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a b s t r a c t

A sequence of vertices in a graph G is called a legal dominating sequence if every vertex in
the sequence dominates at least one vertex not dominated by those vertices that precede it,
and at the end all vertices of G are dominated.While the length of a shortest such sequence
is the domination number of G, in this paper we investigate legal dominating sequences of
maximum length, which we call the Grundy domination number of G. We prove that every
graph has a legal dominating sequence of each possible length between its domination
number and its Grundy domination number, and characterize the graphs for which the
domination number and Grundy domination number are both equal to k, for k ≤ 3. We
also prove that the decision version of the Grundy domination number is NP-complete,
even when restricted to the class of chordal graphs, and present linear time algorithms for
determining this number in trees, cographs and split graphs. Several results are extended
to the context of edge covers in hypergraphs.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Given a hypergraph H = (X, E) with no isolated vertices an edge cover of H is a set of hyperedges from E that cover all
vertices of X , i.e., the union of hyperedges from an edge cover is the ground set X . The minimum number of hyperedges in
an edge cover of H is called the (edge) covering number of H and is denoted by ρ(H), cf. [1]. When a greedy algorithm is
applied aiming to obtain an edge cover, hyperedges fromH are picked one by one, resulting in a sequenceC = (C1, . . . , Cr),
where Ci ∈ E . In each step i, 1 ≤ i ≤ r, Ci is picked in such a way that it covers some vertex not captured by previous steps,
i.e., Ci \ (∪j<i Cj) ≠ ∅; we call this a legal choice of the hyperedge, and a sequence is legal if all hyperedges in the sequence
are legally chosen. If the algorithm happens to produce an optimal solution, the set C = {C1, . . . , Cr} is a minimum edge
cover of cardinality ρ(H), but in general r ≥ ρ(H). How large can this r be? We call the maximum length r of a sequence
of hyperedges (C1, . . . , Cr) of H , such that Ci \ (∪j<i Cj) ≠ ∅ for all i, the Grundy covering number of H , and denote it by
ρgr(H). (Note that the name was inspired by the Grundy coloring number, which is the largest number of colors obtainable
by a greedy coloring algorithm.) Can each value between ρ(H) and ρgr(H) be realized as the length of some legal sequence
of hyperedges inH?When can the order of hyperedges in a legal sequence be changed so that the condition on enlargement
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of the set of covered vertices in each step is not destroyed? These and related questions concerning such sequences will be
considered in this paper.

Our main focus and motivation are the so-called dominating sequences. In the above context they arise from the
hypergraph of the closed neighborhoods of vertices in a graph G, i.e., H = (V (G), N (G)), where N (G) denotes the set of all
closed neighborhoods of vertices in G. More precisely, we study arbitrary sequences of distinct vertices from a graph G, such
that each vertex u in the sequence dominates at least one vertex that is not dominated by the vertices preceding u. The idea
for studying these sequences first came from the domination game, as introduced in [2] and studied in several papers (see,
e.g., [10,11]). In this game vertices are chosen, one at a time, by two players Dominator and Staller, and each chosen vertex
must enlarge the set of vertices of G dominated to that point in the game.While the aims of players are opposite (Dominator
wants as few moves as possible in the game, while Staller wants to maximize the number of moves) the outcome of the
game is a sequence of vertices with the property that each chosen vertex is legal in the sense of enlargement of the set of
dominated vertices. Next, we formalize the discussion and fix terminology.

Let S = (v1, . . . , vk) be a sequence of distinct vertices of a graph G. The corresponding set {v1, . . . , vk} of vertices from
the sequence S will be denoted byS. A sequence S = (v1, . . . , vk), where vi ∈ V (G), is a dominating sequence ifS is a
dominating set of G, and S is called a legal (dominating) sequence if, in addition, vi is a legal choice for each i; that is,

N[vi] \ ∪
i−1
j=1 N[vj] ≠ ∅.

Adopting thenotation fromdomination theory, each vertexu ∈ N[vi]\∪
i−1
j=1 N[vj] is called aprivate neighbor ofvi with respect

to {v1, . . . , vi}. We will also use a more suggestive term by saying that vi footprints the vertices from N[vi] \ ∪
i−1
j=1 N[vj], and

that vi is the footprinter of any u ∈ N[vi] \ ∪
i−1
j=1 N[vj]. (The name comes from the fact that in each step the vertex in the

sequence must leave some ‘‘evidence’’ of its presence — a footprint that has not been seen before.) For a legal sequence S
any vertex in V (G) has a unique footprinter inS. Thus the function fS : V (G)→S that maps each vertex to its footprinter is
well defined.

Clearly the length k of a legal sequence S = (v1, . . . , vk) is bounded from below by the domination number γ (G) of a
graph G. For the upper bound, we introduce the notion of a Grundy domination number, following a similar approach as
in the general hypergraph context. Namely, given a finite graph G, the maximum length of a legal dominating sequence in
G will be called the Grundy domination number of a graph G and will be denoted by γgr(G). The corresponding sequence is
called a Grundy dominating sequence of G.

The paper is organized as follows. In the next section we give some basic observations about Grundy dominating
sequences and numbers in standard classes of graphs. We present the general upper bound, γgr(G) ≤ n − δ(G), and
show its sharpness by infinite families of graphs. Next, some sharp lower and upper bounds for this parameter in trees,
split graphs and cographs are proven. In Section 3 we start from a more general perspective of legal covering sequences in
hypergraphs, and first consider such sequences, which remain legal under any permutation. Using this we prove that an
arbitrary hypergraph H has a legal covering sequence of any length between ρ(H) and ρgr(H). Then we again restrict to
dominating sequences in graphs, by considering the graphs in which all legal dominating sequences are of the same length,
and characterize the graphs where this length is k, for k ≤ 3. In particular, for k = 3 there are no such connected graphs.
In Section 4 we prove that the decision version of the problem of computing the Grundy covering number in hypergraphs
is NP-complete, and then strengthen this result by showing that the decision version of computing the Grundy domination
number is NP-complete, even when restricted to chordal graphs. Finally, in Section 5 we present a linear time algorithm for
computing the Grundy domination number of a tree.

2. Grundy domination number

While the lower bound γgr(G) ≥ γ (G) is obvious,wewill focus on the question, inwhich graphsG the equality is attained,
in the next section. In particular, we will characterize the graphs in which γgr(G) = γ (G) = k for k ∈ {1, 2, 3}. We start
this section by presenting a natural upper bound for γgr(G) in arbitrary graphs G. Recall that δ(G) stands for the minimum
degree of a vertex in G.

Proposition 2.1. For an arbitrary graph G, γgr(G) ≤ |V (G)| − δ(G).

Proof. Let S = (s1, . . . , sk) be a Grundy dominating sequence of G. Let u be a vertex footprinted in the last step, that is,
u ∈ f −1S (sk). Since u is not dominated before the last step, we have N[u] ∩ {s1, . . . , sk−1} = ∅, and so

|{s1, . . . , sk−1}| = k− 1 ≤ |V (G)| − (deg(u)+ 1).

Thus, γgr(G) = k ≤ |V (G)| − δ(G). �

Note that the upper bound in Proposition 2.1 can be easily generalized to the hypergraph case, i.e.ρgr(H)≤|E |−δ(H)+1,
where δ(H) stands for the minimum degree of a vertex in H . The bound in Proposition 2.1 is attained by several infinite
families of graphs, such as complete graphs, cycles (γgr(Cn) = n− 2), and complete bipartite graphs (γgr(Kr,s) = s if r ≤ s).
In addition, it is also easy to see that γgr(T ) = |V (T )|−1, if T is a caterpillar (recall that caterpillar is a tree in which removal
of all its leaves results in a path).
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On the other hand, the bound in Proposition 2.1 can be far from the exact value. For instance, in the corona K ∗n of the
complete graph (i.e., to each vertex of Kn a leaf is attached), the upper bound is 2n − 1, but γgr(K ∗n ) = n + 1. Similarly, if a
leaf is attached to just one vertex of Kn, then the Grundy domination number of this graph is 2, but the upper bound from
the proposition is n.

To set the newly introduced concept in the context of domination theory, let us recall some definitions. If the condition
of being a dominating set is not enforced on a subset D but we only require each vertex of D to have a private neighbor with
respect to D, then D is an irredundant set. The smallest and largest cardinalities of a maximal irredundant set are denoted
ir(G) and IR(G) respectively. These two invariants together with the independent domination number, i(G), and the vertex
independence number, α(G), are related by the well-known chain of inequalities:

ir(G) ≤ γ (G) ≤ i(G) ≤ α(G) ≤ Γ (G) ≤ IR(G).

