Graph editing: algorithms and experimental results

Christophe Crespelle

Université Côte d'Azur
with Jean Blair, Anne-Aymone Bourguin, Benjamin Gras, Daniel Lokshtanov, Remi Pellerin, Anthony Perez, Thi Ha Duong Phan, Eric Thierry and Stéphan Thomassé

$$
\begin{aligned}
& \text { UNIVERSITÉ }: \because \%: ~ \\
& \text { COTE D'AZUR }
\end{aligned}
$$

Complex Networks

Complex networks

Real-world data
Ex of contexts: computer science, social sciences, biology, linguistics, medecine, transportation, communications, industry, economy, ...

complex
II
large
$+$
unordered

Complex networks

Real-world data
Ex of contexts : computer science, social sciences, biology, linguistics, medecine, transportation, communications, industry, economy, ...

complex

II
large
$+$
unordered

Not complex

Complex networks

- Real-world data (not formally defined)

Ex of contexts :

computer science, social sciences, biology, linguistics, medecine, Transportation, communications, industry, economy, ...

Proteine interactions

link

How does a living cell work?
meanin

Word networks

How does a language evolve?

Complex networks

-Real-world data
Ex of contexts : computer science, social sciences, biology, linguistics, medecine, transportation, communications, industry, economy, ...

complex

 II large$+$ unordered

Links depend on time
$(1.25, a, b)$
$(2.50, b, c)$
$(4.58, a, b)$
$(5.83, a, b)$
$(7.08, b, c)$
$(8.33, c, e)$

Four big classes of problems

- Measurement

Analysis
Modelling
Algorithms

Four big classes of problems

- Measurement
- Analysis

Modelling
Algorithms

Graph theory

Complex networks as almost structured graphs

Almost structured graphs

- loosely constrained
\rightarrow randomness
strongly impacted by their context
\rightarrow structure

Almost structured graphs

- loosely constrained
\rightarrow randomness
strongly impacted by their context
\rightarrow structure

Complex networks
$=$ structure +
randomness
[Watts \& Strogatz 1998]
High local density
Short distances

Almost structured graphs

- loosely constrained
\rightarrow randomness
${ }^{\square}$ strongly impacted by their context
\rightarrow structure
Complex networks $=$
(1) strongly structured

Almost structured graphs

- loosely constrained
\rightarrow randomness
strongly impacted by their context
\rightarrow structure
Complex networks = structure + randomness
(1) strongly structured

(2) random modifications

Almost structured graphs

- loosely constrained
\rightarrow randomness
strongly impacted by their context
\rightarrow structure
Complex networks = structure + randomness
(1) strongly structured

(2) random modifications

Almost structured graphs

- loosely constrained
\rightarrow randomness
strongly impacted by their context
\rightarrow structure
Complex networks = structure + randomness
(1) strongly structured
(2) random modifications

Almost structured graphs

- loosely constrained
\rightarrow randomness
strongly impacted by their context
\rightarrow structure

Complex networks = structure + randomness
(1) strongly structured

(2) random modifications

Graph editing algorithms

Graph editing algorithms

TARGET CLASS
(ex: chordal graphs)

Definition:
Chordal graphs $=$ graphs without induced cycle on at least 4 vertices

Graph editing algorithms

Definition:
Chordal graphs = graphs without induced cycle on at least 4 vertices

Graph editing algorithms

GOAL: perform as few modifications as possible

Graph editing algorithms

Two constrained versions of the problem:
Only additions allowed

completion algorithm

Only deletions allowed

deletion algorithm

Motivations

Mathematics
Distance to and projection on a class of graphs. How far is a graph from having a certain property?

Computation

Natural extension of the recognition problem of graph classes. When the recognition fail, how to minimally correct the graph?

Data science

Remove noise in graph data.

- Measurement errors
- Randomness (non-constrained part of the data)
- Anything deviating from the main structure

Editing real-world networks

 \title{Cograph edition of real-world graphs
}
 \title{
Cograph edition of real-world graphs
}

35 real-world graphs

$+$
8 random graphs

Context	Network	\mathbf{n}	\mathbf{m}	\mathbf{d}°	\%mod
WWW	in-2004	1148875	12281937	21.4	12%
WWW	cnr-2000	227058	2187201	19.3	19%
PROTEIN	reactome	5973	145778	48.8	22%
SOFTWARE	jak	6434	53658	16.7	29%
SOFTWARE	jung-j	6120	50290	16.4	29%
WWW	eu-2005	835044	15718784	37.7	29%
CO-AUTHOR	ca-GrQc	4158	13422	6.5	34%
CO-AUTHOR	ca-HepPh	11204	117619	21.0	34%
SPECIES	foodweb	183	2434	26.6	43%
CO-AUTHOR	dblp	317080	1049866	6.6	45%
WORD-REL.	wordnet	145145	656230	9.0	48%
COMMUNIC.	wiki-Talk	2388953	4656682	3.9	49%
CO-SOLD	amazon	334863	925872	5.5	49%
CO-AUTHOR	ca-CondMat	21363	91286	8.6	52%
RANDOM	ER-Gnm_1M-2	796208	958827	2.4	52%
CO-AUTHOR	ca-HepTh	8638	24806	5.7	54%
INTERNET	as2000	6474	12572	3.9	54%
ROAD	roadNet-TX	1351137	1879201	2.8	54%
INTERNET	as-caida2007	26475	53381	4.0	55%
CO-AUTHOR	c-AstroPh	17903	196972	22.0	59%
INTERNET	topology	34761	107720	6.2	61%
RANDOM	ER-Gnm_1M-3	940987	1494643	3.2	63%
INTERNET	as-skitter	1694616	11094209	13.1	64%
CO-OCCUR	bible-names	1707	9059	10.6	67%
PROTEIN	figeys	2217	6418	5.8	67%
CITATION-SCI.	cora	23166	89157	7.7	68%
SOCIAL	youtube	1134890	2987624	5.3	69%
CO-ACTOR	actor-col.	374511	15014839	80.2	71%
P2P-CONNECT.	p2p-Gnutella	62561	147878	4.7	71%
RANDOM	ER-Gnm_1M-4	980191	1999203	4.1	71%
CITATION-SCI.	citeseer	365154	1721981	9.4	75%
CITATION-PAT.	cit-Patents	3764117	16511740	8.8	76%
SOFTWARE	linux	30817	213208	13.8	77%
SOCIAL	LiveJournal	3997962	34681189	17.4	78%
CITATION-SCI.	cit-HepTh	27400	352021	25.7	79%
RANDOM	ER-Gnm-1M-6	997479	2999988	6.0	79%
CITATION-SCI.	cit-HepPh	34401	420784	24.5	81%
RANDOM	ER-Gnm_-1M-8	999684	3999999	8.0	84%
RANDOM	ER-Gnm-_M-10	999952	5000000	10.0	87%
RANDOM	ER-Gnm-1M-15	1000000	7500000	15.0	91%
SOCIAL	orkut	3072441	117185083	76.3	91%
RANDOM	ER-Gnm_1M-20	1000000	10000000	20.0	93%
WORD-REL.	Thesaurus	23132	297094	25.7	93%

