Graph editing: algorithms and experimental results

Christophe Crespelle

Université Côte d'Azur

with Jean Blair, Anne-Aymone Bourguin, Benjamin Gras, Daniel Lokshtanov, Remi Pellerin, Anthony Perez, Thi Ha Duong Phan, Eric Thierry and Stéphan Thomassé

Real-world data

Ex of contexts:
computer science,
social sciences,
biology, linguistics,
medecine,
transportation,
communications,
industry, economy, ...

complex

II large + unordered

Real-world data

Ex of contexts:
computer science,
social sciences,
biology, linguistics,
medecine,
transportation,
communications,
industry, economy, ...

complex

II large + unordered

Not complex

small

ordered

Real-world data (not formally defined)

Ex of contexts:

computer science, social sciences, biology, linguistics, medecine, Transportation, communications, industry, economy, ...

Word networks

<u>Internet</u>

Proteine interactions

How to carry information across the Internet?

How does a living cell work?

How does a language evolve?

Real-world data

Ex of contexts:
computer science,
social sciences,
biology, linguistics,
medecine,
transportation,
communications,
industry, economy, ...

complex
II
large
+

unordered

Links depend on time

(1.25, a, b) (2.50, b, c) (4.58, a, b) (5.83, a, b) (7.08, b, c) (8.33, c, e)

Four big classes of problems

- Measurement
- Analysis
- Modelling
- Algorithms

Four big classes of problems

- Measurement
- Analysis
- Modelling
- Algorithms

Graph theory

strongly structured graphs

random graphs

Complex networks as almost structured graphs

- loosely constrained
 - randomness
- strongly impacted by their context
 - structure

loosely constrained

randomness

strongly impacted by their context

structure

Complex networks

= structure

+

randomness

[Watts & Strogatz 1998]

High local density

Short distances

- loosely constrained
 - randomness
- strongly impacted by their context
 - structure

Complex networks

= structure

+

randomness

1 strongly structured

- loosely constrained
 - randomness
- strongly impacted by their context
 - structure

Complex networks

= structure

+

randomness

1 strongly structured

2

random modifications

- loosely constrained
 - randomness
- strongly impacted by their context
 - structure

Complex networks

= structure

+

randomness

- loosely constrained
 - randomness
- strongly impacted by their context
 - structure

Complex networks

= structure

+

randomness

- loosely constrained
 - randomness
- strongly impacted by their context
 - structure

Complex networks

= structure

+

randomness

TARGET CLASS (ex: chordal graphs)

Definition:

Chordal graphs = graphs without induced cycle on at least 4 vertices

triangerlated

Definition:

Chordal graphs = graphs without induced cycle on at least 4 vertices

GOAL: perform as few modifications as possible

Two constrained versions of the problem:

Only additions allowed

completion algorithm

Only deletions allowed

deletion algorithm

Motivations

Mathematics

Distance to and projection on a class of graphs. How far is a graph from having a certain property?

Computation

Natural extension of the recognition problem of graph classes. When the recognition fail, how to minimally correct the graph?

Data science

Remove noise in graph data.

- Measurement errors
- Randomness (non-constrained part of the data)
- Anything deviating from the main structure

Editing real-world networks

35 real-world graphs

+

8 random graphs

C t t	Network			d°	071
Context WWW	in-2004	1 148 875	12 281 937	21.4	%mod 12 %
	cnr-2004			19.3	$\frac{12\%}{19\%}$
WWW		$227058 \\ 5973$	$\begin{array}{c c} 2187201 \\ 145778 \end{array}$		$\frac{19\%}{22\%}$
PROTEIN	reactome	100 100 10 100	. 100 200200 10 200 200	48.8	
SOFTWARE	jdk	6 434	53 658	16.7	29 %
SOFTWARE	jung-j	6 120	50 290	16.4	29 %
WWW	eu-2005	835 044	15 718 784	37.7	29 %
CO-AUTHOR	ca-GrQc	4 158	13 422	6.5	34 %
CO-AUTHOR	ca-HepPh	11 204	117619	21.0	34 %
SPECIES	foodweb	183	2 434	26.6	43 %
CO-AUTHOR	dblp	317080	1049866	6.6	45 %
WORD-REL.	wordnet	145 145	656 230	9.0	48 %
COMMUNIC.	wiki-Talk	2 388 953	4656682	3.9	49 %
CO-SOLD	amazon	334 863	925 872	5.5	49 %
CO-AUTHOR	ca-CondMat	21 363	91 286	8.6	52%
RANDOM	ER-Gnm_1M-2	796208	958 827	2.4	52 %
CO-AUTHOR	ca-HepTh	8 638	24 806	5.7	54%
INTERNET	as2000	6474	12572	3.9	54%
ROAD	roadNet-TX	1351137	1879201	2.8	54%
INTERNET	as-caida2007	26475	53 381	4.0	55%
CO-AUTHOR	ca-AstroPh	17903	196972	22.0	59%
INTERNET	topology	34761	107720	6.2	61%
RANDOM	ER-Gnm_1M-3	940987	1494643	3.2	63%
INTERNET	as-skitter	1694616	11094209	13.1	64%
CO-OCCUR	bible-names	1707	9 0 5 9	10.6	67%
PROTEIN	figeys	2217	6 4 1 8	5.8	67%
CITATION-SCI.	cora	23166	89157	7.7	68%
SOCIAL	youtube	1134890	2987624	5.3	69%
CO-ACTOR	actor-col.	374511	15014839	80.2	71%
P2P-CONNECT.	p2p-Gnutella	62561	147 878	4.7	71%
RANDOM	ER-Gnm_1M-4	980 191	1999203	4.1	71 %
CITATION-SCI.	citeseer	365154	1721981	9.4	75 %
CITATION-PAT.	cit-Patents	3764117	16511740	8.8	76%
SOFTWARE	linux	30817	213208	13.8	77 %
SOCIAL	LiveJournal	3997962	34681189	17.4	78 %
CITATION-SCI.	cit-HepTh	27400	352021	25.7	79%
RANDOM	ER-Gnm_1M-6	997479	2999988	6.0	79%
CITATION-SCI.	cit-HepPh	34 401	420 784	24.5	81 %
RANDOM	ER-Gnm_1M-8	999684	3 999 999	8.0	84 %
RANDOM	ER-Gnm_1M-10	999952	5 000 000	10.0	87 %
RANDOM	ER-Gnm_1M-15	1 000 000	7 500 000	15.0	91 %
SOCIAL	orkut	3 072 441	117 185 083	76.3	91 %
RANDOM	ER-Gnm_1M-20	1 000 000	10 000 000	20.0	93 %
WORD-REL.	Thesaurus	23 132	297 094	25.7	93 %

