Grundy domination number.

Lemma 2. If G is any twin-free, connected graph and IR(G) = γgr(G), then G ∈ F .

Proof. Suppose IR(G) = n and let S = (x1, . . . , xn) be a legal sequence formed
from a IR(G)-set Ŝ. Since |S| = IR(G) = γgr(G) by assumption, it follows that Ŝ
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is a dominating set (for otherwise S could be extended to a dominating sequence).
Also, Ŝ is a minimal dominating set since Ŝ is irredundant. Now we get

Γ(G) ≥ |Ŝ| = γgr(G) = IR(G) ≥ Γ(G) ,

and thus Γ(G) = γgr(G).

Lemma 3. Let G ∈ F . If D is any Γ(G)-set, then pn[u,D] induces a complete
subgraph of G for every u ∈ D.

Proof. Let D = {x1, . . . , xn} be a minimal dominating set of cardinality Γ(G) and
suppose that v1 and v2 are distinct vertices in pn[x1,D]. The sequence (x1, x2, . . . , xn)
is a Grundy dominating sequence. If v1v2 /∈ E, then (x2, x3, . . . , xn, v1, v2) is a legal
sequence of length n+ 1 since v1 footprints itself and v2 footprints itself. This con-
tradiction implies that G〈pn[x1,D]〉 is a complete subgraph. Since any permutation
of D is a legal sequence, the lemma follows.

Corollary 4. If G is a triangle-free graph in F and D is a Γ(G)-set, then |pn[u,D]| ≤
2 for every u ∈ D.

In particular, this corollary holds for bipartite graphs in F . Note that if G is
triangle-free, then |pn[u,D]| = 2 in the conclusion of Corollary 4 is possible only if
u is isolated in the subgraph induced by D.

Lemma 5. If G ∈ F and D is any Γ(G)-set, then for every vertex u in G, there
exists x ∈ D such that pn[x,D] ⊆ N [u].

Proof. Let G ∈ F . Suppose for the sake of contradiction that G has a minimal
dominating set D of cardinality Γ(G) and there exists u ∈ V such that pn[x,D] −
N [u] 6= ∅ for every x ∈ D. Let D = {x1, . . . , xn} and let x′i ∈ pn[xi,D] − N [u]
for each i ∈ [n]. The sequence (x1, . . . , xn) is a Grundy dominating sequence. Let
S = (u, x1, . . . , xn). It follows that with respect to S, u footprints itself, and for
each i ∈ [n], the vertex xi footprints x′i. That is, S is a legal sequence in G and
|S| > n = γgr(G). This contradiction establishes the lemma.

For vertices not belonging to the Γ(G)-set, the conclusion of Lemma 5 can be
strengthened as follows.

Lemma 6. Let G ∈ F and let D be a Γ(G)-set. For every u ∈ V −D there exist
distinct vertices a and b in D such that pn[a,D] ∪ pn[b,D] ⊆ N [u].

Proof. Let S = (x1, . . . , xn) be a sequence such that Ŝ = D and let u ∈ V −D. By
Lemma 5, there exists i ∈ [n] such that pn[xi,D] ⊆ N [u]. Since S is commutative, we
may assume that i = 1. Suppose first that ux1 /∈ E. Since γgr(G) = n, the sequence
T = (u, x1, . . . , xn) is not legal. Since x1 footprints itself with respect to T , there
exists j with 2 ≤ j ≤ n such that N [xj ] ⊆ N [u] ∪ N [x1] ∪ · · · ∪ N [xj−1]. Now,
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pn[xj,D] ∩ N [{x1, . . . , xj−1}] = ∅. It follows that pn[xj,D] ⊆ N [u]. Therefore,
pn[x1,D] ∪ pn[xj,D] ⊆ N [u]. Now suppose that ux1 ∈ E. Since u and x1 are
not twins, N(x1) − N [u] 6= ∅ or N(u) − N [x1] 6= ∅. If N(x1) − N [u] 6= ∅, then
(u, x1) is a legal sequence but (u, x1, x2, . . . , xn) is not a legal sequence. As in
the first case above, we conclude that there exists j with 2 ≤ j ≤ n, such that
pn[x1,D] ∪ pn[xj ,D] ⊆ N [u]. On the other hand, if N(u)−N [x1] 6= ∅, then (x1, u)
is a legal sequence but (x1, u, x2, . . . , xn) is not legal. Once again, the same reasoning
implies that there exists j with 2 ≤ j ≤ n, such that pn[x1,D]∪pn[xj ,D] ⊆ N [u].

In the more restricted class Fα if the set D in Lemma 6 is independent, then
a ∈ pn[a,D] for every a ∈ D. Therefore, we immediately get the following result.

Corollary 7. If G is a graph of order at least 3 that belongs to Fα and A is any
α(G)-set, then |N(u) ∩A| ≥ 2 for every u ∈ V −A.