For more information on this sequence of invariants see [8]. It is easy to see that γgr(G) ≥ IR(G). Indeed, suppose that
{v1, v2, . . . , vm} is an irredundant set of order m = IR(G). If 2 ≤ i ≤ m, vertex vi has a private neighbor with respect to
{v1, v2, . . . , vm} and so also has a private neighbor with respect to {v1, v2, . . . , vi}. This implies that either (v1, v2, . . . , vm)
is a legal dominating sequence (if {v1, v2, . . . , vm} is also a dominating set), or vertices can be appended to the end of this
sequence to form a legal dominating sequence. Thus γgr(G) can indeed be put to the right-hand side of the above chain of
inequalities.

Note that there are graphs G with IR(G) = 2 and γgr(G) arbitrarily large. These are for example the balanced co-chain
graphs, which are special co-bipartite graphs, obtainable as follows: take the disjoint union of two cliques C, C ′ of size n,
and add edges between them in such a way that the neighborhoods of the n vertices in C in the other clique form a strictly
increasing chain (with respect to inclusion) of sets of respective sizes 1, . . . , n. It is easy to see that there is a legal dominating
sequence of length n in this graph, yet all its irredundant sets are of cardinality at most 2.

In the rest of this section we study the Grundy domination number in some standard classes of graphs, starting with
trees.

2.1. Trees

We present two simple formulas of similar flavor, one expressing a lower and the other an upper bound on the Grundy
domination number of a tree.

Let T be an arbitrary tree. A vertex v ∈ V (T ), adjacent to a leaf (a vertex of degree 1) of T is called a support vertex of T .
Given a vertex v ∈ V (T ), we denote by deg′(v) the number of neighbors of v in T that are not leaves. We say that a support
vertex v ∈ V (T ) is an end support vertex if deg′(v) ≤ 1. Note that a support vertex is an end support vertex if and only if it
does not lie on a path between two other support vertices. Let us denote by ES(T ) the set of all end support vertices of T .
Note that |ES(T )| ≥ 2 for any tree T that is not a star.

Now, we present an algorithm that yields a legal dominating sequence S of size at least |V (T )|−|ES(T )|+1. It is based on
a breadth-first search of a tree which is rooted in an arbitrarily chosen end support vertex x. The main part of the algorithm
is a recursive procedure called Branching(v), where v corresponds to the root of a branch (i.e., a rooted subtree, whose root
is a vertex v, which is not a leaf, together with all of its descendants). The recursive procedure starts by determining the
leaves adjacent to the root v, the set of which is denoted by Leaves (v), and by determining the set Branches (v), consisting
of all the branches rooted at the other children of v. Then in the procedure we distinguish two cases, based on whether the
parent of v is dominated or not. In each of the cases we determine the order of marking vertices (i.e., appending them to the
sequence S) and calling the procedure Branching.

Algorithm 1: Dominating Sequence
Input: A tree T on n vertices which is not a star
Output: A dominating sequence S of length at least |V (T )| − |ES(T )| + 1.

Let x ∈ ES(T )
Branching(x)
Procedure Branching(v)
Let Leaves(v) = {u1, . . . , us}; Branches(v) = {B1(v1), . . . , Bt(vt)}
if v ≠ x and parent(v) not dominated then

Branching(v1), . . . , Branching(vt ), Mark(u1), . . . ,Mark(us),Mark(v)
else if t > 0 then

Branching(v1), . . . , Branching(vt−1),;
Mark(u1), . . . ,Mark(us),Mark(v),Branching(vt )

else
Mark(u1), . . . ,Mark(us)

Proposition 2.2. Algorithm 1 determines a legal dominating sequence of length at least |V (T )| − |ES(T )| + 1.
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Proof. First let us prove thatwheneverMark is performed by the algorithm, the corresponding vertex has a private neighbor
with respect to the set of vertices that were marked before it. Since in all cases leaves are marked before v, this is clear for
leaves. In the case when parent(v) is not dominated, v footprints parent(v). In the case when parent(v) is dominated, v will
be marked before the last subbranch, if any, is visited. Hence v footprints the root vt of the subbranch Bt(vt).

Note that x (the end support vertex chosen as the root) is in S. To conclude the proof, we must show that all vertices of
V (T ) \ ES(T ) will be marked, that is, they will be in S. Clearly, all leaves will be marked. Note that for every vertex v that
is not an end support vertex nor a leaf Branches(v) is nonempty which means that when v is processed by the algorithm, t
(the number of subbranches) will be positive. Hence v will be marked at one point in the algorithm. �

Corollary 2.3. If T is a tree that is not a star, then γgr(T ) ≥ |V (T )| − |ES(T )| + 1.

Any caterpillar that is not a star, and any subdivided star (all edges subdivided at least once) achieves the lower bound of
Corollary 2.3. On the other hand, for the tree T10 on 10 vertices, obtained from the two copies of P5 by adding an edge between
the two central vertices of the five-vertex paths, the bound is not sharp. Note thatγgr(T10) = 8 > 7 = |V (T10)|−|ES(T10)|+1.
Algorithm 1, depending on the choice of the order of the branches in which the procedure Branching is executed, in one case
marks 8 and in another case marks 7 vertices. The algorithm works as well if T is a star K1,n, in which case it marks all its
leaves, yielding a Grundy dominating sequence of length |V (T )| − |ES(T )|.

Now, we focus on the upper bound for the Grundy domination number of trees.

Lemma 2.4. Let T be a tree, v a vertex of degree at least 2, and S a legal dominating sequence in T . If C is a component of T − v
such that all vertices of C belong toS, then the neighbor of v in C is the last vertex in C to appear in S.

Proof. Let w be the last vertex from C appearing in the sequence S. Clearly w does not footprint itself nor any other vertex
from C , hence it must footprint a vertex not in C . Hence the only possibility is that w is the neighbor of v from C . �

We introduce the following relation on the set ES(T ) of end support vertices of a tree T . Let u, v ∈ ES(T ). We say that
u ∼ v if the path between u and v has at most one vertex z such that deg′(z) > 2. Clearly∼ is reflexive and symmetric. To
see that it is also transitive consider any three vertices u, v, w ∈ ES(T ) such that u ∼ v and v ∼ w. Note that there exists a
unique vertex z that lies on a path between every pair from u, v, w. Clearly z is not a leaf and is not one of u, v, w since they
are end support vertices. We find that deg′(z) ≥ 3, hence z is the only vertex on the path between u (resp. v, w) and z with
deg′ at least 3. Thus u ∼ w. In addition to transitivity we deduce that z lies between any two end support vertices of this
equivalence class. We say that z is the delegate of the particular equivalence class. We denote byT the set of all equivalence
classes of this relation.

Proposition 2.5. Let T be a tree. Then γgr(T ) ≤ |V (T )| − |ES(T )| + |T |.
Proof. Let S be an arbitrary dominating sequence in T . Consider an arbitrary equivalence class fromT and let z be its delegate.
Consider the components C1, . . . , Ck of G − z that contain an end support vertex of this class. Each of the components Ci
contains exactly one end support vertex. Now, suppose that a component Cj has all vertices inS. Then by Lemma 2.4 the
neighbor x of z from Cj is the last vertex from Cj that is appended to S. In particular, at the time x is being added, z is still
undominated to ensure legality. Hence there can be only one component from C1, . . . , Ck such that all its vertices are in S.
Thus in this equivalence class fromT at least k− 1 vertices are not in S. The formula of the proposition follows. �

Note that the bound is sharp for any non-star tree T such that |T̃ | = 1, e.g., for (non-star) caterpillars, and for proper
subdivisions of stars. For a different example, consider the tree T10 on 10 vertices mentioned above, and note that there are
four end support vertices in T10, while T10 has two elements. Thus, the upper bound from Proposition 2.5 is equal to γgr(T10),
which is equal to 8.

In Section 5 we will present an efficient (in fact, linear) yet rather involved algorithm for computing the Grundy
domination number of an arbitrary tree.

2.2. Split graphs and cographs

Recall that a graph is split if its vertex set can be partitioned into a clique and an independent set. A split partition of a
split graph G is a pair (K , I) such that K is a clique, I is an independent set, K ∪ I = V (G) and K ∩ I = ∅. In the next theorem,
we establish a close relationship between the Grundy domination number and the independence number of a split graph.