35 real-world graphs

+

8 random graphs

Context	Network	n	m	d°	%mod
WWW	in-2004	1148875	12281937	21.4	12%
WWW	cnr-2000	227058	2187201	19.3	19%
PROTEIN	reactome	5973	145778	48.8	22%
SOFTWARE	jdk	6434	53658	16.7	29%
SOFTWARE	jung-j	6120	50 290	16.4	29%
WWW	eu-2005	835044	15 718 784	37.7	29%
CO-AUTHOR	ca-GrQc	4158	13422	6.5	34%
CO-AUTHOR	ca-HepPh	11204	117 619	21.0	34%
SPECIES	foodweb	183	2434	26.6	43%
CO-AUTHOR	dblp	317080	1049866	6.6	45%
WORD-REL.	wordnet	145145	656230	9.0	48%
COMMUNIC.	wiki-Talk	2388953	4656682	3.9	49%
CO-SOLD	amazon	334863	925872	5.5	49%
CO-AUTHOR	ca-CondMat	21363	91 286	8.6	52%
RANDOM	ER-Gnm_1M-2	796208	958 827	2.4	52%
CO-AUTHOR	ca-HepTh	8 6 3 8	24 806	5.7	54%
INTERNET	as2000	6474	12572	3.9	54%
ROAD	roadNet-TX	1351137	1879201	2.8	54%
INTERNET	as-caida2007	26475	53 381	4.0	55%
CO-AUTHOR	ca-AstroPh	17903	196972	22.0	59%
INTERNET	topology	34761	107720	6.2	61%
RANDOM	ER-Gnm_1M-3	940987	1494643	3.2	63%
INTERNET	as-skitter	1694616	11094209	13.1	64%
CO-OCCUR	bible-names	1707	9 0 5 9	10.6	67%
PROTEIN	figeys	2217	6 418	5.8	67%
CITATION-SCI.	cora	23166	89 157	7.7	68%
SOCIAL	youtube	1134890	2987624	5.3	69%
CO-ACTOR	actor-col.	374511	15014839	80.2	71%
P2P-CONNECT.	p2p-Gnutella	62561	147878	4.7	71%
RANDOM	ER-Gnm_1M-4	980 191	1999203	4.1	71%
CITATION-SCI.	citeseer	365154	1721981	9.4	75%
CITATION-PAT.	cit-Patents	3764117	16511740	8.8	76%
SOFTWARE	linux	30817	213208	13.8	77%
SOCIAL	LiveJournal	3997962	34681189	17.4	78%
CITATION-SCI.	cit-HepTh	27400	352021	25.7	79%
RANDOM	ER-Gnm_1M-6	997479	2999988	6.0	79%
CITATION-SCI.	cit-HepPh	34401	420784	24.5	81 %
RANDOM	ER-Gnm_1M-8	999684	3 999 999	8.0	84 %
RANDOM	ER-Gnm_1M-10	999952	5000000	10.0	87 %
RANDOM	ER-Gnm_1M-15	1 000 000	7500000	15.0	91%
SOCIAL	orkut	3072441	117185083	76.3	91%
RANDOM	ER-Gnm_1M-20	1000000	10 000 000	20.0	93%
WORD-REL.	Thesaurus	23132	297094	25.7	93%