Let G be a graph in F . Arbitrarily choose and then fix a Γ(G)-set, D =
{x1, . . . , xn}, and apply the following notation. Let Pi = pn[xi,D], where i ∈ [n],
and P = ∪n

i=1Pi. For any u ∈ V −D let Iu = {j : Pj ⊆ N [u]}. Set X = V −(D∪P ).

Proposition 8. Let G be a graph in F and let D = {x1, . . . , xn} be any Γ(G)-set.

(i) If u ∈ V − D, then |Iu| ≥ 2. In particular, if u ∈ Pi, for some i ∈ [n], then
i ∈ Iu.

(ii) If v ∈ Pi, for some i ∈ [n], then for every j ∈ Iv −{i}, there exists k ∈ Iv such
that xjxk ∈ E.

(iii) If w ∈ X and i ∈ [n] such that xixj /∈ E for all j ∈ Iw, then wxi ∈ E or
i /∈ Iw.

(iv) γgr(G〈X〉) ≤ n.

Proof. The first part of the statement (i) is proved in Lemma 6, while the second
part follows from Lemma 3. For the proof of the statement (ii) assume that there
exist v ∈ Pi and j ∈ Iv − {i} such that xjxk /∈ E for all k ∈ Iv. Consider the
sequence, which starts with the vertices from {xk : k ∈ Iv − {j}} in any order, and
is followed by (v, xj). Clearly, for each k ∈ Iv −{j}, xk footprints the vertices in Pk,
while v footprints vertices in Pj. Finally, xj footprints itself, since it is not adjacent
to xk, for any k ∈ Iv. In the end, one can add the remaining vertices of D to the
sequence, each of which footprints its private neighborhood. The resulting sequence
is legal of length n+ 1, a contradiction to G ∈ F .

For the proof of (iii) let w ∈ X and i ∈ [n] such that xixj /∈ E for all j ∈ Iw,
and assume that wxi /∈ E while i ∈ Iw. Consider the sequence, which starts with
the vertices from {xj : j ∈ Iw} − {xi} in any order, is followed by (w, xi), and
completed by the remaining vertices in D. This sequence is legal because each
vertex of D − {xi} footprints a vertex in P , w footprints vertices in Pi, and xi
footprints itself. Statement (iv) is clear.
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3 Examples and constructions of graphs in F

In this section, we present some families of graphs that belong to F or Fα as well
as give some constructions by which the class F is preserved. The following classes
of graphs belong to F , most of which also belong to Fα. (Note that some of the
graphs in the following classes of graphs have twins, yet the equality Γ(G) = γgr(G)
holds for all graphs G in the mentioned classes.)

1. Complete multipartite graphs, G = Kn1,...,nk
, such that n1 ≥ · · · ≥ nk, k ≥ 2,

and nk−1 ≥ 2. Note that α(G) = Γ(G) = γgr(G) = n1. The special case
where ni = 2 for all i ∈ [k] are the so-called cocktail-party graphs, for which
the authors of [7] proved that the Grundy domination number equals the
domination number.

2. Prisms over complete graphs, G = Kn �K2, for n ≥ 2. Note that Γ(G) =
γgr(G) = n. Also, 2 = α(G), which is less than γgr(G) unless n = 2.

3. Certain subclasses of Kneser graphs, as noted by Brešar, Kos and Torres in
[10]. Given positive integers n and r such that n ≥ 2r, the Kneser graph
K(n, r) has as its vertex set the set of all r-subsets of [n]. Two vertices are
adjacent in K(n, r) if and only if they are disjoint. A famous result by Erdös,
Ko and Rado [14] is that α(K(n, r)) =

(
n−1
r−1

)
. Brešar et al. proved that

γgr(K(n, 2)) = α(K(n, 2)) for n ≥ 6 and that for any r ≥ 3 there exists a
positive integer nr such that γgr(K(n, r)) = α(K(n, r)) =

(
n−1
r−1

)
, for n ≥ nr.

Therefore, K(n, 2) ∈ Fα if n ≥ 6, and for n ≥ 3, K(n, r) ∈ Fα for each n
larger than some threshold value that depends on r.

4. The class of (twin-free, connected) cographs. Recall that the class of P4-free
graphs (also known as cographs) are those graphs that can be constructed from
K1 by repeatedly applying the graph operations of taking disjoint unions or
joins. It was proved in [7] that γgr(G) = α(G), for any cograph G, implying
that the class Fα contains the class of twin-free connected cographs. Alterna-
tively, one can prove this by using Lemma 9 below together with the obvious
fact that the disjoint union of graphs from F have equal independence and
Grundy domination numbers.

In the following result we consider the join G ⊕ H of graphs G and H. This
is obtained from the disjoint union of G and H by adding the edges from the set
{gh : g ∈ V (G) and h ∈ V (H)}.

Lemma 9. If G1 and G2 are graphs in F , then G1 ⊕G2 ∈ F .