WORD-REL

Cograph edition of real-world graphs

Cograph edition of real-world graphs

Cograph edition of real-world graphs

	Context	Network	n	m	d°	\%mod	
	WWW	in-2004	1148875	12281937	21.4	12%	RESUTS
	WWW	cnr-2000	227058	2187201	19.3	19\%	RESUK1
	PROTEIN	reactome	5973	145778	48.8	22%	
	SOFTWARE	jdk	6434	53658	16.7	29%	
	SOFTWARE	jung-j	6120	50290	16.4	29%	
	WWW	eu-2005	835044	15718784	37.7	29%	
	CO-AUTHOR	ca-GrQc	4158	13422	6.5	34%	
	CO-AUTHOR	ca-HepPh	11204	117619	21.0	34%	Some networks are very
	SPECIES	foodweb	183	2434	26.6	43%	
	CO-AUTHOR	dblp	317080	1049866	6.6	45%	close from cographs
	WORD-REL.	wordnet	145145	656230	9.0	48%	close from cographs
	COMMUNIC.	wiki-Talk	2388953	4656682	3.9	49%	
	CO-SOLD	amazon	334863	925872	5.5	49%	
	CO-AUTHOR	ca-CondMat	21363	91286	8.6	52%	Random graohs are never
	RANDOM	ER-Gnm_1M-2	796208	958827	2.4	52%	Rancin yraphs are never
35 real-world	CO-AUTHOR	ca-HepTh	8638	24806	5.7	54%	
	INTERNET	as2000	6474	12572	3.9	54%	
graphS	ROAD	roadNet-TX	1351137	1879201	2.8	54%	
	INTERNET	as-caida2007	26475	53381	4.0	55%	
	CO-AUTHOR	ca-AstroPh	17903	196972	22.0	59%	
	INTERNET	topology	34761	107720	6.2	61%	
+	RANDOM	ER-Gnm_1M-3	940987	1494643	3.2	63%	
	INTERNET	as-skitter	1694616	11094209	13.1	64%	
	CO-OCCUR	bible-names	1707	9059	10.6	67%	
8 random	PROTEIN	figeys	2217	6418	5.8	67%	A wide range of proximity
8 rancon	CITATION-SCI.	cora	23166	89157	7.7	68 \%	
graphs	SOCIAL	youtube	1134890	2987624	5.3	69%	12% to 93\%
	CO-ACTOR	actor-col.	374511	15014839	80.2	71%	
	P2P-CONNECT.	p2p-Gnutella	62561	147878	4.7	71%	
	RANDOM	ER-Gnm_1M-4	980191	1999203	4.1	71%	
	CITATION-SCI.	citeseer	365154	1721981	9.4	75%	
	CITATION-PAT.	cit-Patents	3764117	16511740	8.8	76%	
	SOFTWARE	linux	30817	213208	13.8	77%	
	SOCIAL	LiveJournal	3997962	34681189	17.4	78%	
	CITATION-SCI.	cit-HepTh	27400	352021	25.7	79%	
	RANDOM	ER-Gnm_1M-6	997479	2999988	6.0	79%	
	CITATION-SCI.	cit-HepPh	34401	420784	24.5	81%	
	RANDOM	ER-Gnm_1M-8	999684	3999999	8.0	84%	
	RANDOM	ER-Gnm_1M-10	999952	5000000	10.0	87\%	
	RANDOM	ER-Gnm_1M-15	1000000	7500000	15.0	91%	
	SOCIAL	orkut	3072441	117185083	76.3	91%	
	RANDOM	ER-Gnm_1M-20	1000000	10000000	20.0	93\%	
27	WORD-REL.	Thesaurus	23132	297094	25.7	93\%	

Cograph edition of real-world graphs

Close to cographs
\qquad WWW
software

Context	Network	\mathbf{n}	\mathbf{m}	\mathbf{d}°	\% mod
WWW	in-2004	1148875	12281937	21.4	12%
WWW	cnr-2000	227058	2187201	19.3	19%
PROTEIN	reactome	5973	145778	48.8	22%
SOFTWARE	jdk	6434	53658	16.7	29%
SOFTWARE	jung-j	6120	50290	16.4	29%
WWW	eu-2005	835044	15718784	37.7	29%
CO-AUTHOR	ca-GrQc	4158	13422	6.5	34%
CO-AUTHOR	ca-HepPh	11204	117619	21.0	34%
SPECIES	foodweb	183	2434	26.6	43%
CO-AUTHOR	dblp	317080	1049866	6.6	45%
WORD-REL.	wordnet	145145	656230	9.0	48%
COMMUNIC.	wiki-Talk	2388953	4656682	3.9	49%
CO-SOLD	amazon	334863	925872	5.5	49%
CO-AUTHOR	ca-CondMat	21363	91286	8.6	52%
RANDOM	ER-Gnm_1M-2	796208	958827	2.4	52%
CO-AUTHOR	ca-HepTh	8638	24806	5.7	54%
INTERNET	as2000	6474	12572	3.9	54%
ROAD	roadNet-TX	1351137	1879201	2.8	54%
INTERNET	as-caida2007	26475	53381	4.0	55%
CO-AUTHOR	ca-AstroPh	17903	196972	22.0	59%
INTERNET	topology	34761	107720	6.2	61%
RANDOM	ER-Gnm_1M-3	940987	1494643	3.2	63%
INTERNET	as-skitter	1694616	11094209	13.1	64%
CO-OCCUR	bible-names	1707	9059	10.6	67%
PROTEIN	figeys	2217	6418	5.8	67%
CITATION-SCI.	cora	23166	89157	7.7	68%
SOCIAL	youtube	1134890	2987624	5.3	69%
CO-ACTOR	actor-col.	374511	15014839	80.2	71%
P2P-CONNECT.	p2p-Gnutella	62561	147878	4.7	71%
RANDOM	ER-Gnm_1M-4	980191	1999203	4.1	71%
CITATION-SCI.	citeseer	365154	1721981	9.4	75%
CITATION-PAT.	cit-Patents	3764117	16511740	8.8	76%
SOFTWARE	linux	30817	213208	13.8	77%
SOCIAL	LiveJournal	3997962	34681189	17.4	78%
CITATION-SCI.	cit-HepTh	27400	352021	25.7	79%
RANDOM	ER-Gnm_1M-6	997479	2999988	6.0	79%
CITATION-SCI.	cit-HepPh	34401	420784	24.5	81%
RANDOM	ER-Gnm_1M-8	999684	3999999	8.0	84%
RANDOM	ER-Gnm_1M-10	999952	5000000	10.0	87%
RANDOM	ER-Gnm_1M-15	1000000	7500000	15.0	91%
SOCIAL	orkut	3072441	117185083	76.3	91%
RANDOM	ER-Gnm_1M-20	1000000	10000000	20.0	93%
WORD-REL.	Thesaurus	23132	297094	25.7	93%

The proximity with cographs highly depends on the real-world context

Cograph edition of real-world graphs

Not close not far internet road

Context	Network	\mathbf{n}	\mathbf{m}	\mathbf{d}°	\% mod
WWW	in-2004	1148875	12281937	21.4	12%
WWW	cnr-2000	227058	2187201	19.3	19%
PROTEIN	reactome	5973	145778	48.8	22%
SOFTWARE	jdk	6434	53658	16.7	29%
SOFTWARE	jun-j	6120	50290	16.4	29%
WWW	eu-2005	835044	15718784	37.7	29%
CO-AUTHOR	ca-GrQc	4158	13422	6.5	34%
CO-AUTHOR	ca-HepPh	11204	117619	21.0	34%
SPECIES	foodweb	183	2434	26.6	43%
CO-AUTHOR	dblp	317080	1049866	6.6	45%
WORD-REL.	wordnet	145145	656230	9.0	48%
COMMUNIC.	wiki-Talk	2388953	4656682	3.9	49%
CO-SOLD	amazon	334863	925872	5.5	49%
CO-AUTHOR	ca-CondMat	21363	91286	8.6	52%
RANDOM	ER-Gnm_1M-2	796208	958827	2.4	52%
CO-AUTHOR	ca-HepTh	8638	24806	5.7	54%
INTERNET	as2000	6474	12572	3.9	54%
ROAD	roadNet-TX	1351137	1879201	2.8	54%
INTERNET	as-caida2007	26475	53381	4.0	55%
CO-AUTHOR	ca-AstroPh	17903	196972	22.0	59%
INTERNET	topology	34761	107720	6.2	61%
RANDOM	ER-Gnm_1M-3	940987	1494643	3.2	63%
INTERNET	as-skitter	1694616	11094209	13.1	64%
CO-OCCUR	bible-names	1707	9059	10.6	67%
PROTEIN	figeys	2217	6418	5.8	67%
CITATION-SCI.	cora	23166	89157	7.7	68%
SOCIAL	youtube	1134890	2987624	5.3	69%
CO-ACTOR	actor-col.	374511	15014839	80.2	71%
P2P-CONNECT.	p2p-Gnutella	62561	147878	4.7	71%
RANDOM	ER-Gnm_1M-4	980191	1999203	4.1	71%
CITATION-SCI.	citeseer	365154	1721981	9.4	75%
CITATION-PAT.	cit-Patents	3764117	16511740	8.8	76%
SOFTWARE	linux	30817	213208	13.8	77%
SOCIAL	LiveJournal	3997962	34681189	17.4	78%
CITATION-SCI.	cit-HepTh	27400	352021	25.7	79%
RANDOM	ER-Gnm_1M-6	997479	2999988	6.0	79%
CITATION-SCI.	cit-HepPh	34401	420784	24.5	81%
RANDOM	ER-Gnm_1M-8	999684	3999999	8.0	84%
RANDOM	ER-Gnm_1M-10	999952	5000000	10.0	87%
RANDOM	ER-Gnm_1M-15	1000000	7500000	15.0	91%
SOCIAL	orkut	3072441	117185083	76.3	91%
RANDOM	ER-Gnm_1M-20	1000000	10000000	20.0	93%
WORD-REL.	Thesaurus	23132	297094	25.7	93%