RESULTS

Some networks are very close from cographs

35 real-world graphs

+

8 random graphs

Context	Network	n	m	d°	%mod
WWW	in-2004	1148875	12281937	21.4	12%
WWW	cnr-2000	227058	2187201	19.3	19%
PROTEIN	reactome	5973	145778	48.8	22%
SOFTWARE	jdk	6434	53658	16.7	29%
SOFTWARE	jung-j	6120	50 290	16.4	29%
WWW	eu-2005	835044	15 718 784	37.7	29%
CO-AUTHOR	ca-GrQc	4158	13422	6.5	34%
CO-AUTHOR	ca-HepPh	11204	117 619	21.0	34%
SPECIES	foodweb	183	2434	26.6	43%
CO-AUTHOR	dblp	317080	1049866	6.6	45%
WORD-REL.	wordnet	145145	656230	9.0	48%
COMMUNIC.	wiki-Talk	2388953	4656682	3.9	49%
CO-SOLD	amazon	334863	925872	5.5	49%
CO-AUTHOR	ca-CondMat	21363	91286	8.6	52%
RANDOM	ER-Gnm_1M-2	796208	958827	2.4	52%
CO-AUTHOR	ca-HepTh	8 638	24806	5.7	54%
INTERNET	as2000	6474	12572	3.9	54%
ROAD	roadNet-TX	1351137	1879201	2.8	54%
INTERNET	as-caida2007	26475	53 381	4.0	55%
CO-AUTHOR	ca-AstroPh	17903	196 972	22.0	59%
INTERNET	topology	34761	107720	6.2	61%
RANDOM	ER-Gnm_1M-3	940987	1494643	3.2	63%
INTERNET	as-skitter	1694616	11094209	13.1	64%
CO-OCCUR	bible-names	1 707	9 059	10.6	67%
PROTEIN	figeys	2217	6 418	5.8	67%
CITATION-SCI.	cora	23166	89157	7.7	68%
SOCIAL	youtube	1134890	2987624	5.3	69%
CO-ACTOR	actor-col.	374511	15014839	80.2	71%
P2P-CONNECT.	p2p-Gnutella	62561	147878	4.7	71%
RANDOM	ER-Gnm ₋ 1M-4	980 191	1999203	4.1	71 %
CITATION-SCI.	citeseer	365154	1721981	9.4	75%
CITATION-PAT.	cit-Patents	3764117	16 511 740	8.8	76%
SOFTWARE	linux	30817	213208	13.8	77%
SOCIAL	LiveJournal	3997962	34681189	17.4	78%
CITATION-SCI.	cit-HepTh	27400	352021	25.7	79%
RANDOM	ER-Gnm_1M-6	997479	2999988	6.0	79%
CITATION-SCI.	cit-HepPh	34401	420784	24.5	81 %
RANDOM	ER-Gnm_1M-8	999684	3 999 999	8.0	84 %
RANDOM	ER-Gnm_1M-10	999952	5 000 000	10.0	87 %
RANDOM	ER-Gnm ₋ 1M-15	1000000	7500000	15.0	91 %
SOCIAL	orkut	3072441	117185083	76.3	91%
RANDOM	ER-Gnm_1M-20	1 000 000	10 000 000	20.0	93%
WORD-REL.	Thesaurus	23132	297 094	25.7	93%

RESULTS

- Some networks are very close from cographs
- Random graphs are never

35	real-world
	graphs

+

8 random graphs

Context	Network	n	m	d°	%mod
WWW	in-2004	1 148 875	12281937	21.4	12%
WWW	cnr-2000	227058	2187201	19.3	19 %
PROTEIN	reactome	5973	145778	48.8	22%
SOFTWARE	jdk	6434	53658	16.7	29%
SOFTWARE	jung-j	6120	50290	16.4	29%
WWW	eu-2005	835044	15718784	37.7	29%
CO-AUTHOR	ca-GrQc	4158	13422	6.5	34%
CO-AUTHOR	ca-HepPh	11204	117 619	21.0	34%
SPECIES	foodweb	183	2434	26.6	43%
CO-AUTHOR	dblp	317080	1049866	6.6	45%
WORD-REL.	wordnet	145145	656230	9.0	48%
COMMUNIC.	wiki-Talk	2388953	4656682	3.9	49%
CO-SOLD	amazon	334863	925872	5.5	49%
CO-AUTHOR	ca-CondMat	21363	91286	8.6	52%
RANDOM	ER-Gnm_1M-2	796208	958 827	2.4	52%
CO-AUTHOR	ca-HepTh	8 638	24806	5.7	54%
INTERNET	as2000	6474	12572	3.9	54%
ROAD	roadNet-TX	1351137	1879201	2.8	54%
INTERNET	as-caida2007	26475	53 381	4.0	55%
CO-AUTHOR	ca-AstroPh	17903	196972	22.0	59%
INTERNET	topology	34761	107720	6.2	61%
RANDOM	ER-Gnm_1M-3	940987	1494643	3.2	63%
INTERNET	as-skitter	1694616	11094209	13.1	64%
CO-OCCUR	bible-names	1707	9 0 5 9	10.6	67%
PROTEIN	figeys	2217	6 4 1 8	5.8	67%
CITATION-SCI.	cora	23166	89 157	7.7	68%
SOCIAL	youtube	1134890	2987624	5.3	69%
CO-ACTOR	actor-col.	374511	15014839	80.2	71%
P2P-CONNECT.	p2p-Gnutella	62561	147878	4.7	71%
RANDOM	ER-Gnm_1M-4	980 191	1999203	4.1	71 %
CITATION-SCI.	citeseer	365154	1721981	9.4	75 %
CITATION-PAT.	cit-Patents	3764117	16511740	8.8	76%
SOFTWARE	linux	30817	213208	13.8	77 %
SOCIAL	LiveJournal	3997962	34681189	17.4	78 %
CITATION-SCI.	cit-HepTh	27400	352021	25.7	79%
RANDOM	ER-Gnm_1M-6	997479	2999988	6.0	79%
CITATION-SCI.	cit-HepPh	34401	420784	24.5	81 %
RANDOM	ER-Gnm_1M-8	999684	3 999 999	8.0	84 %
RANDOM	ER-Gnm_1M-10	999952	5 000 000	10.0	87 %
RANDOM	ER-Gnm_1M-15	1 000 000	7500000	15.0	91%
SOCIAL	orkut	3072441	117 185 083	76.3	91%
RANDOM	ER-Gnm_1M-20	1000000	10 000 000	20.0	93%
WORD-REL.	Thesaurus	23 132	297 094	25.7	93%