Proof. Let G1 and G2 be graphs in F and assume without loss of generality that
Γ(G1) ≥ Γ(G2). We claim that Γ(G1 ⊕ G2) = γgr(G1 ⊕ G2) = Γ(G1). Note that
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a minimal dominating set of either G1 or G2 is a minimal dominating set of their
join. Furthermore, if A is any subset of V (G1 ⊕G2) and A contains a vertex from
each of G1 and G2, then A dominates G1 ⊕G2. We infer that Γ(G1 ⊕G2) ≥ Γ(G1).
If Γ(G1) = 1, then the join is a complete graph and the claim holds. Suppose now
that Γ(G1) ≥ 2. By the above we can select a largest minimal dominating set D of
G1 ⊕ G2 to be a Γ(G1)-set. Any permutation of the vertices of D is a dominating
sequence of G1⊕G2. Any sequence of vertices from V (G1⊕G2) of length more than
|D| is not a legal sequence since γgr(G1) = |D| and since a sequence that contains at
least one vertex from each of G1 and G2 cannot be extended to a legal sequence.

It seems natural to investigate whether there exist nontrivial Cartesian products
in F or in Fα. We will make use of the following result from [4].

Proposition 10. ( [4, Proposition 3]) For any two graphs G and H,

γgr(G�H) ≥ max{γgr(G)n(H), γgr(H)n(G)} .

We now prove a necessary condition for a Cartesian product to belong to Fα.

Lemma 11. If G and H are two graphs such that G�H ∈ Fα, then both G and H
are in Fα and α(G)

n(G) =
α(H)
n(H) .

Proof. Let G and H be graphs such that G�H ∈ Fα. It is well-known that
α(G�H) ≤ min{α(G)n(H), α(H)n(G)}. By Proposition 10 we have γgr(G�H) ≥
max{γgr(G)n(H), γgr(H)n(G)}. Since γgr(G�H) = α(G�H), it follows that

max{γgr(G)n(H), γgr(H)n(G)} ≤ min{α(G)n(H), α(H)n(G)} .

We infer the following.

γgr(G)n(H) ≤ α(G)n(H) (4)

γgr(G)n(H) ≤ α(H)n(G) (5)

γgr(H)n(G) ≤ α(G)n(H) (6)

γgr(H)n(G) ≤ α(H)n(G) (7)

The first of these inequalities together with α(G) ≤ γgr(G) implies that γgr(G) =
α(G). Similarly, using the last of these four inequalities we get γgr(H) = α(H).
Therefore, {G,H} ⊆ Fα. Finally, we use the second and the third of these in-
equalities together with γgr(G) = α(G) and γgr(H) = α(H) to conclude that
α(G)
n(G) =

α(H)
n(H) .

By Lemma 11, all but one book graph, or graphs of the form K1,m�K2, are

not in Fα, since
α(K2)
n(K2)

= 1
2 <

α(K1,m)
n(K1,m) when m > 1. Since Pn ∈ Fα if and only

if n ∈ [3], one can use Lemma 11 together with the fact that α(P3 �P3) = 5 and
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γgr(P3 �P3) = 6 to see that P2 �P2 is the only grid graph with two nontrivial
factors that is in Fα. The 3-dimensional hypercube Q3 = C4�K2 is an example
of a (nontrivial) Cartesian product that belongs to Fα. In addition, all hypercubes
belong to Fα, which we will prove by using some connections with linear algebra.

Let G be a graph of order n, and without loss of generality denote its vertex set
by [n]. Let S(G) be the family of all n×n real symmetric matrices whose i, j-entry,
where i 6= j, is non-zero if and only if ij ∈ E(G). Note that there are no restrictions
on the diagonal entries. Minimum rank of G is defined as mr(G) = min{rank(A) :
A ∈ S(G)}.

In [5], a close connection was established between a variation of the Grundy
domination number, called the Z-Grundy domination number, and the zero forcing
number, the concept introduced in [1] and studied in a number of papers both by
graph theorists and linear algebraists. Lin continued the investigation from [5],
and among other results found a similar relation between the Grundy domination
number of a graph and the so-called loop zero forcing number. The latter concept
is in turn related to a version of a minimum rank of a graph, which is defined as
follows.

Let S
ℓ̇
(G) denote the set of all matrices in S(G) whose all diagonal entries are

non-zero. Then, mr
ℓ̇
(G) = min{rank(A) : A ∈ S

ℓ̇
(G)}. Lin proved that γgr(G) ≤

mr
ℓ̇
(G) holds for every graph G, which together with (3) yields

α(G) ≤ γgr(G) ≤ mr
ℓ̇
(G),

for any graph G. Now, let G be the hypercube Qd, where d is a positive integer.
Clearly, α(Qd) = 2d−1, which gives 2d−1 ≤ γgr(Qd). For the reversed inequality we
invoke a result of Huang, Chang and Yeh from [15, Theorem 10], where in the proof
a matrix Bd appears, which belongs to S(Qd). In addition, it is easy to see that
diagonal entries of Bd are non-zero, which implies Bd ∈ S

ℓ̇
(Qd). It is proved in [15]

that rank(Bd) = 2d−1, which yields mrℓ̇(Qd) ≤ 2d−1, hence γgr(Qd) ≤ 2d−1 . We
thus infer the following result.