The proximity with cographs highly depends on the real-world context

Cograph edition of real-world graphs

	Context	Network	n	m	d°	\%mod	
	Www	in-2004	1148875	12281937	21.4	12\%	
	WWW	crr-2000	227058 5973	2187201	19.3	19\%	
	PROTEIN SOFTWARE	reactome jdk	5973 6434	145778 53658	48.8 16.7	22% 29%	
	Software	jung-j	6120	50290	16.4	29\%	
	WWW	eu-2005	835044	15718784	37.7	29\%	
	CO-AUTHOR CO-AUTHOR	${ }_{\text {ca-Grqc }}^{\text {ca- }}$	4158 11204	13422 117619	6.5 21.0	34% 34%	
	SPECIES	foodweb	183	$\begin{array}{r}1434 \\ \hline\end{array}$	26.6	43\%	
	CO-AUTHOR	dblp	317080	1049866	6.6	45\%	
	WORD-REL. COMMUNIC.	wordnet wiki-Talk	145145 2388953	$\begin{array}{r} 656230 \\ 4656682 \end{array}$	9.0 3.9	48% 49%	
	Co-SOLD	amazon	334863	${ }_{925872}$	5.5	49\%	
	CO-AUTHOR	ca-CondMat	21363	91286	8.6	52%	
	Random	ER-Gnm_1M-2	796208	958827	2.4	52%	
	CO-AUTHOR	ca-HepTh	8638	24806	5.7	54%	
	Internet	as2000	6474	12572	3.9	54%	
	ROAD INTERNET	roadNet-TX as-caida2007	$\begin{array}{r}1351137 \\ 26475 \\ \hline\end{array}$	1879201 53381	2.8 4.0	54% 55%	
	CO-AUTHOR	${ }^{\text {as-c-AstroPh }}$	17903	196972	22.0	59\%	
	Internet	topology	34761	107720	6.2	61%	
	RANDOM	ER-Gnm_1M-3	940987	1494643	3.2	63\%	
	Internet	as-skitter	1694616	11094209	13.1	64%	
	CO-OCCUR	bible-names	${ }^{1707}$	9059	${ }^{10.6}$	67% 67%	
	PROTEIN	figeys cora	${ }_{2217} 216$	6418 89157	5.8	67%	
	CITATION-SCI.	cora	$\begin{array}{\|r\|} \hline 23166 \\ 1134890 \end{array}$	$\begin{array}{r} 89157 \\ 2987624 \\ \hline \end{array}$	7.7 5.3	68% 69%	
	CO-ACTOR	actor-col.	374511	15014839	80.2	71%	
	P2P-CONNECT.	p2p-Gnutella	${ }^{62561}$	147878	4.7	71%	
Far from cographs	RANDOM CITATION-SCI	ER-Gnm_-1M-4	980191 365154	1999203 1721981	4.1 9.4	71\%	
Far from cographs	CITATION-PAT.	citeser cit-Patents	365154 376417	1721981	9.4 8.8	75% 76%	The proximity with cographs
\square citation	SOFTWARE	linux	30817 3997962	213208 34681189	13.8	77\%	
	SOCIAL	LiveJournal	3997962 27400	34681189 352021	17.4	78% 79%	highly depends on the
\square Social	RaNDOM	ER-Gnm-1M-6	997479	2999988	6.0	79\%	
	CITATION-SCI. RANDOM	${ }_{\text {ceit-Hepl }}^{\text {ER-Gnm_1 }}$ M-8	34401 999684	420784 3999999	24.5 8.0	81% 84%	real-world context
	RANDOM	ER-Gnm_1M-10	999952	5000000	10.0	87\%	
	RANDOM	ER-Gnm-1M-15	1000000	7500000	15.0	91\%	
	SOCIAL	orkut	3072441	117185083	76.3	91%	
31	RANDOM WORD-REL.	ER-Gnm_1M-20 Thesaurus	$\begin{array}{r} 1000000 \\ 23132 \end{array}$	10000000 297094	20.0 25.7	$\begin{aligned} & 93 \% \\ & 93 \% \end{aligned}$	

Graph editing algorithms

Graph editing algorithms

GOAL: perform as few modifications as possible

Graph editing algorithms

GOAL: perform as few modifications as possible

- Unfortunately: minimum number is NP-hard for most properties

Even when only one type of modifications is allowed

Graph editing algorithms

GOAL: perform as few modifications as possible

- Unfortunately: minimum number is NP-hard for most properties

Even when only one type of modifications is allowed
Different approaches:

- Restricted inputs
- Exact exponential algorithms
- Parameterized algorithms
- Approximation algorithms
- Inclusion minimal modification

Graph editing algorithms

GOAL: perform as few modifications as possible
-Unfortunately: minimum number is NP-hard for most properties
Even when only one type of modifications is allowed
Different approaches:

- Restricted inputs
- Exact exponential algorithms
- Parameterized algorithms (1st lecture)
- Approximation algorithms
- Inclusion minimal modification (2nd lecture)

Cographs

Cographs

1. Characterization by forbiden subgraphs:

no induced P_{4}

(path on 4 vertices)
2. Obtained from single vertices by using two operations:
disjoint union
(II)

complete union
(S)

cotree

Cographs

Exercise:

Is \boldsymbol{d} adjacent to \boldsymbol{y} ? mon-adijacat.
Is a adjacent to \boldsymbol{t} ? adjucent

Cographs

cotree

Exercise:

Is \boldsymbol{d} adjacent to \boldsymbol{y} ?
Is a adjacent to t?

Answer:

- Find the lowest common ancestor of the two leaves
- II : non-adjacent

S : adjacent

Cographs
Exercise: Are these two graphs cographs ?

nodi Cogaln.

Cographs

Exercise: Are these two graphs cographs?

Cographs

Exercise: Are these two graphs cographs?

$\mathrm{AP}_{4} \mathrm{in}_{1}$

Cotree of $\mathbf{G}_{\underline{2}}$

Coraph editing

TARGET CLASS: Cographs

Give a minimum cograph editing of G

Coraph editing

Editing ???

TARGET CLASS: Cographs

Exercise:

Give a minimum cograph editing of G

Coraph editing

Exercise:

Give a minimum cograph editing of G

- 3 modifications are enough

Coraph editing

Exercise:

Give a minimum cograph editing of G

- 3 modifications are enough

Coraph editing

Exercise:

Give a minimum cograph editing of G

- 3 modifications are enough
- Can you do it with 2 modifications only?

Coraph editing

Exercise:

Give a minimum cograph editing of G

- 3 modifications are enough
- Can you do it with 2 modifications only?