Theorem 2.6. Let G be a split graph with a maximum independent set I, and let K = V \ I . Then,

γgr(G) =


α(G), if every two vertices in K have a common neighbor in I;
α(G)+ 1, otherwise.

In particular, there exists a polynomial time algorithm for computing the Grundy domination number of a split graph.
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Proof. Given a split graph G, let (K , I) be a split partition of G such that I is a maximal (in fact, maximum) independent set
in G. Such a partition can be found in linear time [7].

Recall that the inequality γgr(G) ≥ α(G) holds for general graphs.
To show that γgr(G) ≤ α(G) + 1, we will prove that there exists a Grundy dominating sequence for G that contains at

most one vertex from K . Let S be the Grundy dominating sequence (v1, . . . , vk) and assume that it maximizes the number
of elements from I . Suppose that there exist two indices i, j ∈ [k] with i < j such that vi, vj ∈ K . Just before vj is added to
the sequence, all vertices in K are already dominated (by vi). Therefore, vj footprints a vertex w from I , and consequently
w does not appear in S. But then, we could replace vj with w in S to obtain an equally long legal dominating sequence with
onemore element from I , contradicting the choice of S. This shows that S contains at most one vertex from K , which implies
γgr(G) ≤ α(G)+ 1.

Suppose that every two vertices in K have a common neighbor in I . Again, let S be a Grundy dominating sequence for G
that maximizes the number of elements from I , say S = (v1, . . . , vk). We want to show that k = α(G), which will follow if
we show that s contains no vertex from K . Suppose for a contradiction that S contains a (unique) vertex from K , say vi ∈ K .
By the choice of S, all vertices in N(vi) ∩ I appear in S before vi. Therefore, vi footprints another vertex from K , say w.
However, since vi and w have a common neighbor in I, w is already dominated by some vertex in {v1, . . . , vi−1}. This is in
contradiction with the fact that S is a legal sequence.

It only remains to show that γgr(G) ≥ α(G) + 1 in the case when not every two vertices in K have a common neighbor
in I . Let x, y ∈ K be two vertices with N(x) ∩ N(y) ∩ I = ∅. A Grundy dominating sequence S of length α(G) + 1 can be
obtained as follows: S = (v1, . . . , vα(G)+1), where N(x) ∩ I = {v1, . . . , vp}, vp+1 = x and {vp+2, . . . , vα(G)+1} = I \ N(x).
It is easy to see that this is indeed a legal sequence since all the vertices in S that are from I footprint themselves, and vp+1
footprints y. �

Another class of perfect graphs where the Grundy domination number is closely related with the independence number,
and can be efficiently computed, is the class of P4-free graphs also known as cographs. Cographs are characterized as the
graphs that can be constructed by an iterative application of applying operations of disjoint union and join starting from the
one-vertex graphs. (Recall that the join of two graphs G and H is the graph obtained from the disjoint union of G and H by
adding all edges connecting a vertex of G with a vertex of H .) This implies that every cograph with at least two vertices is
either disconnected, or its complement is disconnected [3,5,6,12].

Theorem 2.7. For every cograph G, we have γgr(G) = α(G).

Proof. We use induction on n = |V (G)|. For n = 1, we have γgr(G) = α(G) = 1. For n > 1, graph G is either
a disjoint union or a join of two smaller cographs, say G1 and G2. If G is the disjoint union of G1 and G2, then clearly
γgr(G) = γgr(G1)+ γgr(G2) = α(G1)+ α(G2) = α(G), where the second equality holds by the induction hypothesis.

Suppose now that G is the join of G1 and G2. Then α(G) = max{α(G1), α(G2)}, so it suffices to show that γgr(G) =
max{γgr(G1), γgr(G2)} and apply induction. Since every Grundy dominating sequence for G1 or G2 is a legal dominating
sequence for G, we have γgr(G) ≥ max{γgr(G1), γgr(G2)}. We may assume that G is not complete (since otherwise
γgr(G) = α(G) = 1 and we are done). Since G is the join of G1 and G2, every legal dominating sequence of G that contains
a vertex from G1 and a vertex from G2 is of length 2. Since G is not complete, G contains a legal dominating sequence of
length 2 containing vertices from only one of G1 and G2. Consequently, G has a Grundy dominating sequence containing
vertices from only one of G1 and G2, say from G1. Such a sequence is a legal dominating sequence for G1, which implies
max{γgr(G1), γgr(G2)} ≥ γgr(G1) ≥ γgr(G). �

The above result implies that the Grundy domination number can be computed in linear time for cographs. Moreover,
since the four-vertex path P4 is not a cograph and γgr(P4) > α(P4), the class of all graphs G such that γgr(H) = α(H) for
every induced subgraph H of G is exactly the class of cographs.

3. Lengths of legal covering and dominating sequences

Recall that in a hypergraph H = (X, E) with no isolated vertices a set C of hyperedges from E such that ∪A∈C A = X , is
called an edge cover of H . The minimum cardinality of an edge cover of H is denoted by ρ(H). A sequence (B1, . . . , Bk) of
hyperedges in H is a legal sequence if whenever 1 < i ≤ k, Bi \ (B1 ∪ · · · ∪ Bi−1) ≠ ∅. If in addition X = B1 ∪ · · · ∪ Bk,
then the sequence (B1, . . . , Bk) is called a legal covering sequence. Similarly as for dominating sequences, given a covering
sequence S = (B1, . . . , Bk), we denote by S the set {B1, . . . , Bk}.

An edge cover C of H is a minimal edge cover if for every A ∈ C, C \ {A} is not an edge cover of H . This is equivalent to
requiring that for every A ∈ C, there exists a vertex v ∈ X such that

v ∈ A \


B∈C,B≠A

B.

Any such vertex v is called a private member of Awith respect to C. Clearly any edge cover of cardinality ρ(H) is a minimal
edge cover, but there may exist minimal edge covers of H of greater cardinalities.
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Let S = (B1, . . . , Bk) where Bi ∈ E for each i, 1 ≤ i ≤ k. Suppose S is a legal covering sequence of H . We say that
S is commutative if for any permutation π of S, the sequence π(S), defined by (π(B1), . . . , π(Bk)), is also a legal covering
sequence of H .

Lemma 3.1. A legal covering sequence S in a hypergraph H is commutative if and only if S is a minimal edge cover of H .

Proof. Let S = (B1, . . . , Bk), and assume that S is a legal covering sequence in H . Suppose first that S is commutative. For
any hyperedge Bi in S, let π be a permutation such that π(Bk) = Bi; that is, Bi is the last hyperedge in the sequence π(S).
Since S is commutative, it follows that Bi has a private member with respect to {B1, . . . , Bk}. This implies that S is a minimal
edge cover of H .

If S is a minimal edge cover of H , then each Bi has a private member with respect to S. In particular, this implies that
each Bi has a privatemember with respect to {U1, . . . ,Uj, Bi}, where {U1, . . . ,Uj} is an arbitrary subset of S \{Bi}. Hence, the
sequence (U1, . . . ,Uj, Bi) is a legal covering sequence. Consequently, any permutation π of (B1, . . . , Bk) is a legal covering
sequence, which implies that S is commutative. �

It follows directly from the definitions that if (B1, . . . , Bk) is a legal covering sequence of H that is not commutative and
1 < i ≤ k such that Bi has no private member with respect to {B1, . . . , Bk}, then (B1, . . . , Bi−1, Bi+1, . . . , Bk) is also a legal
covering sequence of H . We are now able to prove the following ‘‘interpolation’’ result for legal covering sequences in a
hypergraph.

Theorem 3.2. Let H be a hypergraph. For any number ℓ such that ρ(H) ≤ ℓ ≤ ρgr(H) there is a legal covering sequence of
H having length ℓ.

Proof. Let T be a legal covering sequence in H that has length ρgr(H). Suppose that T is not a minimal edge cover of H .
Using the statement above we can remove hyperedges from T one by one until a legal covering sequence S is reached such
that S is a minimal edge cover. Hence all lengths of legal covering sequences from |S| up to ρgr(H) are realized in H . To
conclude the proof wewill now show that also all lengths of legal covering sequences from ρ(H) up to |S| are realized inH .