Proposition 12. Hypercubes belong to Fα. More precisely, γgr(Qd) = α(Qd) = 2d−1

for all positive integers d.

This result is an improvement of the result from [1] that the zero-forcing number
in hypercubes Qd equals 2d−1.

4 The Class Fα

In this section, we prove our main result, a characterization of the graphs that are
in Fα. In the beginning of the section we focus on triangle-free graphs that are
in Fα. Our first result shows that classifying triangle-free graphs in Fα reduces to
classifying all bipartite graphs in Fα.
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Proposition 13. If G is a triangle-free graph of order at least 3 and G ∈ Fα, then
G is bipartite with α(G) = n(G)/2 or G is bipartite and has a unique α(G)-set. In
particular, if A is any α(G)-set, then V −A is independent.

Proof. Let A = {x1, . . . , xn} be an α(G)-set. We first show that if x, y ∈ V − A
such that N(x) ∩ N(y) ∩ A = ∅, then xy 6∈ E. Suppose to the contrary that
{x, y} ⊆ V − A such that xy ∈ E and N(x) ∩ N(y) ∩ A = ∅. Assume without
loss of generality that N(x) ∩ A = {x1, . . . , xr} and N(y) ∩ A = {xr+1, . . . , xt}.
The sequence S = (x1, . . . , xn) is a Grundy dominating sequence. But now S′ =
(x1, . . . , xr, x, xr+1, . . . , xn) is a legal sequence. (In S′, x footprints y and xi foot-
prints xi for every i ∈ [n].) This is a contradiction and therefore no such pair
x, y ∈ V −A exists.

Next, we show that V − A is indeed independent. Let {x, y} ⊆ V − A. If
N(x) ∩N(y) ∩ A = ∅, then xy /∈ E from the above argument. On the other hand,
if N(x) ∩N(y) ∩ A 6= ∅, then xy /∈ E since G is triangle-free. In all of these cases
V −A is an independent set. It follows that G is bipartite. Thus, α(G) ≥ n(G)/2.

Now, if α(G) = n(G)/2, we are done, so let us assume that α(G) > n(G)/2. We
claim that there is only one α(G)-set, and suppose to the contrary that A and B
are distinct α(G)-sets. Let C = A ∩ B and let D = V − (A ∪ B). In addition, let
A1 = A − C and B1 = B − C. Since A 6= B and |A| = |B| = α(G) > n(G)/2, we
infer that C 6= ∅ and that neither of A1 nor B1 is empty. From the above argument,
both of A1 ∪D and B1 ∪D are independent. Let u be any vertex in C and let v be
any vertex in A1. Since N(C) ⊆ D and N(D) ⊆ C there is no u, v-path in G, which
contradicts the fact that G is connected. Therefore, if α(G) > n(G)/2, then G has
a unique α(G)-set.

Based on the above result, we spend the remainder of this section focusing on bi-
partite graphs. We next give two properties that help us determine when a bipartite
graph is in Fα.

Property H: If A is any α(G)-set, then for every W ⊆ V − A with |W | < |A|, we
have |N(W )| ≥ |W |+ 1.

Proposition 14. If G is a bipartite graph of order at least 3 and G ∈ Fα, then G
satisfies Property H.

Proof. Assuming that the statement is false, let A be an α(G)-set, and W =
{w1, . . . , wk} be a subset of V − A with |W | < |A| and |N(W )| ≤ |W |. Since G is
connected, there exists x ∈ N(W ) having a neighbor y /∈ W . Letting A−N(W ) =
{x1, . . . , xℓ}, note that S = (w1, . . . , wk, x, x1, . . . , xℓ) is a legal sequence, since x
footprints y while every other vertex in S footprints itself (note that W is indepen-
dent by Proposition 13). Since |Ŝ| ≥ |A| + 1, this contradicts the assumption that
G ∈ Fα.
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Property T: If A is any α(G)-set and w ∈ V −A, then for each u ∈ N(w) ∩A, we
have N(u) ⊆ N((N(w) ∩A)− {u}).

Proposition 15. If G is a triangle-free graph of order at least 3 and G ∈ Fα, then
G satisfies Property T.

Proof. Let A = {x1, . . . , xn} be an α(G)-set and let w ∈ V −A. By Proposition 13,
G is bipartite and V − A is independent. Reindexing if necessary, we may assume
N(w) = N(w) ∩A = {x1, . . . , xk}. Suppose for some i ∈ [k] that

N(xi) 6⊆ N(N(w) − {xi}).