Coraph editing

Coraph editing

GOAL: perform as few modifications as possible
-Unfortunately: minimum number is NP-hard for cograph editing
Even when only one type of modifications is allowed

Coraph editing

GOAL: perform as few modifications as possible

- Unfortunately: minimum number is NP-hard for cograph editing

Even when only one type of modifications is allowed
Are cographs a complicate class of graphs?

Coraph editing

GOAL: perform as few modifications as possible

- Unfortunately: minimum number is NP-hard for cograph editing

Even when only one type of modifications is allowed
Are cographs a complicate class of graphs?

- Need a criterion : propositions?

Coraph editing

GOAL: perform as few modifications as possible

- Unfortunately: minimum number is NP-hard for cograph editing

Even when only one type of modifications is allowed
-Are cographs a complicate class of graphs?

- Need a criterion : propositions?

Number of graphs in the class with n vertices \leftrightarrow size of the representation

Coraph editing

GOAL: perform as few modifications as possible

- Unfortunately: minimum number is NP-hard for cograph editing

Even when only one type of modifications is allowed

- Are cographs a complicate class of graphs?
- Need a criterion : propositions?

Number of graphs in the class with n vertices \leftrightarrow size of the representation

- For labelled cographs: $O(n)$ integers $=O(n \log n)$ bits

Coraph editing

GOAL: perform as few modifications as possible

- Unfortunately: minimum number is NP-hard for cograph editing

Even when only one type of modifications is allowed

- Are cographs a complicate class of graphs?
- Need a criterion : propositions?

Number of graphs in the class with n vertices \leftrightarrow size of the representation

- For labelled cographs: $O(n)$ integers $=O(n \log n)$ bits
- For graphs in general: $O\left(n^{2}\right)$ bits

Coraph editing

GOAL: perform as few modifications as possible

Unfortunately: minimum number is NP-hard for clique + isolated vertices editing

Even worse example: clique + isolated vertices

Coraph editing

> GOAL: perform as few modifications as possible

Unfortunately: minimum number is NP-hard for clique + isolated vertices editing

Even worse example: clique + isolated vertices

- Up to isomorphism: 1 integer $=\mathrm{O}(\log \mathrm{n})$ bits

Coraph editing

GOAL: perform as few modifications as possible

Unfortunately: minimum number is NP-hard for clique + isolated vertices editing

Even worse example: clique + isolated vertices

- Up to isomorphism: 1 integer $=O(\log n)$ bits
- For graphs in general: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ bits

Coraph editing

> GOAL: perform as few modifications as possible

Unfortunately: minimum number is NP-hard for clique + isolated vertices editing

Exercise:

Does it remain hard for pure completion?
For pure deletion?

Coraph editing

GOAL: perform as few modifications as possible

Unfortunately: minimum number is NP-hard for clique + isolated vertices editing

In general : no rule

Minimum editing to a split graph is polynomial time solvable

Coraph editing

> GOAL: perform as few modifications as possible

Unfortunately: minimum number is NP-hard for clique + isolated vertices editing

In general : no rule

Minimum editing to a split graph is polynomial time solvable Minimum completion and minimum deletion are_NP-hard

Coraph editing

GOAL: perform as few modifications as possible
-Unfortunately: minimum number is NP-hard for cograph editing
Even when only one type of modifications is allowed
Different approaches:

- Restricted inputs
- Exact exponential algorithms
- Parameterized algorithms (1st lecture)
- Approximation algorithms
- Inclusion minimal modification (2 $2^{\text {nd }}$ lecture)

Polynomial Kernels for Edge Modification Problems

Parameterized complexity

Idea: the computational difficulty of treating an instance is not only due to its size: also depend on a relevant alternative parameter \mathbf{k}

Parameterized complexity

Idea: the computational difficulty of treating an instance is not only due to its size: also depend on a relevant alternative-parameter \mathbf{k}

Data Reduction: KERNEL

An algorithm A that reduces an instance ($1, k$) to an instance ($\left(l^{\prime}, k^{\prime}\right)$ s.t.

- A runs in polynomial time (wrt. |II)
- $\left(l^{\prime}, k^{\prime}\right)$ is a YES-instance iff (l, k) is a YES-instance
$\cdot I^{\prime} \mid \leq g(k)$ and $k^{\prime} \leq k \rightarrow\| \|^{\prime} \mid$ depends only on k (not on \|\| $\|$)

Parameterized complexity

Idea: the computational difficulty of treating an instance is not only due to its size: also depend on a relevant alternative parameter \mathbf{k}

Data Reduction: KERNEL
An algorithm A that reduces an instance (l,k) to an instance (l',k') s.t.

- A runs in polynomial time (wrt. |II)
- $\left(l^{\prime}, k^{\prime}\right)$ is a YES-instance iff (I, k) is a YES-instance
$\bullet\left|I^{\prime}\right| \leq g(k)$ and $k^{\prime} \leq k \longrightarrow\| \|^{\prime} \mid$ depends only on $k($ not on \|\|)

POLYNOMIAL KERNEL : g is a polynomial

Survey on edge modification

A survey of parameterized algorithms and the complexity of edge modification Christophe Crespelle, Pål Grønås Drange, Fedor V. Fomin, Petr A. Golovach