RESULTS

- Some networks are very close from cographs
- Random graphs are never

A wide range of proximity: 12% to 93%

35	real-world
	graphs

+

8 random graphs

Context	Network	n	m	d°	%mod
WWW	in-2004	1148875	12281937	21.4	12%
WWW	cnr-2000	227058	2187201	19.3	19%
PROTEIN	reactome	5973	145778	48.8	22%
SOFTWARE	jdk	6434	53658	16.7	29%
SOFTWARE	jung-j	6120	50 290	16.4	29%
WWW	eu-2005	835044	15 718 784	37.7	29%
CO-AUTHOR	ca-GrQc	4158	13422	6.5	34%
CO-AUTHOR	ca-HepPh	11204	117 619	21.0	34%
SPECIES	foodweb	183	2434	26.6	43%
CO-AUTHOR	dblp	317080	1049866	6.6	45%
WORD-REL.	wordnet	145145	656230	9.0	48%
COMMUNIC.	wiki-Talk	2388953	4656682	3.9	49%
CO-SOLD	amazon	334863	925872	5.5	49%
CO-AUTHOR	ca-CondMat	21363	91 286	8.6	52%
RANDOM	ER-Gnm_1M-2	796208	958 827	2.4	52%
CO-AUTHOR	ca-HepTh	8 638	24 806	5.7	54%
INTERNET	as2000	6474	12572	3.9	54%
ROAD	roadNet-TX	1351137	1879201	2.8	54%
INTERNET	as-caida2007	26475	53 381	4.0	55%
CO-AUTHOR	ca-AstroPh	17903	196972	22.0	59%
INTERNET	topology	34761	107720	6.2	61%
RANDOM	ER-Gnm_1M-3	940987	1494643	3.2	63%
INTERNET	as-skitter	1694616	11094209	13.1	64%
CO-OCCUR	bible-names	1707	9 0 5 9	10.6	67%
PROTEIN	figeys	2217	6418	5.8	67%
CITATION-SCI.	cora	23166	89 157	7.7	68%
SOCIAL	youtube	1134890	2987624	5.3	69%
CO-ACTOR	actor-col.	374511	15014839	80.2	71%
P2P-CONNECT.	p2p-Gnutella	62561	147 878	4.7	71%
RANDOM	ER-Gnm_1M-4	980 191	1999203	4.1	71%
CITATION-SCI.	citeseer	365154	1721981	9.4	75%
CITATION-PAT.	cit-Patents	3764117	16511740	8.8	76%
SOFTWARE	linux	30817	213208	13.8	77%
SOCIAL	LiveJournal	3997962	34681189	17.4	78%
CITATION-SCI.	cit-HepTh	27400	352021	25.7	79%
RANDOM	ER-Gnm_1M-6	997479	2999988	6.0	79%
CITATION-SCI.	cit-HepPh	34401	420 784	24.5	81 %
RANDOM	ER-Gnm_1M-8	999684	3 999 999	8.0	84 %
RANDOM	ER-Gnm_1M-10	999952	5000000	10.0	87 %
RANDOM	ER-Gnm_1M-15	1000000	7500000	15.0	91 %
SOCIAL	orkut	3072441	117185083	76.3	91 %
RANDOM	ER-Gnm_1M-20	1000000	10 000 000	20.0	93%
WORD-REL.	Thesaurus	23132	297 094	25.7	93%

RESULTS

- Some networks are very close from cographs
- Random graphs are never

- A wide range of proximity : 12% to 93%
- The proximity with cographs highly depends on the real-world context

Close to cographs

WWW

software

Context	Network	n	m	d°	%mod
WWW	in-2004	1 148 875	12 281 937	21.4	12 %
WWW	cnr-2000	227 058	2 187 201	19.3	19 %
PROTEIN	reactome	5973	145778	48.8	22%
SOFTWARE	jdk	6434	53 658	16.7	29 %
SOFTWARE	jung-j	6120	50 290	16.4	29 %
WWW	eu-2005	835044	15 718 784	37.7	29%
CO-AUTHOR	ca-GrQc	4158	13422	6.5	34%
CO-AUTHOR	ca-HepPh	11204	117 619	21.0	34%
SPECIES	foodweb	183	2434	26.6	43%
CO-AUTHOR	dblp	317080	1049866	6.6	45%
WORD-REL.	wordnet	145145	656230	9.0	48%
COMMUNIC.	wiki-Talk	2388953	4656682	3.9	49%
CO-SOLD	amazon	334863	925872	5.5	49%
CO-AUTHOR	ca-CondMat	21363	91 286	8.6	52%
RANDOM	ER-Gnm_1M-2	796208	958 827	2.4	52%
CO-AUTHOR	ca-HepTh	8 638	24 806	5.7	54%
INTERNET	as2000	6474	12572	3.9	54%
ROAD	roadNet-TX	1351137	1879201	2.8	54%
INTERNET	as-caida2007	26475	53 381	4.0	55%
CO-AUTHOR	ca-AstroPh	17903	196972	22.0	59%
INTERNET	topology	34761	107720	6.2	61%
RANDOM	ER-Gnm_1M-3	940987	1494643	3.2	63%
INTERNET	as-skitter	1694616	11094209	13.1	64%
CO-OCCUR	bible-names	1707	9059	10.6	67%
PROTEIN	figeys	2217	6 4 1 8	5.8	67%
CITATION-SCI.	cora	23166	89 157	7.7	68%
SOCIAL	youtube	1134890	2987624	5.3	69%
CO-ACTOR	actor-col.	374511	15014839	80.2	71%
P2P-CONNECT.	p2p-Gnutella	62561	147878	4.7	71%
RANDOM	ER-Gnm ₋ 1M-4	980 191	1999203	4.1	71%
CITATION-SCI.	citeseer	365154	1721981	9.4	75%
CITATION-PAT.	cit-Patents	3764117	16511740	8.8	76%
SOFTWARE	linux	30817	213208	13.8	77 %
SOCIAL	LiveJournal	3997962	34681189	17.4	78%
CITATION-SCI.	$\operatorname{cit-HepTh}$	27400	352021	25.7	79%
RANDOM	ER-Gnm ₋ 1M-6	997479	2999988	6.0	79%
CITATION-SCI.	cit-HepPh	34401	420784	24.5	81 %
RANDOM	ER-Gnm_1M-8	999684	3 999 999	8.0	84%
RANDOM	ER-Gnm_1M-10	999952	5000000	10.0	87 %
RANDOM	ER-Gnm ₋ 1M-15	1000000	7500000	15.0	91 %
SOCIAL	orkut	3072441	117 185 083	76.3	91 %
RANDOM	ER-Gnm_1M-20	1 000 000	10 000 000	20.0	93 %