That is, there exists y ∈ N(xi) such that y 6∈
⋃

j 6=i,j∈[k]

N(xj). Note that

S = (x1, . . . , xi−1, xi+1, . . . , xk, w, xi, xk+1, . . . , xn)

is a legal sequence since xj footprints itself for j ∈ [n]−{i}, w footprints xi, and xi
footprints y. However, this is a contradiction. Therefore no such xi exists, and G
satisfies Property T.

Lemma 16. If G is a bipartite graph of order at least 3 in Fα, and A is any α(G)-
set, then |N(x) ∩N(y) ∩A| 6= 1 for every pair x, y ∈ V −A.

Proof. By Proposition 15, G satisfies Property T. By Corollary 7, |N(u) ∩ A| ≥
2 for every u ∈ V − A. Let {x, y} ⊆ V − A and suppose to the contrary that
N(x) ∩ N(y) ∩ A = {z}. It follows that y ∈ N(z) and y 6∈ N((N(x) ∩ A) − {z}),
which violates Property T.

By Corollary 7 and Lemma 16, we can classify all bipartite graphs in F of girth
6 or more.

Theorem 17. A bipartite graph G with girth at least 6 is in F if and only if G = K1

or G is a star K1,r, where r ≥ 1.

Proof. It is easy to see that K1 and all stars belong to Fα. For the converse let G be
a bipartite graph in the class F having order at least 3 and girth at least 6. Since G
is bipartite, it follows from Theorem 1 that α(G) = Γ(G). Thus, G ∈ F if and only
if G ∈ Fα. Let A be any α(G)-set. Suppose that |V − A| ≥ 2. By Proposition 13,
V −A is independent. Since G is connected, there exists a pair of vertices x and y
that belong to V −A such that N(x)∩N(y)∩A = N(x)∩N(y) 6= ∅. By Lemma 16,
we infer that |N(x) ∩N(y) ∩A| ≥ 2, which implies that G contains a 4-cycle. This
is a contradiction, and thus |A| = n− 1, which means that G is a star.
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Proposition 18. Let G be a connected bipartite graph of order 5 or more, and let A
be an α(G)-set. If there exist distinct vertices x and y in V −A and distinct vertices
u and v in A such that N(x) ∩A = {u, v} = N(y) ∩A, then G 6∈ Fα.

Proof. Suppose to the contrary that G ∈ Fα. Note that S = (x1, x2, . . . , xk) is a
legal sequence where Ŝ = A. Moreover, reindexing if necessary, we may assume
N(x) ∩ A = {x1, x2} = N(y) ∩ A. Note that if N({x1, x2}) = {x, y}, then G = C4.
Therefore, we may assume there exists z ∈ N(x1)− {x, y}.

Suppose first that N(x2) ⊆ N(x1). If there exists w ∈ N(x1) − N(x2), then
S′ = (x2, x, x1, x3, x4, . . . , xk) is a legal sequence as xi footprints itself for 2 ≤ i ≤ k,
x1 footprints w, and x footprints x1. Thus, this case cannot occur and we may
assume N(x1) = N(x2). However, now S′′ = (x, y, x1, x3, x4, . . . , xk) is a legal
sequence since each vertex of S′′ other than x1 footprints itself and x1 footprints z.
Therefore, we may assume N(x2) 6⊆ N(x1). Let t ∈ N(x2) − N(x1) and consider
T = (x1, x, x2, x3, . . . , xk). Note that T is a legal sequence as each vertex of T other
than x and x2 footprint themselves, x footprints x2, and x2 footprints t.

In each case, we have a contradiction. Thus, G 6∈ Fα.

We next present a family of bipartite graphs that shows Property H and T
alone are not sufficient to guarantee that a bipartite graph is in Fα. For each
positive integer n at least 3, we construct a bipartite graph Gn. The set of ver-
tices of Gn consists of two partite sets A = {ai,j : i ∈ [n], j ∈ [3]} ∪ {x, y} and
B = {ui : i ∈ [n]} ∪ {wi : i ∈ [n]}. The vertices x and y are adjacent to ev-
ery vertex of B, and for every i ∈ [n], the vertex ai,1 is adjacent to ui and wi,
while ai,2 and ai,3 are adjacent only to ui. Now, A is the unique α-set of G with
|A| = 3n + 2, and G satisfies Properties H and T. On the other hand, the sequence
S = (a1,3, a1,2, u1, a1,1, a2,3, a2,2, u2, a2,1, . . . , an,3, an,2, un, an,1) is a closed neighbor-
hood sequence, since ai,3 and ai,2 footprint themselves, ui footprints ai,1, and ai,1
footprints wi, for all i ∈ [n]. Since |Ŝ| = 4n, this implies that G /∈ Fα.

We next consider the following additional property, which can be viewed as a
generalization of Property T.

Property T∗: If A is any α(G)-set and W ⊆ V −A, then for every U ⊆ N(W )∩A
with |U | = |W | we have N(U) ⊆ N((N(W ) ∩A)− U).