Let D be a minimum cardinality edge cover of H ; that is, |D| = ρ(H). If |S| = |D| then the proof is done. OtherwiseS is not a minimum edge cover, and there is a hyperedge A that lies in S but not in D . Since S is a minimal edge cover, we
may assume, by applying Lemma 3.1, that A is the last hyperedge in S. Let S′ be the sequence obtained from S by removing
A. Since A has a private member with respect to S, we conclude that S′ is not a covering sequence (the private members of
A with respect to S do not belong to ∪F∈S′ F ). Now, let D ′ ⊆ D \ S be a smallest set of hyperedges whose union contains
the private members of Awith respect to S. By adding hyperedges from D ′ at the end of S′ we obtain a sequence S′′ which
is a legal covering sequence of H . Note that S′′ may not be a minimal edge cover. (However, each hyperedge of D ′ that was
added to S′ at the end, has a private member with respect to S′′, by the choice of D ′.)

If S′′ is not a minimal edge cover, we remove a hyperedge from S′′ that has no private member with respect to S′′.
This results in a legal covering sequence. If necessary, continue removing such hyperedges one by one until we reach a
legal covering sequence S′′′ which is commutative. Thus we obtain all values of lengths of legal covering sequences from
|S′′| to |S′′′|. Note that at this point it is not necessary that the length of S′′′ is less than the length of S. However, after this
exchange, the resulting sequence S′′′ has fewer hyperedges from S \D than there were such hyperedges in S. By repeating
this procedure, we obtain a list of legal covering sequences whose number of hyperedges from S \ D is decreasing. SinceS \ D is finite, we obtain after a certain number of steps a legal covering sequence whose hyperedges are from D . By the
construction all lengths of sequences from |S| down to |D| are realized in H . The proof is complete. �

For any graph G, let (V (G), N (G)) be the hypergraph where N (G) = {N[v] | v ∈ V (G)}. By applying Theorem 3.2 to this
hypergraph we get the following corollary.

Corollary 3.3. Let G be a graph. For any number ℓ such that γ (G) ≤ ℓ ≤ γgr(G) there is a legal dominating sequence of G
having length ℓ.

In the rest of the section we consider the graphs for which all legal dominating sequences have the same length, say
k. We call such a graph a k-uniform dominating sequence graph, or simply a k-uniform graph for ease of reference in this
paper. In case we are not interested in the particular value of k in the above, we simply refer to G as a uniform dominating
sequence graph. Similarly, wewill speak about k-uniform covering sequence hypergraph if all legal covering sequences in such
a hypergraph have the same length.

The following result follows from definitions.

Proposition 3.4. Let H = (X, E) be a hypergraph such that two copies of the hyperedge B ⊆ X appear in E , and let H ′ be the
hypergraph obtained from H by removing one copy of B from E . Then H is k-uniform if and only if H ′ is k-uniform.

Two distinct nodes x and y in a graph are called twins if N[x] = N[y]. A graph G is said to be twin-free if no two of its
distinct nodes are twins. By Proposition 3.4 we derive that if G is a graph with twins x and y, then G is k-uniform if and only
if G− x is k-uniform. Hence to characterize k-uniform graphs it suffices to concentrate only on twin-free graphs.
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Lemma 3.5. Let G be a twin-free uniform length dominating sequence graph and let x, y ∈ V (G). If N[x] ⊆ N[y], then x = y.

Proof. Suppose that N[x] ⊆ N[y]. If N[x] = N[y] then wemust have x = y since G is twin-free. Hence, we may assume that
there exists a vertex z ∈ N(y) \ N(x). Since G is k-uniform for some k, the sequence S = (x, y) can be extended to a legal
dominating sequence S ′ of G of length k, say S ′ = (x, y, v3, . . . , vk). But then, (y, v3, . . . , vk) is a legal dominating sequence
of G of length k− 1, contradicting the k-uniformity assumption. �

In Theorem 3.6 below, we characterize twin-free k-uniform graphs for k ∈ {1, 2, 3}. For graphs G and H and a positive
integer n, we denote by G the complement of G, by G + H the disjoint union of G and H , and by nG the disjoint union of n
copies of G. By abuse of language, a disjoint union may also refer to only one graph, in particular 1G is G. In the proof we will
use some well-known properties of the class of cographs.

Theorem 3.6. If G is a graph, then
(i) G is 1-uniform if and only if G is a complete graph;
(ii) G is 2-uniform if and only if its complement G is the disjoint union of one or more complete bipartite graphs;
(iii) G is 3-uniform if and only if G is the disjoint union of a 1-uniform and a 2-uniform graph.

Proof. It is easy to verify that every complete graph is 1-uniform, that the complement of the disjoint union of one or more
complete bipartite graphs is 2-uniform, and that the disjoint union of a 1-uniform and a 2-uniform graph is a 3-uniform
graph.

If G is 1-uniform, then α(G) = 1, hence G is a complete graph, as desired.
Suppose that G is 2-uniform. It follows that |V (G)| ≥ 2. Moreover, G is P4-free, since otherwise, assuming that vertices

a, b, c, d induce a P4 with edges ab, bc, cd, the sequence (a, b, c) is a legal sequence (not necessarily dominating) of G of
length 3, contrary to γgr(G) = 2. Suppose first that G is disconnected. Since α(G) = 2, every connected component of G
is complete. Thus in this case G is the disjoint union Kr + Ks for some positive integers r and s, and so G is the complete
bipartite graph Kr,s. Suppose now that G is connected. In this case G is disconnected with n ≥ 2 components, that is, G is
the join of C1, . . . , Cn with each Ci either disconnected or Kn. We infer that each Ci must be a 2-uniform graph. Thus, each
Ci is disconnected, and by the above case, each Ci is isomorphic to the disjoint union of two complete graphs. Thus, G is
isomorphic to the disjoint union of n complete bipartite graphs.

Suppose thatG is 3-uniform. By Proposition 3.4wemay assume thatG is twin-free. (Note that the only twin-free complete
graph is K1, and the only 2-uniform twin-free graphs are nK2 for some n ≥ 1.) We will first show that every two distinct
vertices of G have exactly one common non-neighbor. Let x and y be two distinct vertices of G. By Lemma 3.5, there exists a
vertex x′ ∈ N[x] \ N[y], and a vertex y′ ∈ N[y] \ N[x]. Since γ (G) = 3, the set {x, y} is not a dominating set in G, hence the
set R := V (G)\ (N[x]∪ N[y]) is nonempty. Notice that R is a clique, since otherwise, assuming u and v are two non-adjacent
vertices in R, the sequence S = (x, y, u, v) would be extendable to a legal dominating sequence of G, yielding γgr(G) ≥ 4.
Suppose for a contradiction that |R| ≥ 2, and let u, v ∈ Rwith u ≠ v. By Lemma 3.5, there exists a vertex u′ ∈ N(u) \ N(v).
But now, the sequence S = (x, y, u′, u) can be extended to a legal dominating sequence of G (note that x footprints x′, y
footprints y′, u′ footprints u, and u footprints v).

Since every two distinct vertices in G have a unique common non-neighbor, in the complementary graph G every two
distinct vertices have a unique common neighbor. By a theorem of Erdős, Rényi and Sós [4], G is isomorphic to a friendship
graph, that is, a graph obtained from nK2 (the disjoint union of n copies of K2, where n ≥ 1) by adding to it a dominating
vertex. This completes the proof. �

4. NP-completeness

Recall that the Grundy domination number γgr(G) of a graph G is defined as the maximum length of a legal dominating
sequence of G. It is natural to ask about the computational complexity of the following related problem:

Grundy Domination Number
Input: A graph G = (V , E), and an integer k.

Question: Is γgr(G) ≥ k?

In Theorem 4.1 below, we prove hardness of this problem. Recall that a graph G is chordal if it does not contain any
induced cycle of order at least 4.

Theorem 4.1. Grundy Domination Number is NP-complete, even for chordal graphs.

In order to obtain the result, we first prove NP-completeness of the decision version of the Grundy covering problem in
hypergraphs. For a positive integer k, we denote by [k] the set {1, . . . , k}.

Grundy Covering Number in Hypergraphs
Input: A hypergraph H = (X, E), and an integer k.

Question: Is ρgr(H) ≥ k?

dgozu
Vurgu

dgozu
Vurgu
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Theorem 4.2. Grundy Covering Number in Hypergraphs is NP-complete.

Proof. Membership in NP is trivial. To show hardness, we reduce Feedback Arc Set to Grundy Covering Number in
Hypergraphs. In Feedback Arc Set, we are given a directed graph D = (V , A) and an integer k, and are asked to determine
whether there exists an ordering v1, . . . , vn of all the vertices in V such that atmost k arcs (vi, vj) ∈ A are directed backward
(that is, have j < i). Karp showed in 1972 that the Feedback Arc Set problem is NP-complete [9].