graph class	completion		deletion		editing		
		TIME		TIME		TIME	
	KERNEL	SUBEPT	KERNEL	SUBEPT	KERNEL	SUBEPT	
line	OPEN	FPT by [?]	OPEN	FPT by [?]	OPEN	FPT by [?]	
		OPEN		OPEN		OPEN	
s-Plex Cluster	-	-	-	-	$s^{2} k[?]$	$(2 s+\sqrt{s})^{2}[?]$	
		-		-		NOSUB [?]	
$\begin{gathered} \left\{K_{3,2}, 2 K_{2}, C_{5}\right\} \\ \text { danin } \end{gathered}$	as deketion		k^{2} [9, 9	SUBEPT	$k^{2}[?]$	SUBEPT	
			$k^{2}[?$,	$2^{\text {㐫 } \log t}[$? $]$		$2^{\sqrt{k \mid \log k}}$? ${ }^{\text {a }}$	
$\begin{gathered} \left\{K_{3}, C_{4}, P_{4}\right\} \\ \text { Starforest } \end{gathered}$				FPT by ?	as deletion		
			4 E (?)	NOSUB [?]			
$\begin{aligned} & \left\{2 K_{2}, C_{4}, P_{4}\right\} \\ & \text { threshold } * \end{aligned}$	$\left.k^{2} \mid ?\right]$	SUBEPT	$k^{2}[?]$	SUBEPT	$k^{2}[?]$	SUBEPT	
		$\begin{aligned} & 2^{\sqrt{k \log k}}[?] \\ & \mathrm{NO} 2^{\lambda^{1^{1 / 4}}} \end{aligned}$		$\begin{aligned} & 2^{\sqrt{k \log k}}[?] \\ & \text { NO } 2^{k^{1 / 4} /[} \end{aligned}$		$2^{2^{\sqrt{k \mid 1 o g k t}}[?]}$	
$\underset{\text { split }}{\left\{2 K_{2}, C_{4}, C_{5}\right\}}$	$k[?], 5 k^{1.5}[?]$	SUBEPT	$k[?], 5 k^{1 /}[?]$	SUBEPT	P [?]		
		$\begin{gathered} 2^{0(\sqrt{k]}}[?, \\ \text { Exercise } 5.17] \end{gathered}$		$2^{\delta(\sqrt{k]}]}[?$ Exercise 5.17]			
$\begin{gathered} \left\{P_{3}, 2 K_{2}\right\} \\ \text { clique }+ \text { sol vert. } \end{gathered}$	P		$k / \log k[?]$	SUBEPT	2k [folkl]	SUBEPT	
			$1.6355^{\sqrt{k i m i n}}$ [?]	$2^{\sqrt{\lambda i m i m}}[?]$			
$\begin{aligned} & \qquad\left\{C_{4}, P_{4}\right\} \\ & \text { trivially perfect } \end{aligned}$	$k^{2}[?, ?]$	SUBEPT		$k^{3}[?]$		$k^{3}[?]$	
		$2^{\sqrt{\text { 㡀 } \log k}[?]}$	$\frac{2.42^{\mathrm{L}}[?]}{\mathrm{NOSUB}[?]}$		NOSUB [?		
		$\mathrm{NO} 2^{\mathrm{t}^{1+1}}$ [?]					
\{claw, diamand $\}$	OPEN	FPT by [?]	$k^{O(1)}[?]$	OPEN	OPEN	FPT by [?]	
		OPEN		NOSUB [?]		-	
$\begin{gathered} \left\{2 K_{2}, C_{4}\right\} \\ \text { psecudosphit ** } \\ \hline \end{gathered}$	$\left.5 k^{1.5} \mid ?\right]$	SUBEPT	$5 k^{1 / n}[?]$	SUBEPT	$\mathrm{P}[?, ?]$		
		$2^{\text {o(v) }}[?, ?]$		$2^{\text {a }}$ (v) $[?, ?]$			
$\begin{gathered} \left\{P_{3}\right\} \\ \text { chuster } \end{gathered}$	P			1.41^{1} [?]	$2 k[9 ?$	1.76^{1} [?]	
			2 e, ?	NOSUB [?]	$2 \mathrm{k} \mid ?, ?$	NOSUB [?]	
$\left\{K_{3}\right\}$	P		${ }^{6} \mathrm{k}$ [?]	FPT by ?	as deletion		
			NOSUB [?]				
$\begin{gathered} \left\{P_{4}\right\} \\ \text { cograph * } \end{gathered}$	$\left.k^{3} \mid ?\right]$	$2.56{ }^{\text {x }}$ [?]		$k^{3}[?]$	$2.56{ }^{\text {c }}$ [?]	$k^{3}[?]$	$4.61{ }^{1}$ [?]
		NOSUB [? ? ${ }^{\text {] }}$	NOSUB [? ?]		NOSUB [?		
\{paws	$k^{3}[?]$	FPT by [?]	$k^{3}[?]$	FPT by [?]	$k^{6}[?]$	FPT by ?	
		NOSUB [?]		NOSUB [?]		NOSUB [?]	
\{diamord\}	P		$k^{3}[?, ?]$	FPT by [?	k^{*} [?]	FPT by [?]	
			NOSUB [? ? ${ }^{\text {F }}$	NOSUB [?]			
\{clame	OPEN	FPT by [?]		OPEN	FPT by [?]	OPEN	FPT by [?]
		NOSUB [?]	NOSUB [?]		NOSUB [?]		
$\left\{K_{4}\right\}$	P		$k^{3}[?]$	FPT by ?	as deletion		
			${ }^{3} 1$.	NOSUB ? ${ }^{\text {a }}$			
$\begin{gathered} \left\{P_{i}\right\} \\ \text { fixed } \ell>4 \end{gathered}$	NOKER [?]	FPT by [?]	NOKER [?]	FPT by [?]	NOKER [${ }^{\text {] }}$	FPT by [?]	
		NOSUB [?		NOSUB [?]		NOSUB ?	
$\begin{gathered} \left\{C_{t}\right\} \\ \text { fixed } \ell>3 \end{gathered}$	NOKER [?]	FPT by ?	NOKER [?]	FPT by ?	NOKER [?]	FPT by ?	
		NOSUB [?]		NOSUB [?]		NOSUB [?]	

Survey on edge modification

A survey of parameterized algorithms and the complexity of edge modification Christophe Crespelle, Pål Grønås Drange, Fedor V. Fomin, Petr A. Golovach

graph class\|	completion		deletion		editing	
		FPT		FPT		FPT
		SUBEPT		SUBEPT		SUBEPT
Linear forest	P		$9 k[?]$	$2.29^{k}[?]$ randomized NOSUB (Hamiltonicity)	as deletion	
Distance-	OPEN	FPT (from ?]	OPEN	FPT (from ?)	OPEN	FPT (from ?])
bereditary	OPEN	FPT (rom.	OPEN	NOSUB [? ?	OPEN	NOSUB ? ? ?
Planar	P		OPEN	FPT [?] (minor closed [?]) OPEN	as deletion	
$\begin{aligned} & H \text {-minor- } \\ & \text { free } \end{aligned}$	P		OPEN	FPT minor closed [? OPEN	as deletion	
B ipartite	P		$\begin{gathered} k^{3}[?]^{1} \\ \text { randombed } \end{gathered}$	$\left.\begin{array}{\|c\|c\|c\|}\hline 2^{k} & ? & 1.977^{k}\end{array}\right\}$?	as deletion	
3-leaf power	$k^{3}[?]$	$\frac{\text { FPT [?] }}{\text { OPEN }}$	$k^{3}[?]$	FPT ? NOSUB (Clustering)	$k^{3}[?]$	FPT ? NOSUB (Clistering)
4-leaf power	OPEN	$\text { FPT }[?, ?$	OPEN	FPT [?, ?]	OPEN	FPT [?, ?]
proper interval	$k^{3}[?]$	SUBEPT $2^{\mathcal{O}\left(k^{2 / 1 / 9}\right) b_{8} k}[?]$ NO $2^{k^{1 / 4}}[?]$	OPEN	$\frac{\text { FPT [?] }}{\text { OPEN }}$	OPEN	$\frac{\text { FPT [?] }}{\text { OPEN }}$
interval	OPEN	SUBEPT $2^{\sqrt{k} l \log k}[?]$ NO $2^{k^{1 / 4}}[?]$	OPEN	$\frac{2^{O(k) \operatorname{bg}_{8} k}[?]}{\text { OPEN }}$	OPEN	OPEN
strongly chordal	OPEN	$\frac{64^{k}[?}{\text { OPEN }}$	OPEN	$\begin{aligned} & \text { OPEN } \\ & \hline \text { OPEN } \end{aligned}$	OPEN	OPEN
chordal	$k^{2}[?]$	$\begin{aligned} & \text { SUBEPT } \\ & 2^{\sqrt{k} \log k}[?] \\ & \text { NO } 2^{\sqrt{k}}[?] \end{aligned}$	OPEN	$\frac{2^{\mathcal{O}(k \operatorname{lb} k)}[?]}{\text { OPEN }}$	OPEN	$\frac{2^{\mathcal{O}(k \log k)}}{\text { OPEN }}[?]$

Polynomial kernel algorithms

A set of reduction rules: $(I, k) \rightarrow\left(l^{\prime}, k^{\prime}\right)$
Rule 1: if condition 1 then transformation 1 Rule 2: if condition 2 then transformation 2

All rules are:

- Sound : $\left(l^{\prime}, k^{\prime}\right)$ is a YES-instance iff (I, k) is a YES-instance
- Computable in polynomial time, wrt. II
- number oftimes tlle sules care aplisd is palynomial.
- A YES-instance (I,k) reduced under these rules always satisfies: $|l| \leq P(k)$ (with P a polynomial)
Remarks:
- Reduced = no rule applies
- If after reduction $\|\|>P(k)$ then output a constant-size NO-instance

Kernels for edge modification

Two kinds of rules

For forced modifications (that must be made)
-For removing irrelevant parts of the input graph

- That do not need to be modified and
- That do not influence modifications in the rest of the graph

${ }^{3}$
 O(4)-vertex kernel for cograph editing

Guillemot, Havet, Paul and Perez, 2010

$\mathrm{O}\left(\mathbf{k}^{3}\right)$ vertex kernel for cograph editing

On the (Non-)Existence of Polynomial Kernels for P,-Free Edge Modification Problems. Guillemot, Havet, Paul \& Perez, 2010.

Rules for removing the irrelevant parts:

Rule 1 (cograph component):
Remove the connected components of G that are cographs.