To see that Property T∗ is a generalization of Property T, note that the latter
is obtained from Property T∗ by letting W = {w} and U = {u}.

Proposition 19. Let G be a connected bipartite graph such that for any α(G)-set
A, the set V −A is independent. If G satisfies Properties H and T∗, then G ∈ Fα.

Proof. Let G be a bipartite graph in which Properties H and T∗ hold (for every α-set
of G). Let A be an α(G)-set. Suppose that S is a closed neighborhood sequence of
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G that involves some vertices in V − A, and let w1, . . . , wk be these vertices in the
order that they appear in S. We may set

S = (a1, . . . , ai1 , w1, ai1+1, . . . , ai2 , w2, . . . , aik , wk, aik+1, . . . , am),

where each of i1 = 0 and ik = m is also possible (in the first case w1 is the first
vertex of S, and in the second case wk ends S), and ar ∈ A for all r ∈ [m].

We claim that for each p ∈ [k],

|(N(w1) ∪ · · · ∪N(wp))− {a1, . . . , aip}| ≥ p. (8)

First, we prove this for p ∈ {1, 2} and then use induction. For p = 1, suppose to the
contrary, that |N(w1)− {a1, . . . , ai1}| = 0. This implies that every vertex in N [w1]
is dominated by {a1, . . . , ai1}. Hence, w1 footprints no vertex, a contradiction. For
p = 2, suppose to the contrary that |(N(w1) ∪ N(w2)) − {a1, . . . , ai2}| ≤ 1. Note
that we may assume |(N(w1) ∪ N(w2)) − {a1, . . . , ai2}| = 1 for otherwise w2 does
not footprint a vertex. Let (N(w1) ∪ N(w2)) − {a1, . . . , ai2} = {a}. By Property
H, |N(w2)| ≥ 2 and therefore some neighbor of w2 is in {a1, . . . , ai2}. Thus, w2

footprints only a and so aw1 6∈ E. It follows that N(w1) ⊆ {a1, . . . , ai2}. Let x
be the last vertex of N [w1] to appear in (a1, . . . , ai1 , w1, ai1+1, . . . , ai2). It is clear
that x 6= w1, for otherwise w1 does not footprint a vertex. Hence, x ∈ A, and so
by Property T∗, N(x) ⊆ N(N(w1) − {x}). We derive that x does not footprint a
vertex, a contradiction.

Now, assume that for some j ≥ 2

|(N(w1) ∪ · · · ∪N(wj−1))− {a1, . . . , aij−1
}| ≥ j − 1 .

We claim that also

|(N(w1) ∪ · · · ∪N(wj−1))− {a1, . . . , aij}| ≥ j − 1. (9)

Suppose this is not the case, and let t ∈ {ij−1+1, . . . , ij} be the smallest index such
that

|(N(w1) ∪ · · · ∪N(wj−1))− {a1, . . . , at}| = j − 2 .

Let w ∈ V − A be a vertex footprinted by at. Let W = {w1, . . . , wj−1} and let
U = (N(w1)∪ · · · ∪N(wj−1))−{a1, . . . , at−1}. Then, |U | = j− 1 = |W |, w ∈ N(U),
while w /∈ N(N(W )−U), which is a contradiction to Property T∗, and (9) is proved.

Since S is a closed neighborhood sequence, wj footprints at least one vertex.
We claim that wj footprints a vertex other than itself. If this were not the case,

then N [wj ] − N [Ŝ′] = {wj}, where S′ is the (leading) subsequence of S given by
S′ = (a1, . . . , ai1 , w1, ai1+1, . . . , ai2 , w2, . . . , aij ). However, this is not possible since

Ŝ′ dominates wj . Thus, wj footprints some vertex a ∈ N(wj). It is clear that
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a /∈ {a1, . . . , aij}, which implies, combined with (9) that |(N(w1) ∪ · · · ∪ N(wj)) −
{a1, . . . , aij}| ≥ j. By induction we now have that

|(N(w1) ∪ · · · ∪N(wp))− {a1, . . . , aip}| ≥ p, for every p ∈ [k] ,

and so (8) is proved. In particular, |(N(w1) ∪ · · · ∪N(wk))− {a1, . . . , aik}| ≥ k. We
claim that

|(N(w1) ∪ · · · ∪N(wk))− {a1, . . . , am}| ≥ k. (10)

Note that whenever a vertex in (N(w1)∪· · ·∪N(wk))∩{aik+1, . . . , am} is added to S,
it does not footprint itself. Suppose that |(N(w1) ∪ · · · ∪N(wk))− {a1, . . . , am}| <
k, and let at ∈ (N(w1) ∪ · · · ∪ N(wk)) ∩ {aik+1, . . . , am} be the vertex with the
smallest index t such that |(N(w1) ∪ · · · ∪ N(wk)) − {a1, . . . , at}| = k − 1. Let
w ∈ V − A be a vertex footprinted by at. Now, setting W = {w1, . . . , wk}, and
U = (N(w1) ∪ · · · ∪N(wk))− {a1, . . . , at−1}, we infer that |U | = k, and w ∈ N(U),
while w /∈ N(N(W ) − U). This is a contradiction with Property T∗, hence (10)
holds. Since V −A is independent by the initial assumption, we get

|(N(w1) ∪ · · · ∪N(wk)) ∩A− {a1, . . . , am}| ≥ k.