Given an instance (D = (V , A), k) to Feedback Arc Set, we construct an instance (X, E, k′) of Grundy Covering Number
in Hypergraphs, as follows: For every vertex v ∈ V , we introduce a ground-set element av; also, for every arc (u, v) ∈ A,
we introduce a ground-set element x(u,v). Thus X = {av : v ∈ V } ∪ {x(u,v) : (u, v) ∈ A }. The family E of hyperedges is
constructed as follows:

• for every vertex v ∈ V , we place in E the set Ev
:= {av } ∪ {x(u,v) : (u, v) ∈ A, u ∈ V };

• for every arc (u, v) ∈ A, we place in E the set E(u,v)
:= Eu

∪ {x(u,v) }.

Finally, set k′ = n+ |A| − k.

Lemma 4.3. If there exists an ordering v1, . . . , vn of the vertices in V such that at least t arcs (vi, vj) in A are directed forward
(i.e., have i < j), then there exists a sequence E1, . . . , En+t of n+ t sets in E such that Ei \ ∪j<i Ej ≠ ∅ for all i ∈ [n+ t].

Proof. The sequence is made of n consecutive substrings, where the ith substring is produced as follows: take Evi , and then,
in any order, take all the sets E(vi,vj) such that (vi, vj) ∈ A and with j > i.

Notice that Evi will be the first set to cover avi , and each set of the form E(vi,vj) will be the first set to cover the element
x(vi,vj) since j > i. �

Lemma 4.4. If there exists a sequence E1, . . . , En+t of n + t sets in E such that Ei \ ∪j<i Ej ≠ ∅ for all i ∈ [n + t], then there
exists an ordering v1, . . . , vn of the vertices in V such that at least t arcs (vi, vj) in A are directed forward (i.e., have i < j).

Proof. Notice first that, for every vertex v ∈ V , the sets built by means of our reduction respect the following properties:

(i) the sets containing the element av are precisely the set Ev , and the sets E(v,z) where (v, z) is an arc exiting v in D;
(ii) Ev

⊆ E(v,z) for every arc (v, z) ∈ A;
(iii) E(v,z)

\ Ev
= {x(v,z) } for every arc (v, z) ∈ A.

From these properties we can enforce a stronger structure on the sequence, by making some modifications if necessary.
Thus the sequence E1, . . . , En+t will be in standard form if, for every v, we have the following:

(1) The set Ev belongs to the sequence, and is the first set in the sequence covering the element av .
Note that the element av is covered by some set in the sequence. Suppose that the set Ev does not belong to the

sequence. Let Ei be the first set in the sequence covering the element av . Then the sequence can bemodified by inserting
Ei := Ev . Note that feasibility is maintained, and Ei will still be the first set in the sequence covering the element av ,
using the above properties.

(2) The sets of the form E(v,z), if present in the sequence, are all (in some order) just after the set Ev .
Indeed, we already know they will all occur after Ev by (1). If they appear right after Ev , then since x(v,z) is the only

element first covered by E(v,z) (see (iii)), this does not change the feasibility of all other sets in the sequence.

As we have seen, it is always possible to assume (by performing local modifications which do not shorten the sequence
nor invalidate its feasibility) that the sequence is in standard form. The ordering of the vertices is then obtained from the
order in which the members of {Ev

| v ∈ V } appear in the standard form. By the construction it follows that all of the t sets
of the form E(v,z) that belong to the sequence correspond to arcs from A that are directed forward. �

Lemmas 4.3 and 4.4 imply that there exists an ordering v1, . . . , vn of the vertices in V such that at most k arcs in A are
directed backward if and only if there exists a sequence E1, . . . , Ek′ of k′ = n+|A|−khyperedges inE such that Ei\∪j<i Ej ≠ ∅
for all i ∈ [k′]. Therefore, the Grundy Covering Number in Hypergraphs problem is NP-hard, which completes the proof of
Theorem 4.2. �

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Membership in NP is trivial. To show hardness, we reduce Grundy Covering Number in
Hypergraphs to Grundy Domination Number. Assume we are given an instance of Grundy Covering Number in
Hypergraphs, that is, a collection E of sets over a finite ground setX = {x1, . . . , xn}, and an integer k. Our task is to determine
whether there exists a sequence B1, . . . , Bk of k sets in E such that Bi \ ∪j<i Bj ≠ ∅ for every i ∈ [k].

We construct an instance (G, k′) of Grundy Domination Numberwhere G is a chordal graph, as follows.
LetX := X ∪ {x0}. The vertex set V contains each element inX , plus, for every set B ∈ E , we also have B(0), B(1) and B

as vertices. As far as the edges are concerned, we have in E all the edges with both endpoints inX , plus, for every B ∈ E , we
have the two edges B(0)B(1) and B(1)B plus the edges Bx for every x ∈ B. Finally, let k′ = 2 |E | + k+ 1.
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Lemma 4.5. If there exists a sequence B1, . . . , Bk of k sets in E such that Bi \ ∪j<i Bj ≠ ∅ for all i ∈ [k], then there exists a legal
dominating sequence of G = (V , E) of length 2 |E | + k+ 1.

Proof. The sequence is constructed as follows. The first |E | vertices in the sequence are the vertices of the form B(0), with
B ∈ E . The next |E | vertices are the vertices of the form B(1), with B ∈ E . Complete the sequence by appending B1, . . . , Bk, x0
to obtain the resulting legal dominating sequence of length 2 |E | + k+ 1. �

For the proof of the next lemma, we need some preparation. First recall that a vertex a in a graph G is called simplicial if
N[a] is a clique. Let S be a legal dominating sequence in a graph G. If v is a simplicial vertex without a twin in G, then there
exists a legal dominating sequence S ′ with |S ′| ≥ |S| such that fS′(v) = v. Indeed, if fS(v) ≠ v, then v does not occur in S
since N[v] ⊂ N[fS(v)]. Hence, if we replace fS(v) by v in S we obtain a legal sequence of the same length as S, which may
not be dominating. Finally, we obtain a legal dominating sequence S ′ by adding fS(v) at the end if necessary. In the proof of
the following lemma this transformation will be used, implying the assumption for legal dominating sequences that each
simplicial vertex without a twin is its own footprinter.

Lemma 4.6. If there exists a legal dominating sequence S of G = (V , E) of length 2 |E | + k + 1, then there exists a sequence
B1, . . . , Bk of k hyperedges in E such that Bi \ ∪j<i Bj ≠ ∅ for all i ∈ [k].

Proof. We will prove that the following properties may be assumed for a given legal dominating sequence S of G = (V , E)
of length 2 |E | + k+ 1.

(1) x0 is the first vertex inX = N[x0] to occur in the sequence;
(2) for every B ∈ E, B(0) occurs in the sequence;
(3) if vertex B(1) occurs in the sequence for some B ∈ E , then it occurs after B(0);
(4) for every B ∈ E, fS(B) = B(1);
(5) no vertex of X occurs in the sequence;
(6) the first |E | vertices in the sequence are the vertices of the form B(0), with B ∈ E ; the next |E | vertices in the sequence

are the vertices of the form B(1), with B ∈ E ; then some (at least k) vertices of the form B, and finally x0.

Wemay assume that properties (1)–(3) hold by using the remark preceding the statement of the lemma. To prove (4) assume
there exists an B ∈ E such that fS(B) ≠ B(1). By (3) we derive that B(1) does not occur in the sequence. By replacing fS(B)
by B(1) (and, if it is not already the case, move B(0) in front of B(1)), the resulting sequence remains legal and has the same
length as S. Hence, we can assume that there is a legal dominating sequence of this length satisfying (4).

By (4) and (1), no vertex of X can appear in the sequence before all vertices of the form B are dominated. Since x0 is in
the sequence before any vertex of X , (5) follows.

By (4), a vertex of the form B can be a footprinter only of a vertex in X . This immediately implies that x0 appears in S after
all vertices of the form B. Wemay also assume, without loss of legality of the sequence, that vertices of the form B all appear
after the vertices of the form B(1) (by (4)), and these appear after those of the form B(0). This proves (6).

Since S is of length 2 |E | + k+ 1, it follows that at least k vertices in S are of the form B. The corresponding sets B give us
the required (legal edge covering) sequence of sets in E . �

Lemmas 4.5 and 4.6 imply that there exists a legal dominating sequence of G = (V , E) of length k′ if and only if there
exists a sequence B1, . . . , Bk of k sets in E such that Bi \ ∪j<i Bj ≠ ∅ for all i ∈ [k]. Therefore, the Grundy Domination
Number problem is NP-hard on chordal graphs, completing the proof of Theorem 4.2. �

5. A linear time algorithm for Grundy domination number of trees

We will use the following notation throughout this section. Let T be a tree. Arbitrarily choose a vertex v, making T a
rooted tree with root v. Let v1, . . . , vr be the children of v in T . Furthermore let T1, . . . , Tr be connected components of
T \ {v}, where every Ti is a rooted tree with root vi.