$\mathrm{O}\left(\mathbf{k}^{3}\right)$ vertex kernel for cograph editing

On the (Non-)Existence of Polynomial Kernels for P,-Free Edge Modification Problems. Guillemot, Havet, Paul \& Perez, 2010.

Rules for removing the irrelevant parts :

Rule 1 (cograph component):
Remove the connected components of G that are cographs.

It works because it is a connected component

$\mathbf{O}\left(\mathbf{k}^{3}\right)$ vertex kernel for cograph editing

On the (Non-)Existence of Polynomial Kernels for P,-Free Edge Modification Problems. Guillemot, Havet, Paul \& Perez, 2010.

Rules for removing the irrelevant parts:

Rule 1 (cograph component):
Remove the connected components of G that are cographs.
Rule 2 (modules):
If \mathbf{M} is a non-trivial module of G which is strictly contained in a connected component and is not an independent set of size at most $k+1$, then return the graph $\mathrm{G}^{\prime} \oplus \mathrm{G}[\mathrm{M}]$ where G^{\prime} is obtained from G by replacing M by an independent set module of size $\min \{|\mathrm{M}|, \mathrm{k}+1\}$.

$O\left(k^{3}\right)$ vertex kernel for cograph editing

Rule 2 (modules):
If M is a non-trivial module of G which is strictly contained in a connected componentand is not an independent set of size at most $k+1$, then return the graph $\mathrm{G}^{\prime} \oplus \mathrm{G}[\mathrm{M}]$ where G^{\prime} is obtained from G by replacing M by an independent set module of size $\min \{|M|, k+1\}$.

Definition (module)

M is a module if all the vertices of M have the same neighbours outside of M .

Or equivalently, M is a module if each vertex outside of M sees M uniformly.

$O\left(k^{3}\right)$ vertex kernel for cograph editing

Exercise

Prove that if M is a module of G, there exists a minimum editing of G that edit the adjacencies between any vertex $x \in M$ and vertices of $V \backslash$ M in the same way for all $x \in M$.

$O\left(k^{3}\right)$ vertex kernel for cograph editing

Exercise

Prove that if M is a module of G, then $G " \oplus G[M]$ admits a cograph editing of size at most k iff G admits an editing of size at most k, where G" s obtained from G by replacing M by an independent set module of size |M|.

$O\left(k^{3}\right)$ vertex kernel for cograph editing

Rule 2 (modules):
If \mathbf{M} is a non-trivial module of G which is strictly contained in a connected component and is not an independent set of size at most $\mathbf{k}+1$, then return the graph $\mathrm{G}^{\prime} \oplus \mathrm{G}[\mathrm{M}]$ where G^{\prime} is obtained from G by replacing M by an independent set module of size min $\{|\mathrm{M}|, \mathrm{k}+1\}$.

Soundness

We only need to prove that if G admits a cograph editing of size k and if M has size more than $k+1$, then we can keep only $k+1$ vertices in the independent setreplacing M in G^{\prime}.

$\mathrm{O}\left(\mathbf{k}^{3}\right)$ vertex kernel for cograph editing

Rules 1 and 2 work together
Modular decomposition tree

M

$\mathrm{O}\left(\mathbf{k}^{3}\right)$ vertex kernel for cograph editing

Rules 1 and 2 work together
Modular decomposition tree

Find a module
G^{\prime}

$\mathrm{O}\left(\mathrm{k}^{3}\right)$ vertex kernel for cograph editing

Rules 1 and 2 work together
Modular decomposition tree

M

Find a module

Substitution composition

G'

$O\left(k^{3}\right)$ vertex kernel for cograph editing

Rules 1 and 2 work together

Modular decomposition tree

M

P stands for prime.

Definition :

A graph is prime iff it has no non-trivial module.

$\mathrm{O}\left(\mathrm{k}^{3}\right)$ vertex kernel for cograph editing

Rules 1 and 2 work together
Modular decomposition tree

M

Can be computed in $O(n+m)$ time

$O\left(k^{3}\right)$ vertex kernel for cograph editing

Rules 1 and 2 work together

Modular decomposition tree

M

Theorem:
A graph is a cograph iff it has no P node in its modular decomposition tree.

$\mathbf{O}\left(\mathbf{k}^{3}\right)$ vertex kernel for cograph editing

Rules 1 and 2 work together
With rule 1 only :

$\mathrm{O}\left(\mathbf{k}^{3}\right)$ vertex kernel for cograph editing

Rules 1 and 2 work together
With rule 1 only :

$\mathrm{O}\left(\mathrm{k}^{3}\right)$ vertex kernel for cograph editing

Rules 1 and 2 work together
With rule 1 only :

$\mathbf{O}\left(k^{3}\right)$ vertex kernel for cograph editing

Rules 1 and 2 work together
With rule 1 only :

$\mathbf{O}\left(\mathbf{k}^{3}\right)$ vertex kernel for cograph editing

Rules 1 and 2 work together
With rule 1 only : cannot cut anything...

$\mathrm{O}\left(\mathrm{k}^{3}\right)$ vertex kernel for cograph editing

Rules 1 and 2 work together
With rule 1 and 2 :
Rule 2 first

$\mathrm{O}\left(\mathbf{k}^{3}\right)$ vertex kernel for cograph editing

Rules 1 and 2 work together
With rule 1 and 2 :
Rule 2 first

$\mathrm{O}\left(\mathbf{k}^{3}\right)$ vertex kernel for cograph editing

Rules 1 and 2 work together
With rule 1 and 2 :
Rule 2 first

$O\left(k^{3}\right)$ vertex kernel for cograph editing

Rules 1 and 2 work together
With rule 1 and 2 :
Rule 2 first
Then Rule 1

$\mathrm{O}\left(\mathbf{k}^{3}\right)$ vertex kernel for cograph editing

Rules 1 and 2 work together
With rule 1 and 2 :
Rule 2 first
Then Rule 1

$\mathrm{O}\left(\mathbf{k}^{3}\right)$ vertex kernel for cograph editing

On the (Non-)Existence of Polynomial Kernels for P,-Free Edge Modification Problems. Guillemot, Havet, Paul \& Perez, 2010.

Rules for forced modifications:

Rule 3 (P_{4} sunflower):
If $\{x, y\}$ is a pair of vertices of G that belongs to a set S of $t \geqslant k+1$ quadruples $P_{i}=\left\{x, y, a_{i}, b_{i}\right\}$ such that for $1 \leq i \leq t$, every P_{i} induces a P_{4} and for any $1 \leq \mathrm{i}<\mathrm{j} \leq \mathrm{t}, \mathrm{P}_{\mathrm{i}} \cap \mathrm{P}_{\mathrm{j}}=\{\mathrm{x}, \mathrm{y}\}$, then edit $\{\mathrm{x}, \mathrm{y}\}$ and decrease k by one.

Proof of the size of the kernel : $\mathbf{O}\left(\mathbf{k}^{3}\right)$

Theorem (size of the kernel):
Let G be a graph reduced under rules 1, 2 and 3. If G admits a cograph editing of size k, then G has $O\left(k^{3}\right)$ vertices.

Proof of the size of the kernel : $\mathbf{O}\left(\mathbf{k}^{3}\right)$

Theorem (size of the kernel):
Let G be a graph reduced under rules 1, 2 and 3. If G admits a cograph editing of size k, then G has $O\left(k^{3}\right)$ vertices.

Proof : consider a minimum modification of G into a cograph having cotree T as follows

Proof of the size of the kernel : $\mathbf{O}\left(\mathbf{k}^{3}\right)$

Theorem (size of the kernel):
Let G be a graph reduced under rules 1, 2 and 3. If G admits a cograph editing of size k, then G has $O\left(k^{3}\right)$ vertices.

Proof : consider a minimum modification of G into a cograph having cotree T as follows

Proof of the size of the kernel : $\mathbf{O}\left(\mathbf{k}^{3}\right)$

Theorem (size of the kernel):
Let G be a graph reduced under rules 1, 2 and 3. If G admits a cograph editing of size k, then G has $O\left(k^{3}\right)$ vertices.