Thus

|Ŝ| = m+ k ≤ |Ŝ ∩A|+ |(N(w1) ∪ · · · ∪N(wk)) ∩A− (Ŝ ∩A)| ≤ |A|

and so G ∈ Fα.

We now provide an example of a graph which is in Fα yet does not satisfy
Property T∗. From Section 3, Q3 ∈ Fα. However, Q3 does not satisfy Property T∗.
For example, in Figure 1 consider the α(Q3)-set depicted by the black vertices and
the sets W = {1, 2, 3} and U = {a, c, d}. Then 3 ∈ N(U) yet 3 6∈ N(N(W )− U).

We point out that Property H and Property T∗ are structural properties. Al-
though we were not able to find structural properties that are necessary and sufficient
to guarantee that a graph is in Fα, we are able to show that the following property
based on checking all legal sequences of G is necessary and sufficient to guarantee
that a graph is in Fα.

Property U: Let A be any α(G)-set. If S is a legal sequence and W = Ŝ∩ (V −A),
then |(N(W ) ∩A)− Ŝ| ≥ |W |.

Theorem 20. If G is a connected graph, then G ∈ Fα if and only if G satisfies
Property U.

Proof. Let S = (x1, . . . , xm) be a Grundy sequence of G, let A be any α(G)-set, and
let B = V − A. We first show that if G satisfies Property U, then G ∈ Fα. We
let W = B ∩ Ŝ and (N(W ) ∩ A) ∩ Ŝ = X. Let A′ = A − N(W ). Suppose some
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Figure 1: Graph Q3 does not satisfy Property T∗.

a′ ∈ A′ is not in Ŝ. Then S′ = (x1, . . . , xm, a′) is a longer legal sequence, which
is a contradiction. Hence, A′ ⊆ Ŝ. By Property U, |(N(W ) ∩ A) − Ŝ| ≥ |W | and
therefore

|Ŝ| = |B ∩ Ŝ|+ |A ∩ Ŝ| = |W |+ |X|+ |A′| ≤ |(N(W ) ∩A)− Ŝ|+ |X|+ |A′| = |A|.

On the other hand, |Ŝ| ≥ |A| and so it must be that |Ŝ| = |A| and G ∈ Fα.
For the converse, suppose G does not satisfy Property U. Thus, there exists a

legal sequence S = (x1, . . . , xm) where W = B ∩ Ŝ and |(N(W ) ∩ A) − Ŝ| < |W |.
Let A′ = A −N(W ). Let A′′ = {a ∈ A′ : a /∈ Ŝ}. Write A′′ = {y1, . . . , yℓ}. Then
we can extend S to the legal sequence S′ = (x1, . . . , xm, y1, . . . , yℓ). Therefore,

γgr(G) ≥ |Ŝ′| = |W |+ |(N(W ) ∩A) ∩ Ŝ|+ |A′|

> |(N(W ) ∩A)− Ŝ|+ |(N(W ) ∩A) ∩ Ŝ|+ |A−N(W )|

= |A|,

and we conclude that G /∈ Fα.

We can use Property U to show that the only n-crossed prism graph in Fα is the
4-crossed prism graph. Recall the n-crossed prism graph for even positive integer
n ≥ 4 is defined as follows. Take two disjoint copies of Cn, say C1

n = u1u2 · · · un
and C2

n = v1v2 · · · vn and add the edges vsus+1 for s ∈ {1, 3, . . . , n − 1} and the
edges vtut−1 for t ∈ {2, 4, . . . , n}. The 4-crossed prism graph is isomorphic to the 3-
dimensional hypercube Q3. Note that the n-crossed prism graph is bipartite, cubic,
and vertex-transitive.

Corollary 21. The n-crossed prism graph is in Fα if and only if n = 4.
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Proof. Let Gn be the n-crossed prism graph, and let A = {ui, vi : i is odd} and
B = {ui, vi : i is even} be the two α(Gn)-sets. We first show that the n-crossed
prism graph Gn does not satisfy Property U when n > 4. Consider the legal sequence
S = (u2, v1, v2, u3, u1). Thus, W = B ∩ Ŝ = {u2, v2} and (N(W ) ∩ A) − Ŝ = {v3}.
Hence, Gn does not satisfy Property U when n > 4. Since G4 = Q3, the converse
follows from the result mentioned in Section 3.