We need the following different legal sequence parameters:

• γgr(T ) = max{k : (∃(a1 . . . , ak) ∈ V (T )k) (∀i)(N[ai] \ (


j<i N[aj]) ≠ ∅)};
This is the usual Grundy domination number.

• γ+gr (T ) = max{k : (∃(a1 . . . , ak) ∈ V (T )k) (∀i)(N[ai] \ (


j<i N[aj]) ≠ ∅) ∧ (∃i)(ai = v)};

In words, the parameter γ+gr (T ) is the maximum length of a legal sequence in T that contains the root v.
• γ−gr (T ) = max{k : (∃(a1 . . . , ak) ∈ V (T )k) (∀i)(N[ai] \ (


j<i N[aj]) ≠ ∅) ∧ (∀i)(ai ≠ v)};

In words, the parameter γ−gr (T ) is the maximum length of a legal sequence in T that does not contain the root v.
• γ ′gr(T ) = max{k : (∃(a1 . . . , ak) ∈ V (T )k) (∀i)(N[ai] \ (


j<i N[aj]) ≠ ∅) ∧ (ai = v ⇒ ai ∈


j<i N(aj))};
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In words, the parameter γ ′gr(T ) is the maximum length of a legal sequence in T , in which the root v may only appear
after it was already dominated (i.e., v does not footprint itself).
• γ ′′gr(T ) = max{k : (∃(a1 . . . , ak) ∈ V (T )k) (∀i)(N[ai] \ (


j<i N[aj]) ⊈ {v})}.

In words, the parameter γ ′′gr(T ) is themaximum length of a legal (not necessarily dominating) sequence in T , in which
the root v is not footprinted alone; i.e., if and when v is footprinted, some other vertex is footprinted as well.

We start with some obvious remarks.

Lemma 5.1. The following inequalities hold:

1. γgr(T ) ≥ γ+gr (T );

2. γgr(T ) ≥ γ ′′gr(T );

3. γgr(T ) ≥ γ ′gr(T ) ≥ γ−gr (T ).

From the definitions of γ−gr , γ
+
gr and γgr we get the following result.

Lemma 5.2. For the rooted tree T ,

γgr(T ) = max{γ−gr (T ), γ+gr (T )}.

Lemma 5.3. For the rooted tree T ,

γ−gr (T ) ≥ γgr(T )− 1.

Proof. Let S be an optimal legal dominating sequence of length γgr(T ). If the root v of T is contained in this sequence, then
the sequence obtained from S by the removal of v is legal for γ−gr (T ) and has length γgr(T ) − 1. Thus γgr(T ) − 1 ≤ γ−gr (T ).
On the other hand, if v ∉S, then the sequence S is also legal for γ−gr (T ). Thus γgr(T ) ≤ γ−gr (T ). �

Corollary 5.4. For the rooted tree T ,

γ−gr (T ) ≥ max{γ+gr (T ), γ ′gr(T ), γ ′′gr(T )} − 1.

Lemma 5.5. For the rooted tree T ,

γ ′′gr(T ) ≥ γgr(T )− 1.

Proof. Let (a1, . . . , ak) be an optimal legal sequence for γgr(T ). Since at most one vertex from the sequence footprints only
v, we get γ ′′gr(T ) ≥ γgr(T )− 1. �

Now we will calculate γ+gr , γ
−
gr , γ

′
gr , γ

′′
gr .

Lemma 5.6. For the rooted tree T ,

γ−gr (T ) =

max
1≤i≤r


(γ−gr (Ti)+ 1)+


k≠i

γgr(Tk)


if |T | ≠ 1,

0 if |T | = 1.

Proof. It is clear from the definition of γ−gr that γ−gr (T ) = 0 if |T | = 1. Thus wemay assume that |T | > 1. First we prove that
γ−gr (T ) ≥ A = max1≤i≤r{(γ−gr (Ti) + 1) +


k≠i γgr(Tk)}. It is enough to find a legal dominating sequence of length A, which

does not contain the root v of T . For every i ∈ {1, . . . , r} we construct the following sequence. First we put in a sequence
as many vertices from Ti as possible, such that vi is not in a sequence. Then we add vi, which is allowed, because v is not
dominated yet. The length of this part is γ−gr (Ti)+ 1. Then we add as many vertices as possible from each subtree Tj, where
j ≠ i. The length of this is


j≠i γgr(Tj). Thus for every i ∈ {1, . . . , r} there exists a legal dominating sequence without root

v of length (γ−gr (Ti)+ 1)+


j≠i γgr(Tj) and hence γ−gr (T ) ≥ A.
For the converse let S be the sequence (a1, . . . , ak), optimal for γ−gr (T ). We need to prove that k ≤ A. Let vi be the first

child of v that is contained in S (such vi exists since v ∉ S), that is, vi footprints v. For every j ∈ {1, . . . , r}, let (aj1, . . . , a
j
kj
)

be the subsequence of S which contains all vertices from S that lie in Tj. Thus k = k1 + · · · + kr . Then ki ≤ γ−gr (Ti)+ 1 and
kj ≤ γgr(Tj) for j ≠ i. Thus γ−gr (T ) = k =


1≤i≤r ki ≤ γ−gr (Ti)+ 1+


j≠i γgr(Tj) ≤ A. �
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Lemma 5.7. Let T be the rooted tree. If |T | > 1 then

γ ′′gr(T ) = max


max
1≤i≤r


γ ′′gr(Ti)+


j≠i

γgr(Tj)+ 1


, max
1≤i≤r


γ+gr (Ti)+


j≠i

γgr(Tj)


.

If |T | = 1 then γ ′′gr(T ) = 0.

Proof. It is clear from the definition of γ ′′gr that γ ′′gr(T ) = 0 if |T | = 1. Thus we may assume that |T | > 1. First we prove that
γ ′′gr(T ) ≥ max{A, B}, where A = max1≤i≤r{γ ′′gr(Ti) +


j≠i γgr(Tj) + 1} and B = max1≤i≤r{γ+gr (Ti) +


j≠i γgr(Tj)}. To prove

this we will construct two legal dominating sequences for γ ′′gr(T ), one of length A and one of length B. Let i be an arbitrary
index from {1, . . . , r}.

We construct the first sequence in the following way. For every j ≠ iwe put in the sequence as many vertices from Tj as
possible (with respect to Tj), which means that every vertex in the sequence dominates at least one new vertex from Tj, at
the time it is added. This gives a sequence of length


j≠i γgr(Tj). Then we add the root v of T and finally we add as many

vertices from Ti as possible. Since vi is already dominated with v, no vertex from Ti is allowed to dominate just vi at the time
it is added. The length of this part is 1+ γ ′′gr(Ti). Since index i was arbitrary, this implies γ ′′gr(T ) ≥ A.

For the second sequence we first add as many vertices from Ti as possible (with respect to Ti, which means that every
vertex, at the time it is added, dominates at least one vertex from Ti), such that the root vi of Ti will be contained in this
sequence. The length of this part is γ+gr (Ti). Then we add, for each j ≠ i, to the sequence as many vertices from Tj as possible.
Therefore we added


j≠i γgr(Tj) new vertices to the sequence. By construction, every vertex from the sequence dominates

a new vertex different from v at the time it is added. Thus γ ′′gr(T ) ≥ B.
For the converse let S be the sequence (a1, . . . , ak), optimal for γ ′′gr(T ). We need to prove that k ≤ max{A, B}. For every

i ∈ {1, . . . , r}, let (ai1, . . . , a
i
ki
) be the subsequence of S which contains all vertices from S that lie in Ti. We distinguish two

cases.
Case 1: The root v of T is contained in S. Then k = 1+ k1+· · ·+ kr . Since S is a legal sequence for γ ′′gr(T ), v footprints at least
one of its children. First, we argue that we may assume without loss of generality that at the time v is added, it footprints
exactly one of its children. Suppose this is not the case, and let C = {vi1 , . . . , vip} (where p ≥ 2) denote the set of children
footprinted by v. Consider the sequence S ′ obtained from S by removing v, and let C ′ ⊆ C be the set of those members of
C that are footprinted by some vertex in S ′. Clearly, vertices in C ′ are footprinted by distinct vertices of S ′. Hence, we may
assume without loss of generality that C ′ = {vi1 , . . . , viq} (for some 0 ≤ q ≤ p) where (vi1 , . . . , viq) denotes the order in
which the vertices of C ′ are footprinted by amember of S ′. Then q ≥ p−1 since otherwise we could extend S ′ by appending
to it the sequence (viq+1 , . . . , vip−1 , v), obtaining thus a legal sequence for γ ′′gr(T ) longer than S, which contradicts the choice
of S. If q = p− 1 then a legal sequence for γ ′′gr(T ) of the same length as S may be obtained by appending v at the end of S ′.
If q = p then such a sequence may be obtained by reinserting v into S ′ just before w, where w denotes the vertex of S ′ that
footprints vip . Hence, in each case we can transform S to an optimal sequence such that at the time v footprints exactly one
of its children.