 $23\,132$

297 094

The proximity with cographs highly depends on the real-world context

 $93\,\%$

WORD-REL.

Thesaurus

Not close not far

internet

WORD-REL.

Thesaurus

road

Comtourt	Network			d°	%mod
Context WWW		1 148 875	12 281 937		12%
	in-2004			21.4	
WWW	cnr-2000	227 058	2 187 201	19.3	19 %
PROTEIN	reactome	5 973	145 778	48.8	22 %
SOFTWARE	jdk	6 434	53 658	16.7	29 %
SOFTWARE	jung-j	6 120	50 290	16.4	29 %
WWW	eu-2005	835 044	15 718 784	37.7	29 %
CO-AUTHOR	ca-GrQc	4158	13422	6.5	34%
CO-AUTHOR	ca-HepPh	11204	117619	21.0	34%
SPECIES	foodweb	183	2434	26.6	43%
CO-AUTHOR	dblp	317080	1049866	6.6	45%
WORD-REL.	wordnet	145145	656230	9.0	48%
COMMUNIC.	wiki-Talk	2388953	4656682	3.9	49%
CO-SOLD	amazon	334863	925872	5.5	49%
CO-AUTHOR	ca-CondMat	21363	91 286	8.6	52%
RANDOM	ER-Gnm_1M-2	796208	958 827	2.4	52%
CO-AUTHOR	ca-HepTh	8 638	24806	5.7	54%
INTERNET	as2000	6474	12572	3.9	54%
ROAD	roadNet-TX	1351137	1879201	2.8	54%
INTERNET	as-caida2007	26475	53 381	4.0	55 %
CO-AUTHOR	ca-AstroPh	17903	196972	22.0	59%
INTERNET	topology	34761	107720	6.2	61%
RANDOM	ER-Gnm_1M-3	940 987	1494643	3.2	63%
INTERNET	as-skitter	1694616	11 094 209	13.1	64 %
CO-OCCUR	bible-names	1707	9 059	10.6	67%
PROTEIN	figeys	2217	6 4 1 8	5.8	67%
CITATION-SCI.	cora	23166	89 157	7.7	68 %
SOCIAL	youtube	1 134 890	2987624	5.3	69%
CO-ACTOR	actor-col.	374 511	15 014 839	80.2	71%
P2P-CONNECT.	p2p-Gnutella	62561	147 878	4.7	71%
RANDOM	ER-Gnm_1M-4	980 191	1999203	4.1	71 %
CITATION-SCI.	citeseer	365 154	1721981	9.4	75 %
CITATION-PAT.	cit-Patents	3764117	16 511 740	8.8	76 %
SOFTWARE	linux	30817	213 208	13.8	77 %
SOCIAL	LiveJournal	3 997 962	34 681 189	17.4	78 %
CITATION-SCI.	cit-HepTh	27 400	352 021	25.7	79 %
RANDOM	ER-Gnm_1M-6	997 479	2999988	6.0	79 %
CITATION-SCI.	cit-HepPh	34 401	420 784	24.5	81 %
RANDOM	ER-Gnm_1M-8	999684	3999999	8.0	84 %
RANDOM	ER-Gnm_1M-10	999 952	5 000 000	10.0	87%
RANDOM	ER-Gnm-1M-15	1000000	7 500 000	15.0	91%
SOCIAL	orkut	3072441	117 185 083	76.3	91%
RANDOM	ER-Gnm_1M-20	1000000	10 000 000	20.0	$91\% \\ 93\%$
RANDOM HADD DEL	ER-GIIII_IM-20	1000000	10000000	20.0	93 %