Finally, we note that there is some connection to studying graphs containing
triangles in Fα and studying bipartite graphs in Fα. In what follows, we let Guv

denote the graph obtained from G be identifying two vertices u and v of G and then
removing any duplicate edges that result from this identification.

Theorem 22. Suppose G ∈ Fα and I is a maximum independent set in G. For any
pair x, y ∈ V − I, α(Gxy) = γgr(Gxy).

Proof. Write I = {v1, . . . , vk} and note that S = (v1, v2, . . . , vk) is a legal sequence.
Fix x, y ∈ V −I and let w denote the vertex of G′ = Gxy that arises from identifying
x and y. Note that α(G′) = k and that S is a legal sequence in G′ since each vertex
of S footprints itself. Thus, γgr(G

′) ≥ k. Suppose there exists a legal sequence, say
A = (t1, t2, . . . , tk+1), in G′ of length k+1. For each i ∈ [k+1], there is a nonempty
subset Ui of V (G′) such that ti footprints each vertex of Ui with respect to A.

Suppose by contradiction that w 6∈ Â. If Ui − {w} 6= ∅ for each i ∈ [k + 1], then
every vertex of A footprints at least one vertex in G and hence A is a legal sequence
in G. This contradicts the fact that γgr(G) = k. Thus, Uj = {w} for some j with
2 ≤ j ≤ k + 1. Without loss of generality we may assume that xtj ∈ E. Now, as a
sequence in G we see that A is legal since ti footprints Ui for i 6= j and tj footprints x.

This again contradicts γgr(G) = k and therefore we infer that w ∈ Â. That is, w = ti
for some i ∈ [k + 1]. Consider the sequences A′ = (t1, t2, . . . , ti−1, x, ti+1, . . . , tk+1)
and A′′ = (t1, t2, . . . , ti−1, y, ti+1, . . . , tk+1) in G. If w footprints itself with respect
to A in G′, then x footprints itself with respect to A′ in G. Otherwise, w footprints
a vertex si ∈ Ui −{w} with respect to A. If xsi ∈ E, then x footprints si in G with
respect to A′. Otherwise, ysi ∈ E and y footprints si in G with respect to A′′. It
follows that A′ or A′′ is a legal sequence in G, which contradicts γgr(G) = k.

Therefore, γgr(G
′) = k = α(G′).

By Theorem 22, if we contract all adjacent pairs of vertices in the complement
of an α(G)-set the resulting graph will be a bipartite graph in the class Fα if the
original graph is in Fα. Thus, a characterization of the bipartite graphs in Fα gives
partial information about the structure of all graphs in Fα.
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5 Concluding remarks

In this paper, we initiated the study of graphs G in which γgr(G) = Γ(G), or
γgr(G) = α(G), respectively. Since the graphs G in which γgr(G) = γ(G) have been
completely characterized [7,16], studying the mentioned two classes of graphs is the
natural step forward.

We found several properties of graphs G in family F of connected twin-free
graphs with γgr(G) = Γ(G); the properties are related to the partition of a graph G
derived from a Γ(G)-set D, which is formed by D, private neighborhoods of vertices
in D, and the remainder of the graph. It would be interesting to know if these
properties together imply that the graph belongs to F , which we formulate as the
following problem.

Problem 1. Is the reverse direction in Proposition 8 also true? That is, do the
properties (i)-(iv) together imply that a twin-free, connected graph is in F?

Besides the class F we also consider the class Fα consisting of connected, twin-
free graphs with α(G) = γgr(G). The two classes of graphs are rather rich, which
is reflected in a number of families that belong to one or both of the classes (for
instance, we proved that a large family of Kneser graphs as well as all cographs
and hypercubes satisfy α = γgr). In addition, several graph operations preserve the
property of being in one of the two classes.

The most thorough investigation was given to the class Fα. We proved that
triangle-free graphs in Fα are always bipartite graphs in which an α-set is either
unique or of the size half the order. We found two structural properties (called
Property H and Property T) of bipartite graphs in Fα, but they turned out not to
be sufficient for a graph to be in Fα. It would be interesting to investigate whether
Property T could be strengthened in such a way that together with Property H it
would yield a characterization of bipartite graphs in Fα. In particular, Proposi-
tions 14, 15 and 19 lead us to the following question.

Problem 2. Is there a condition stronger than Property T but weaker than Property
T∗ such that the connected bipartite graphs in Fα would be characterized by this
condition and Property H?

Finally, a different kind of condition (called Property U) was established, which
characterizes all graphs in Fα. The condition relies on certain connections between
legal sequences and α-sets in G, and as a result we could determine which of the
graphs are in Fα within the class of n-crossed prisms. It will be interesting if one
can use Property U to determine the graphs in Fα within some other natural class
of graphs.
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[6] Boštjan Brešar, Tanja Gologranc, and Tim Kos, Dominating sequences un-
der atomic changes with applications in Sierpiński and interval graphs, Appl.
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