Let vi be the unique child of v that is footprinted by v. If vi or any of its children is contained in S, then it is added after
v. Therefore γ ′′gr(Ti) ≥ ki. Now let j ≠ i. By the choice of i, sequence (aj1, . . . , a

j
kj
) is legal for γgr(Tj), and hence γgr(Tj) ≥ kj.

Together we get k =
r

i=1 ki + 1 ≤ γ ′′gr(Ti)+


j≠i γgr(Tj)+ 1 ≤ A ≤ max{A, B}.
Case 2: The root v of T is not contained in S. We consider two subcases.
Case 2.1: No child of v is inS. Since v ∉ S, all children of v are footprinted by some member of S. In particular, for every
i ∈ {1, . . . , r}, there is a child wi of vi in S which footprints vi. Let w denote the vertex from this set {w1, . . . , wr} that
footprints a vi. Replacing w with v in S produces a legal sequence for γ ′′gr(T ) of the same length as S that contains v. Hence,
we have k ≤ A ≤ max{A, B} by the analysis above.
Case 2.2: Some child of v is in S. Let vi denote the first child of v added to S. Since S is optimal for γ ′′gr(T ), vi footprints at least
one vertex from Ti. Thus ki ≤ γ+gr (Ti). Now let j ≠ i. Since v is already footprinted by vi, every vertex from Tj, that is in S,
footprints a vertex from Tj. Therefore kj ≤ γgr(Tj) and thus k =

r
i=1 ki = γ+gr (Ti)+


j≠i γgr(Tj) ≤ B ≤ max{A, B}. �

The following result follows from Lemmas 5.1, 5.5 and 5.7.

Corollary 5.8. If T is the rooted tree with |T | > 1, then

γ ′′gr(T ) = max
1≤i≤r


γ ′′gr(Ti)+


j≠i

γgr(Tj)+ 1


.

Corollary 5.9. If T is a rooted tree, then γ ′′gr(T ) = γ−gr (T ).
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Proof. The proof is by induction on the number of vertices of T . If T is a tree with |T | = 1, then γ ′′gr(T ) = γ−gr (T ) = 0.
Suppose that γ ′′gr(T

′) = γ−gr (T
′) for every rooted tree T ′, with |T ′| < |T |. Then

γ ′′gr(T ) = max
1≤i≤r


(γ ′′gr(Ti)+ 1)+


j≠i

γgr(Tj)



= max
1≤i≤r


(γ−gr (Ti)+ 1)+


j≠i

γgr(Tj)


= γ−gr (T ),

where the middle equality follows from the inductive assumption. �

Lemma 5.10. For the rooted tree T ,

γ ′gr(T ) = max


γ−gr (T ),max

i≠j


γ−gr (Ti)+ 1+


k≠i,j

γgr(Tk)+ 1+ γ ′′gr(Tj)


,

where the second term in the outer maximum appears only if r ≥ 2.

Proof. First we prove that γ ′gr(T ) ≥ max{A, B}, where A = γ−gr (T ) and B = maxi≠j{γ−gr (Ti)+1+


k≠i,j γgr(Tk)+1+γ ′′gr(Tj)}
(or B = A if r < 2). The inequality γ ′gr(T ) ≥ A has already been established in Lemma 5.1. To prove γ ′gr(T ) ≥ B, we will
construct a legal dominating sequence for γ ′gr(T ) of length B. Assume that r ≥ 2 and let i ≠ j be arbitrary indices from
{1, . . . , r}. We start the sequence with an optimal sequence for γ−gr (Ti). Then we add vi, which is allowed, since it footprints
v. The length of this part is γ−gr (Ti)+ 1. Then for every k ≠ i, j we append to the sequence an optimal sequence for γ−gr (Ti).
This extends the length of our sequence for


k≠i,j γgr(Tk). Finally we add the root v and append an optimal sequence for

γ ′′gr(Tj). It is clear that we obtain a legal sequence for γ ′gr(T ) of total length γ−gr (Ti)+ 1+


k≠i,j γgr(Tk)+ 1+ γ ′′gr(Tj). Since
the choice of i ≠ j was arbitrary, this implies γ ′gr(T ) ≥ B.

For the converse let S be the legal sequence (a1, . . . , ak), optimal for γ ′gr(T ). We need to prove that k ≤ max{A, B}. Let
(ai1, . . . , a

i
ki
) be the subsequence of S which contains all vertices from S that lie in Ti. We distinguish two cases. If v is not

contained in S then clearly k ≤ γ−gr (T ) ≤ max{A, B}. Thus let v be contained in S. Since at the time v is added to the sequence
v is already dominated, at least one child of v is in S before v. Let vi be the first such vertex, that is, if vj with j ≠ i is contained
in S, then vi is added before vj. Therefore γ−gr (Ti) ≥ ki− 1. Since v footprints at least one vertex, say vj, v is in S before vj and
before any child of vj. Thus no vertex from Tj, which is in S, footprints just vj. Therefore γ ′′gr(Tj) ≥ kj. Since v is footprinted
by vi, γgr(Tℓ) ≥ kℓ for every ℓ ≠ i, j. Together we get k =

r
ℓ=1 kℓ + 1 ≤ γ−gr (Ti)+ 1+


ℓ≠i,j γgr(Tℓ)+ 1+ γ ′′gr(Tj) ≤ B ≤

max{A, B}. �

From Lemmas 5.5, 5.6 and 5.10 we get the following result.

Corollary 5.11. If T is a rooted tree, then

γ ′gr(T ) =


max
i≠j


(γ−gr (Ti)+ 1)+


p≠i,j

γgr(Tp)+ 1+ γ ′′gr(Tj)


if r > 1,

γ−gr (T ) if r ≤ 1.

From Lemma 5.1 and Corollary 5.9 we immediately infer the following result.

Corollary 5.12. If T is a rooted tree, then

γ ′′gr(T ) ≤ γ ′gr(T ).

Lemma 5.13. If T is a rooted tree, then

γ+gr (T ) = max


1+

r
i=1

γ ′gr(Ti),max
i≠j


(γ−gr (Ti)+ 1)+ γ ′′gr(Tj)+


k≠i,j

γgr(Tk)+ 1


,

where the second term in the outer maximum appears only if r ≥ 2.
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Proof. First we prove that γ+gr (T ) ≥ max{A, B}, where A = 1 +
r

i=1 γ ′gr(Ti) and B = maxi≠j{(γ−gr (Ti) + 1) + γ ′′gr(Tj) +
k≠i,j γgr(Tk)+1}. It is enough to find a legal dominating sequence of lengthmax{A, B}which contains v. First we construct

such sequence of length A in the following way. For every i ∈ {1, . . . , r} let Si be the legal sequence (ai1, . . . , a
i
ki
), optimal

for γ ′gr(Ti), that is, ki = γ ′gr(Ti). Furthermore let vi = aisi , where si = ki + 1 if vi is not in the sequence Si. It is easy to see that

(a11, . . . , a
1
s1−1, a

2
1, . . . , a

2
s2−1, . . . , a

r
1, . . . , a

r
sr−1, v, a1s1 , . . . , a

1
k1 , . . . , a

r
sr , . . . , a

r
kr )

is a legal dominating sequence for T of length A, containing v.
On the other hand, if r > 1, we can also find a legal dominating sequence containing v with length B. Let i ≠ j be two

arbitrary indices from {1, . . . , r}. We start the sequence with an optimal dominating sequence for Ti, not containing vi, and
then we add vi. The length of this part is γ−gr (Ti) + 1. Then we add as many as possible vertices from each subtree Tk, for
k ≠ i, j, which gives the length


k≠i,j γgr(Tk). Finally we add the root v of T and an optimal sequence for γ ′′gr(Tj). Notice that

the sequence so constructed is a legal sequence for γ+(T ) with length γ−gr (Ti)+ 1+ γ ′′gr(Tj)+


k≠i,j γgr(Tk)+ 1. Since the
choice of i ≠ jwas arbitrary, this implies γ+gr (T ) ≥ B. This shows that γ+gr (T ) ≥ max{A, B} for r ≥ 2.