 $23\,132$

297094

93%

The proximity with cographs highly depends on the real-world context

Context	Network	n	m	d°	%mod
WWW	in-2004	1148875	12281937	21.4	12%
WWW	cnr-2000	227058	2187201	19.3	19%
PROTEIN	reactome	5973	145778	48.8	22%
SOFTWARE	jdk	6434	53658	16.7	29%
SOFTWARE	jung-j	6120	50 290	16.4	29%
WWW	eu-2005	835044	15 718 784	37.7	29%
CO-AUTHOR	ca-GrQc	4158	13422	6.5	34%
CO-AUTHOR	ca-HepPh	11204	117619	21.0	34%
SPECIES	foodweb	183	2434	26.6	43%
CO-AUTHOR	dblp	317080	1049866	6.6	45%
WORD-REL.	wordnet	145145	656230	9.0	48%
COMMUNIC.	wiki-Talk	2388953	4656682	3.9	49%
CO-SOLD	amazon	334863	925872	5.5	49%
CO-AUTHOR	ca-CondMat	21363	91 286	8.6	52%
RANDOM	ER-Gnm_1M-2	796208	958 827	2.4	52%
CO-AUTHOR	ca-HepTh	8 638	24 806	5.7	54%
INTERNET	as2000	6474	12572	3.9	54%
ROAD	roadNet-TX	1351137	1879201	2.8	54%
INTERNET	as-caida2007	26475	53 381	4.0	55%
CO-AUTHOR	ca-AstroPh	17903	196972	22.0	59%
INTERNET	topology	34761	107720	6.2	61%
RANDOM	ER-Gnm_1M-3	940987	1494643	3.2	63%
INTERNET	as-skitter	1694616	11094209	13.1	64%
CO-OCCUR	bible-names	1707	9 0 5 9	10.6	67%
PROTEIN	figeys	2217	6 4 1 8	5.8	67%
CITATION-SCI.	cora	23166	89 157	7.7	68 %
SOCIAL	youtube	1 134 890	2987624	5.3	69%
CO-ACTOR	actor-col.	374511	15014839	80.2	71%
P2P-CONNECT.	p2p-Gnutella	62561	147 878	4.7	71%
RANDOM	ER-Gnm_1M-4	980 191	1999203	4.1	71 %
CITATION-SCI.	citeseer	365154	1721981	9.4	75 %
CITATION-PAT.	cit-Patents	3764117	16 511 740	8.8	76%
SOFTWARE	linux	30817	213208	13.8	77 %
SOCIAL	LiveJournal	3 997 962	34 681 189	17.4	78 %
CITATION-SCI.	cit-HepTh	27400	352021	25.7	79%
RANDOM	ER-Gnm_1M-6	997479	2999988	6.0	79%
CITATION-SCI.	cit-HepPh	34 401	420784	24.5	81 %
RANDOM	ER-Gnm_1M-8	999684	3 999 999	8.0	84 %
RANDOM	ER-Gnm_1M-10	999952	5000000	10.0	87 %
RANDOM	ER-Gnm_1M-15	1 000 000	7500000	15.0	91%
SOCIAL	orkut	3 072 441	117 185 083	76.3	91 %
DANDOM	ED 6 411.00	1 000 000	10000000	20.0	000

The proximity with cographs highly depends on the real-world context

Far from cographs

citation

social

RANDOM

WORD-REL.

ER-Gnm_1M-20

Thesaurus

1000000

23132

 $10\,000\,000$

297094

20.0

25.7

 $93\,\%$

 $93\,\%$

GOAL: perform as few modifications as possible

GOAL: perform as few modifications as possible

Unfortunately: minimum number is NP-hard for most properties

Even when only one type of modifications is allowed

GOAL: perform as few modifications as possible

Unfortunately: minimum number is NP-hard for most properties

Even when only one type of modifications is allowed

- Different approaches:
- Restricted inputs
- Exact exponential algorithms
- Parameterized algorithms
- Approximation algorithms
- Inclusion minimal modification

GOAL: perform as few modifications as possible

- Unfortunately: minimum number is NP-hard for most properties
 - Even when only one type of modifications is allowed
- Different approaches:
- Restricted inputs
- Exact exponential algorithms
- Parameterized algorithms (1st lecture)
- Approximation algorithms
- Inclusion minimal modification (2nd lecture)

1. Characterization by forbiden subgraphs:

no induced P_4 (path on 4 vertices)

2. Obtained from single vertices by using two operations:

Exercise:

Is d adjacent to y? non-adjacent. Is a adjacent to t? object

cotree

Exercise:

Is **d** adjacent to **y**?

Is **a** adjacent to **t**?

Answer:

Find the *lowest common ancestor* of the two leaves

• *II* : non-adjacent

S: adjacent

Exercise: Are these two graphs cographs?

Exercise: Are these two graphs cographs?

Exercise: Are these two graphs cographs?

TARGET CLASS: Cographs

Editing ???

TARGET CLASS: Cographs

Exercise:

Exercise:

Give a minimum cograph editing of G

3 modifications are enough

Exercise:

Give a minimum cograph editing of G

3 modifications are enough

Exercise:

- 3 modifications are enough
- Can you do it with 2 modifications only?

Exercise:

- 3 modifications are enough
- Can you do it with 2 modifications only?

Exercise:

- 3 modifications are enough
- Can you do it with 2 modifications only?

GOAL: perform as few modifications as possible

Unfortunately: minimum number is NP-hard for cograph editing

Even when only one type of modifications is allowed

- Unfortunately: *minimum number* is *NP-hard* for cograph editing

 Even when only one type of modifications is allowed
- Are cographs a complicate class of graphs?

- Unfortunately: minimum number is NP-hard for cograph editing Even when only one type of modifications is allowed
- Are cographs a complicate class of graphs?
 - Need a criterion : propositions?

- Unfortunately: minimum number is NP-hard for cograph editing Even when only one type of modifications is allowed
- Are cographs a complicate class of graphs?
 - Need a criterion : propositions?
 Number of graphs in the class with n vertices
 ⇔ size of the representation

- Unfortunately: minimum number is NP-hard for cograph editing Even when only one type of modifications is allowed
- Are cographs a complicate class of graphs?
 - Need a criterion : propositions?
 Number of graphs in the class with n vertices ↔ size of the representation
 - For labelled cographs: O(n) integers = O(n log n) bits

- Unfortunately: minimum number is NP-hard for cograph editing Even when only one type of modifications is allowed
- Are cographs a complicate class of graphs?
 - Need a criterion : propositions?
 Number of graphs in the class with n vertices
 ⇔ size of the representation
 - For labelled cographs: O(n) integers = O(n log n) bits
 - For graphs in general: O(n²) bits

- Unfortunately: minimum number is NP-hard for clique + isolated vertices editing
- Even worse example: clique + isolated vertices

- Unfortunately: minimum number is NP-hard for clique + isolated vertices editing
- Even worse example: clique + isolated vertices
 - Up to isomorphism: 1 integer = O(log n) bits

- Unfortunately: minimum number is NP-hard for clique + isolated vertices editing
- Even worse example: clique + isolated vertices
 - Up to isomorphism: 1 integer = $O(\log n)$ bits
 - For graphs in general: O(n²) bits

GOAL: perform as few modifications as possible

Unfortunately: minimum number is NP-hard for clique + isolated vertices editing

Exercise:

Does it remain hard for pure completion? For pure deletion?