Proof : consider a minimum modification of G into a cograph havines

Proof of the size of the kernel : $\mathbf{O}\left(\mathbf{k}^{3}\right)$

Proof: consider a minimum modification of G into a cograph having cotree T as follows

Proof of the size of the kernel : $\mathbf{O}\left(\mathbf{k}^{3}\right)$

Proof: consider a minimum modification of G into a cograph having cotree T as follows

Proof of the size of the kernel : $\mathbf{O}\left(\mathbf{k}^{3}\right)$

Proof: consider a minimum modification of G into a cograph having cotree T as follows

Proof of the size of the kernel : $\mathbf{O}\left(\mathbf{k}^{3}\right)$

Proof: consider a minimum modification of G into a cograph having cotree T as follows

Proof of the size of the kernel : $\mathbf{O}\left(\mathbf{k}^{3}\right)$

Proof : consider a minimum modification of G into a cograph having cotree T as follows

Proof of the size of the kernel : $\mathbf{O}\left(\mathbf{k}^{3}\right)$

Proof: consider a minimum modification of G into a cograph having cotree T as follows

Proof of the size of the kernel : $\mathbf{O}\left(\mathbf{k}^{3}\right)$

Proof: consider a minimum modification of G into a cograph having cotree T as follows

Proof of the size of the kernel : $\mathbf{O}\left(\mathbf{k}^{3}\right)$

Proof: consider a minimum modification of G into a cograph having cotree T as follows

Proof of the size of the kernel : $\mathbf{O}\left(\mathbf{k}^{3}\right)$

Proof: consider a minimum modification of G into a cograph having cotree T as follows

Proof of the size of the kernel : $\mathbf{O}\left(\mathbf{k}^{3}\right)$

Proof: consider a minimum modification of G into a cograph having cotree T as follows

Proof of the size of the kernel : $\mathbf{O}\left(\mathbf{k}^{3}\right)$

Proof : consider a minimum modification of G into a cograph having cotree T as follows

Proof of the size of the kernel : $\mathbf{O}\left(\mathbf{k}^{3}\right)$

Proof : consider a minimum modification of G into a cograph having cotree T as follows

Proof of the size of the kernel : $\mathbf{O}\left(\mathbf{k}^{3}\right)$

Proof : consider a minimum modification of G into a cograph having cotree T as follows

Rule 3

Proof of the size of the kernel : $\mathrm{O}\left(\mathrm{k}^{3}\right)$

Proof : consider a minimum modification of G into a cograph having cotree T as follows

Rule 3

Counting the number of vertices

Affected vertices $\leq 2 \mathrm{k}$
Affected internal nodes $\leq 2 k$

Counting the number of vertices

Affected vertices $\leq 2 \mathrm{k}$
Affected internal nodes $\leq 2 \mathrm{k}$

Counting the number of vertices

Counting the number of vertices

Counting the number of vertices

Counting the number of vertices

The reduction algorithm

The generic reduction algorithm :

- While there exists some rules that applies
- Apply an arbitrary rule among the rules that apply

The reduction algorithm

The generic reduction algorithm :

- While there exists some rules that applies
- Apply an arbitrary rule among the rules that apply
- At the end: you get a reduced graph

The reduction algorithm

The generic reduction algorithm :

While there exists some rules that applies

- Apply an arbitrary rule among the rules that apply

At the end: you get a reduced graph

One particular way of doing it :

- Apply rule 3 until it does not apply anymore
- Apply rule 2 until it does not apply anymore
- Apply rule 1 until it does not apply anymore

The reduction algorithm

The generic reduction algorithm :

While there exists some rules that applies

- Apply an arbitrary rule among the rules that apply

At the end: you get a reduced graph

One particular way of doing it :

- Apply rule 3 until it does not apply anymore
- Apply rule 2 until it does not apply anymore
- Apply rule 1 until it does not apply anymore

Question : Is the graph obtained reduced under rules 1,2,3?

The reduction algorithm

Lemma:
If graph G is reduced under rule 3 , then applying rule 2 to G gives a graph G' that is also reduced under rule 3.

Exercise: Prove the lemma above.

The reduction algorithm

Lemma:
 If graph G is reduced under rule 3 , then applying rule 2 to G gives a graph G' that is also reduced under rule 3.

Exercise: Prove the lemma above.
Hint:
If M is a (non-trivial) module of graph G, then any P_{4} of G that is not included in M has at most one vertex in M.

The reduction algorithm

Lemma:
If graph G is reduced under rules 2 and 3 , then applying rule 1 to G gives a graph G' that is also reduced under rules 2 and 3 .

The reduction algorithm

The generic reduction algorithm :

While there exists some rules that applies

- Apply an arbitrary rule among the rules that apply

At the end: you get a reduced graph

One particular way of doing it :

- Apply rule 3 until it does not apply anymore
- Apply rule 2 until it does not apply anymore
- Apply rule 1 until it does not apply anymore

Question : Is the graph obtained reduced under rules 1,2,3?
Question: does this algorithm run in polynomial time ?

The reduction algorithm

The generic reduction algorithm :

While there exists some rules that applies

- Apply an arbitrary rule among the rules that apply
- At the end: you get a reduced graph

One particular way of doing it :

- Apply rule 3 until it does not apply anymore
- Apply rule 2 until it does not apply anymore
- Apply rule 1 until it does not apply anymore

Question : Is the graph obtained reduced under rules 1,2,3?
Question: does this algorithm run in polynomial time?
Subquestion: does it even terminate?

Q2: Is itt a prablen if it-hapens?

Practical limitations of kernels
 for edge modification problems

with Anne-Aymone Bourguin

What happens when k varies ?

Why would k vary?

What happens when k varies ?

Why would k vary?

- We are not only interested in the decision problem

What happens when k varies ?

Why would k vary?

- We are not only interested in the decision problem
- If $k_{2}>k_{1}$ and rule 3 applies to $\left(G, k_{2}\right)$ and gives $\left(H_{2}, k_{2}{ }^{\prime}\right)$ then
- rule 3 also applies to ($\mathrm{G}, \mathrm{k}_{1}$) to give ($\mathrm{H}_{1}, \mathrm{k}_{1}{ }^{\prime}$) and
- $\mathrm{k}_{1}{ }^{\prime}<\mathrm{k}_{2}{ }^{\prime}$

What happens when k varies ?

Why would k vary?

- We are not only interested in the decision problem
- If $k_{2}>k_{1}$ and rule 3 applies to (G, k_{2}) and gives $\left(\mathrm{H}_{2}, \mathrm{k}_{2}{ }^{\prime}\right)$ then
- rule 3 also applies to ($\mathrm{G}, \mathrm{k}_{1}$) to give ($\mathrm{H}_{1}, \mathrm{k}_{1}{ }^{\prime}$) and
- $\mathrm{k}_{1}{ }^{\prime}<\mathrm{k}_{2}{ }^{\prime}$
\rightarrow If $k_{2}>k_{1}$ then a series of reduction rules 3 performed from $\left(G, k_{2}\right)$ can also be performed from (G, k_{1}) and gives a smaller graph

What happens when k varies ?

Why would k vary?

- We are not only interested in the decision problem
- If $k_{2}>k_{1}$ and rule 3 applies to (G, k_{2}) and gives $\left(\mathrm{H}_{2}, \mathrm{k}_{2}{ }^{\prime}\right)$ then
- rule 3 also applies to $\left(G, \mathrm{k}_{1}\right)$ to give ($\mathrm{H}_{1}, \mathrm{k}_{1}{ }^{\prime}$) and
- $\mathrm{k}_{1}{ }^{\prime}<\mathrm{k}_{2}{ }^{\prime}$
\rightarrow If $\mathrm{k}_{2}>\mathrm{k}_{1}$ then a series of reduction rules 3 performed from ($\mathrm{G}, \mathrm{k}_{2}$) can also be performed from (G, k_{1}) and gives a smaller graph
- The same should be checked for rules 2 and 1

What happens when k varies ?