For the converse inequality, let S = (a1, . . . , ak) and assume that S is an optimal sequence for T , containing v (thus
k = γ+gr (T )). We need to prove that k ≤ max{A, B} if r ≥ 2 and k ≤ A otherwise. For every i ∈ {1, . . . , r}, let (ai1, . . . , a

i
ki
)

be the subsequence of S which contains all vertices from S that lie in Ti. Thus k = 1 + k1 + · · · + kr . We distinguish three
cases.
Case 1: the vertex v footprints only itself. Therefore for every i ∈ {1, . . . , r}, at least one child of vi precedes v in S, and no
child of v precedes v in S. Hence, if vi is in S, then vi footprints at least one vertex from Ti \ {vi}, and it does not footprint
itself, which means that γ ′gr(Ti) ≥ ki. Thus k =


1≤i≤r ki + 1 ≤


1≤i≤r γ ′gr(Ti)+ 1 = A.

Case 2: the vertex v footprints itself and at least one of its children. Without loss of generality let v footprint v1, . . . , vl for
1 ≤ l ≤ r and let vl+1, . . . , vr be already footprinted when v is added to S. Since v footprints itself, v precedes all of its
children in S. Furthermore, for every 1 ≤ i ≤ l, v precedes all children of vi in S. Hence, γ ′′gr(Ti) ≥ ki for every i such that
1 ≤ i ≤ l. Now let i ∈ {l+ 1, . . . , r}. If vi is in S then it footprints at least one of its children but it does not footprint itself.
Thus γ ′gr(Ti) ≥ ki. Altogether we get k =

r
i=1 ki + 1 =

l
i=1 γ ′′gr(Ti)+

r
i=l+1 γ ′gr(Ti)+ 1 ≤

r
i=1 γ ′gr(Ti)+ 1 = A.

Case 3: the vertex v is in S, but it does not footprint itself. Note that in this case r > 1. Thus at least one of the children of
v precedes v in S, and at least one of its children is not dominated before v is added. Therefore the case of sequence that
realizes γ ′gr(T ) with v being in S applies. Hence we may use the same argument as the one in the proof of Lemma 5.10 to
conclude that k ≤ B ≤ max{A, B}. �

From Corollary 5.11 and Lemma 5.13 we get the following result.

Corollary 5.14. If T is a rooted tree, then

γ+gr (T ) =


max


1+


1≤i≤r

γ ′gr(Ti), γ
′

gr(T )


if r > 1,

1+

1≤i≤r

γ ′gr(Ti) if r ≤ 1.

Corollary 5.15. If T is a rooted tree, then

γ+gr (T ) ≥ γ−gr (T ).

Proof. If r = 0 then the result is clear. If r = 1 then γ+gr (T ) = 1+ γ ′gr(T1) ≥ 1+ γ ′′gr(T1) = 1+ γ−gr (T1) = γ−gr (T ). Finally if
r > 1, then γ+gr (T ) ≥ γ ′gr(T ) ≥ γ ′′gr(T ) = γ−gr (T ). �

Corollary 5.16. If T is a rooted tree, then

γgr(T ) = γ+gr (T ).

Corollaries 5.8, 5.9, 5.11, 5.14 and 5.16 imply the following relations.

Corollary 5.17. If T is a rooted tree, then

• γ ′′gr(T ) =


max1≤i≤r


γ ′′gr (Ti)+


j≠i γgr (Tj)+ 1


if r ≥ 1,

0 if r = 0.

• γ ′gr(T ) =


maxi≠j


(γ ′′gr (Ti)+ 1)+


p≠i,j γgr (Tp)+ 1+ γ ′′gr (Tj)


if r > 1,

γ ′′gr (T ) if r ≤ 1.
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• γgr(T ) =


max


1+


1≤i≤r γ ′gr (Ti), γ

′
gr (T )


if r > 1,

1+


1≤i≤r γ ′gr (Ti) if r ≤ 1.

Before describing a linear time algorithm for computing the Grundy domination number of a tree, let us first simplify the
above corollary. Observe that:

max
1≤i≤r


γ ′′gr(Ti)+


j≠i

γgr(Tj)+ 1

=

r
j=1

γgr(Tj)+ max
1≤i≤r


γ ′′gr(Ti)− γgr(Ti)


+ 1

and

max
i≠j


(γ ′′gr(Ti)+ 1)+


p≠i,j

γgr(Tp)+ 1+ γ ′′gr(Tj)


=

r
p=1

γgr(Tp)+max
i≠j


γ ′′gr(Ti)− γgr(Ti)


+


γ ′′gr(Tj)− γgr(Tj)


+ 2 .

Hence, denoting δγgr(T ) = γ ′′gr(T )− γgr(T ), we can rephrase the above corollary in the following equivalent way:

Corollary 5.18. If T is a rooted tree, then

• γ ′′gr(T ) =

r
j=1 γgr (Tj)+max1≤i≤r {δγgr (Ti)} + 1 if r ≥ 1,

0 if r = 0.

• γ ′gr(T ) =

r
p=1 γgr (Tp)+maxi≠j


δγgr (Ti)+ δγgr (Tj)


+ 2 if r > 1,

γ ′′gr (T ) if r ≤ 1.

• γgr(T ) =


max


γ ′gr (T ),


1≤i≤r γ ′gr (Ti)+ 1


if r > 1,

1≤i≤r γ ′gr (Ti)+ 1 if r ≤ 1.

Consequently, Algorithm 2 below correctly computes the Grundy domination number of a tree T in time O(n). Let us root
T at an arbitrary vertex r . For w ∈ V (T ), we denote by Tw the subtree of T rooted at w.

Algorithm 2: Grundy domination number of a tree
Input: A tree T on n vertices.
Output: γgr(T ).

Fix a root r ∈ V (T ), and let v1, v2, . . . , vn−1, vn = r be the vertices of T listed in reverse order with respect to the time
they are visited by a breadth-first traversal of T from r
for i = 1, . . . , n do

Let C(vi) be the set of children of vi
if C(vi) = ∅ then

γ ′′gr(Tvi)← 0, γ ′gr(Tvi)← 0, γgr(Tvi)← 1, δγgr(Tvi)←−1

else
S ←


u∈C(vi)

γgr(Tu)
M ← max


δγgr(Tu) : u ∈ C(vi)


γ ′′gr(Tvi)← S +M + 1
if |C(vi)| = 1 then

γ ′gr(Tvi)← γ ′′gr(Tvi)

γgr(Tvi)← 1+ γ ′gr(Tu), where u is the unique child of vi

else
M ′ ← second largest element in the multiset


δγgr(Tu) : u ∈ C(vi)


γ ′gr(Tvi)← S +M +M ′ + 2
γgr(Tvi)← max


γ ′gr(Tvi),


u∈C(vi)

γ ′gr(Tu)+ 1


δγgr(Tvi)← γ ′′gr(Tvi)− γgr(Tvi)

return γgr(Tr)

Let us now justify the algorithm’s linear time complexity. The vertex ordering v1, . . . , vn can be computed in O(n) time
using a breadth-first traversal from r . At each leaf (vertex vi with C(vi) = ∅), a constant number of operations is performed.
At each internal vertex vi,O(|C(vi)|) operations are performed (assuming, as usual, that adding and comparing two numbers
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can be done in O(1) time). Denoting by L(T ) the set of leaves of T and by I(T ) the set of internal vertices of T , we can bound
the time complexity of the algorithm as

O(|L(T )|)+


v∈I(T )

O(|C(v)|) = O(|L(T )|)+ O(|E(T )|) = O(n).

We have thus proved:

Theorem 5.19. There exists a linear time algorithm for computing the Grundy domination number of a tree.

Remark 5.20. The results of this section and their proofs imply that Algorithm 2 can be modified so that it also computes a
Grundy dominating sequence of the input tree T . At every vertex vi, an optimal dominating sequences for γgr(Tvi), γ

′
gr(Tvi)

and γ ′′gr(Tvi) has to be computed. The time complexity of the so modified algorithm becomes O(n2).
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