GOAL: perform as few modifications as possible

Unfortunately: minimum number is NP-hard for clique + isolated vertices editing

In general: no rule

Minimum editing to a split graph is polynomial time solvable

GOAL: perform as few modifications as possible

Unfortunately: minimum number is NP-hard for clique + isolated vertices editing

In general: no rule

Minimum editing to a split graph is polynomial time solvable Minimum completion and minimum deletion are NP-hard

- Unfortunately: minimum number is NP-hard for cograph editing
 - Even when only one type of modifications is allowed
- Different approaches:
- Restricted inputs
- Exact exponential algorithms
- Parameterized algorithms (1st lecture)
- Approximation algorithms
- Inclusion minimal modification (2nd lecture)

Polynomial Kernels for Edge Modification Problems

Parameterized complexity

Idea: the computational difficulty of treating an instance is not only due to its size: also depend on a relevant alternative parameter k

Parameterized complexity

Idea: the computational difficulty of treating an instance is not only due to its size: also depend on a relevant alternative parameter k

Data Reduction: KERNEL

An algorithm A that reduces an instance (I,k) to an instance (I',k') s.t.

- A runs in polynomial time (wrt. |I|)
- (I',k') is a YES-instance iff (I,k) is a YES-instance
- $|I'| \le g(k)$ and $k' \le k$ \longrightarrow |I'| depends only on k (not on |I|)

Parameterized complexity

Idea: the computational difficulty of treating an instance is not only due to its size: also depend on a relevant alternative parameter k

Data Reduction: KERNEL

An algorithm A that reduces an instance (I,k) to an instance (I',k') s.t.

- A runs in polynomial time (wrt. |I|)
- (I',k') is a YES-instance iff (I,k) is a YES-instance
- $|I'| \le g(k)$ and $k' \le k$ \longrightarrow |I'| depends only on k (not on |I|)

POLYNOMIAL KERNEL: g is a polynomial

Survey on edge modification

A survey of parameterized algorithms and the complexity of edge modification Christophe Crespelle, Pål Grønås Drange, Fedor V. Fomin, Petr A. Golovach

graph class	completion		deletion		editing	
8	KERNEL	TIME SUBEPT	KERNEL	TIME SUBEPT	KERNEL	TIME
line	OPEN	FPT by [?] OPEN	OPEN	FPT by [?] OPEN	OPEN	FPT by [?] OPEN
s-Plex Cluster	_		_		s^2k [?]	$(2s + \sqrt{s})^k$ [?] NOSUB [?]
$\{K_3, 2K_2, C_5\}$ chain	as de letion		k2 [?, ?]	SUBEPT 2 ^{√k log k} [?]	k^{2} [?]	\$UBEPT 2 ^{√k log k} [?]
$\{K_3, C_4, P_4\}$ Starforest	P		4k [?]	FPT by [?] NOSUB [?]	as deletion	
$\{2K_2, C_4, P_4\}$ threshold *	k^{2} [?]	SUBEPT $2^{\sqrt{k \log k}}$ [?] NO $2^{k^{1/4}}$ [?]	k^{2} [?]	SUBEPT $2^{\sqrt{k \log k}}$ [?] NO $2^{k^{1/4}}$ [?]	k ² [?]	SUBEPT 2 ^{√k log k} [?]
{2K ₂ , C ₄ , C ₅ } split *	k [?], 5k ^{1.5} [?]	SUBEPT $2^{\mathcal{O}(\sqrt{k})} \ [?,$ Exercise 5.17]	k [?], 5k ^{1.5} [?]	SUBEPT $2^{\mathcal{O}(\sqrt{k})} \ [?,$ Exercise 5.17]	P	[?]
$\{P_3, 2K_2\}$ clique + isol. vert.	P		$k/\log k$ [?]	SUBEPT 1.6355 ^{√k in k} [?]	2k [folkl.]	SUBEPT 2 ^{√k in k} [?]
$\{C_4, P_4\}$ trivially perfect	k^{2} [?, ?]	SUBEPT $2^{\sqrt{k} \log k}$ [?] NO $2^{k^{1/4}}$ [?]	k3 [?]	2.42 ^k [?] NOSUB [?]	k3 [?]	NOSUB [?]
{claw,diamond}	OPEN	FPT by [?] OPEN	$k^{\mathcal{O}(1)}$ [?]	OPEN NOSUB [?]	OPEN	FPT by [?]
$\{2K_2, C_4\}$ pseudosplit *	$5k^{1.5}$ [?]	SUBEPT $2^{\mathcal{O}(\sqrt{k})}$ [?, ?]	5k ^{1.5} [?]	SUBEPT $2^{\mathcal{O}(\sqrt{k})}$ [?, ?]	P [?, ?]	
{P ₃ } chuster	Р		2k: [?]	1.41 ^k [?] NOSUB [?]	2k [?, ?]	1.76* [?] NOSUB [?]
$\{K_3\}$	P		6k [?]	FPT by [?] NOSUB [?]	as deletion	
{P ₄ } cograph *	k3 [?]	2.56 ^k [?] NOSUB [?, ?]	k3 [?]	2.56 ^k [?] NOSUB [?, ?]	k3 [?]	4.61 ^k [?] NOSUB [?]
$\{paw\}$	k^{3} [?]	FPT by [?] NOSUB [?]	k ³ [?]	FPT by [?] NOSUB [?]	k ^a [?]	FPT by [?] NOSUB [?]
{diamond}		>	k3 [?, ?]	FPT by [?] NOSUB [?, ?]	k* [?]	FPT by [?] NOSUB [?]
{claw}	OPEN	FPT by [?] NOSUB [?]	OPEN	FPT by [?] NOSUB [?]	OPEN	FPT by [?] NOSUB [?]
{K ₄ }	Р		k3 [?]	FPT by [?] NOSUB [?]	as deletion	
$\{P_{\ell}\}$ fixed $\ell > 4$	NOKER [?]	FPT by [?] NOSUB [?]	NOKER [?]	FPT by [?] NOSUB [?]	NOKER [?]	FPT by [?] NOSUB [?]
$\{C_\ell\}$ fixed $\ell > 3$	NOKER [?]	FPT by [?] NOSUB [?]	NOKER [?]	FPT by [?] NOSUB [?]	NOKER [?]	FPT by [?] NOSUB [?]