Why would k vary?

- We are not only interested in the decision problem
- If $k_{2}>k_{1}$ and rule 3 applies to (G, k_{2}) and gives $\left(\mathrm{H}_{2}, \mathrm{k}_{2}{ }^{\prime}\right)$ then
- rule 3 also applies to ($\mathrm{G}, \mathrm{k}_{1}$) to give ($\mathrm{H}_{1}, \mathrm{~K}_{1}{ }^{\prime}$) and
- $\mathrm{k}_{1}{ }^{\prime}<\mathrm{k}_{2}{ }^{\prime}$
\rightarrow If $k_{2}>k_{1}$, then a series of reduction rules 3 performed from (G, k_{2}) can also be performed from (G, k_{1}) and gives a smaller graph
- The same should be checked for rules 2 and 1

The size of the kernel increases when k increases

Size of reduced instance as a function of k

Size of reduced instance as a function of k

Size of reduced instance as a function of k

Size of reduced instance as a function of k

Results on real-world networks

$\mathbf{k}_{\text {no }}$							
Graphe	n	m	k max pour la réponse non	k max où règle 2 s'applique	k max où règle 3 s'applique	$k_{\text {ras }}:$ algo devient inefficace	borne inf $k_{\text {inf }}$
gene_fusion	110	124	11	14	14	15	22
maayan-pdzbase	161	209	14	-	15	16	43
foodweb	183	2434	79	-	80	81	599
arenas-jazz	198	2742	85	-	86	87	698
dimacs10-netscience	379	914	19	-	23	24	118
sociopatterns-infect	410	2765	66	-	71	72	688
celegans_metabolic	453	2025	124	-	134	135	517
moreno_crime	829	1473	33	-	34	35	412
hamster-household	874	4003	153	-	158	159	1215
opsahl-ucforum	899	7019	174	-	185	186	2250
email-Eu-core	986	16064	346	-	360	361	5006
subelj_euroroad	1039	1305	11	-	11	12	341
moreno_propro	1458	1948	33	45	47	48	432
moreno_names	1707	9059	300	-	316	317	2462
figeys	2217	6418	172	-	238	239	1542
maayan-vidal	2783	6007	120	-	149	150	1658
ca-GrQC	4158	13422	73	-	88	89	2133
as2000	6474	12572	426	-	706	707	2575

Result for an almost cograph

Result for an almost cograph

A less caricaturistic behaviour

A full range of behaviours

An O(k $\left.{ }^{2} \log k\right)$ Vertex kernel for cograph editing

with Remi Pellerin and Stéphan Thomassé

Guillemot et al. : $\mathbf{O}\left(\mathbf{k}^{3}\right)$ vertex

New rule : definitions

Our goal : reduce the size of the kernel to $\mathbf{O}\left(\mathbf{k}^{2} \log \mathbf{k}\right)$

New rule : definitions

Our goal : reduce the size of the kernel to $\mathbf{O}\left(\mathbf{k}^{2} \log \mathbf{k}\right)$

Definition: (t-module)
A t-module in G is a set of vertices X such that by editing a set of at most t pairs in G, we obtain G^{\prime} in which X is a module.

New rule : definitions

Our goal : reduce the size of the kernel to $\mathbf{O}\left(\mathbf{k}^{2} \log \mathbf{k}\right)$

Definition: (t-module)

A t-module in G is a set of vertices X such that by editing a set of at most t pairs in G, we obtain G ' in which X is a module.

Remark :T can always be chosen in $\delta(\mathrm{X})$.

New rule : definitions

Our goal : reduce the size of the kernel to $\mathbf{O}\left(\mathbf{k}^{\mathbf{2}} \log \mathbf{k}\right)$

Definition: (t-module)

A t-module in G is a set of vertices X such that by editing a set of at most t pairs in G, we obtain G^{\prime} in which X is a module.
Remark :T can always be chosen in $\delta(\mathrm{X})$.
Definition : (budget)
The budget of a set X of G is the minimum b such that all minimum cograph editings S of G satisfy $|S \cap \delta(X)| \leq b$.

New rule : definitions

Our goal : reduce the size of the kernel to $\mathbf{O}\left(\mathbf{k}^{2} \log \mathbf{k}\right)$

Definition: (t-module)

A t-module in G is a set of vertices X such that by editing a set of at most t pairs in G, we obtain G^{\prime} in which X is a module.
Remark :T can always be chosen in $\delta(\mathrm{X})$.

Definition: (budget)

The budget of a set X of G is the minimum b such that all minimum cograph editings S of G satisfy $|S \cap \delta(X)| \leq b$.

Lemma:

Let X be a t -module such that $|\mathrm{X}|>\mathrm{k}+\mathrm{t}$. If there exists an editing of size at most k, then the budget of X is at most t.

New rule : definitions

Lemma:
 Let X be a t -module such that $|\mathrm{X}|>\mathrm{k}+\mathrm{t}$. If there exists an editing of size at most k, then the budget of X is at most t.

Exercise: Prove the lemma above.

New rule : definitions

Lemma:
 Let X be a t -module such that $|\mathrm{X}|>\mathrm{k}+\mathrm{t}$. If there exists an editing of size at most k, then the budget of X is at most t.

Exercise: Prove the lemma above.
Exercise : Prove that testing if X is a t-module can be done in polynomial time.

New rule : the main idea

Purpose:

Avoid long paths ($\geq 51 . \ell$) in the cotree T of the edited cograph that interact with only few (ℓ) edited pairs: 51 -sparse path.

Definition: (interact)

The edited pair $x y$ interacts with path P when the path from x to y in T shares an edge with P.

Lemma:

If T has a 51-sparse path then the nested t-module reduction rule applies (our $4^{\text {th }}$ rule).

New rule : the main idea

Rule 4 (nested t-module reduction): If there exists a partition $A \sqcup B \sqcup C \sqcup I \sqcup K$ of V that satisfies the following conditions:

- A, A $\sqcup \mathrm{B}, \mathrm{A} \square \mathrm{B} \sqcup \mathrm{C}$ are t-modules
- $|A|>k+t$
- $\mathrm{B}_{\mathrm{s}}, \mathrm{B}_{/ /}, \mathrm{C}_{\mathrm{s}}, \mathrm{C} / /$ all have size $>3 \mathrm{t}$
- B_{s} and $B_{/ /}$have the required adjacencies with $\mathrm{A}, \mathrm{I}, \mathrm{K}$
- C_{s} and $\mathrm{C}_{\|}$have the required adjacencies with A, B, I, K

Then remove all edges between A and I and add missing edges between A and K .

New rule : the main idea

Purpose:

Avoid long paths ($\geq 51 . \ell$) in the cotree T of the edited cograph that interact with only few (ℓ) edited pairs: 51-sparse path.

Definition: (interact)

The edited pair $x y$ interacts with path P when the path from x to y in T shares an edge with P.

Lemma:

If T has a 51-sparse path then the nested t-module reduction rule applies (our $4^{\text {th }}$ rule).

Lemma:

If the reduced graph H has $\Omega\left(\mathrm{k}^{2} \log \mathrm{k}\right)$ vertices then its cotree has size $\Omega(\mathrm{k} \log \mathrm{k})$ and if H is a yes-instance then T has a 51 sparse path.

Perspectives (Lecture I)

O(k²) kernel for cograph editing?

- Reduction rules without knowing the value of the parameter k
- Kernels or FPT algorithms for edge modification problems with other (smaller) parameters
- Local search?

Graph editing: algorithms and experimental results

Christophe Crespelle

Université Côte d'Azur
with Jean Blair, Anne-Aymone Bourguin, Benjamin Gras, Daniel Lokshtanov, Remi Pellerin, Anthony Perez, Thi Ha Duong Phan, Eric Thierry and Stéphan Thomassé