Survey on edge modification

A survey of parameterized algorithms and the complexity of edge modification Christophe Crespelle, Pål Grønås Drange, Fedor V. Fomin, Petr A. Golovach

graph class	completion		deletion		editing	
	KERNEL	FPT SUBEPT	KERNEL	FPT SUBEPT	KERNEL	FPT SUBEPT
Linear forest	P		9k [?]	2.29 ^k [7] randomized NOSUB (Hamiltonicity)	as deletion	
Distance- hereditary	OPEN	FPT (from [?])	OPEN	FPT (from [?]) NOSUB [?, ?]	OPEN	FPT (from [?]) NOSUB [?, ?]
Planar	Р		OPEN	FPT [?] (minor closed [?]) OPEN	as deletion	
H-minor- free	P		OPEN	FPT minor closed [7] OPEN	as deletion	
Bipartite	P		$k^3 \ [?]^{\dagger}$ randomized	2 ^k [?] 1.977 ^k [?] NOSUB (folk.)	as deletion	
3-leaf power	k ³ [?]	FPT [?] OPEN	k^{3} [?]	FPT [?] NOSUB (Clustering)	$k^{3} [7]$	FPT [?] NOSUB (Clustering)
4-leaf power	OPEN	FPT [7, 7]	OPEN	FPT [7, 7]	OPEN	FPT [7, 7]
proper interval	k^{3} [?]	SUBEPT 2 ^{O(k^{2/3}) log k} [?] NO 2 ^{k^{1/4}} [?]	OPEN	FPT [?] OPEN	OPEN	FPT [7] OPEN
interval	OPEN	SUBEPT $2^{\sqrt{k}\log k}$ [7] NO $2^{k^{1/4}}$ [7]	OPEN	$\begin{array}{c} 2^{\mathcal{O}(k)\log k} \ [7] \\ \hline \text{OPEN} \end{array}$	OPEN	OPEN OPEN
strongly chordal	OPEN	64 ^k [?] OPEN	OPEN	OPEN OPEN	OPEN	OPEN OPEN
chordal	k^{2} [?]	SUBEPT 2 ^{√klog k} [?] NO 2 ^{√k} [?]	OPEN	$2^{\mathcal{O}(k \log k)}$ [?] OPEN	OPEN	$2^{\mathcal{O}(k \log k)}$ [?] OPEN

Polynomial kernel algorithms

A set of reduction rules: (I,k) → (I',k')

Rule 1: if condition 1 then transformation 1
Rule 2: if condition 2 then transformation 2
...

- All rules are:
 - Sound: (I',k') is a YES-instance iff (I,k) is a YES-instance
 - Computable in polynomial time, wrt. |I|
 - · number of times the rules are applied is jolynomial.
- A YES-instance (I,k) reduced under these rules always satisfies: $|I| \le P(k)$ (with P a polynomial)

Remarks:

- Reduced = no rule applies
- If after reduction |I| > P(k) then output a constant-size NO-instance

Kernels for edge modification

Two kinds of rules

For forced modifications (that must be made)

- For removing irrelevant parts of the input graph
 - That do not need to be modified and
 - That do not influence modifications in the rest of the graph

O(***)-vertex kernel for cograph editing

Guillemot, Havet, Paul and Perez, 2010

On the (Non-)Existence of Polynomial Kernels for P_1 -Free Edge Modification Problems. Guillemot, Havet, Paul & Perez, 2010.

Rules for removing the irrelevant parts:

Remove the connected components of G that are cographs.

On the (Non-)Existence of Polynomial Kernels for P_1 -Free Edge Modification Problems. Guillemot, Havet, Paul & Perez, 2010.

Rules for removing the irrelevant parts:

Remove the connected components of G that are cographs.

It works because it is a connected component

On the (Non-)Existence of Polynomial Kernels for P_1 -Free Edge Modification Problems. Guillemot, Havet, Paul & Perez, 2010.

Rules for removing the irrelevant parts:

- Remove the connected components of G that are cographs.
- Rule 2 (modules): If **M** is a non-trivial module of G which is strictly contained in a connected component and is not an independent set of size at most k + 1, then return the graph $G' \oplus G[M]$ where G' is obtained from G by replacing M by an independent set module of size min{|M|, k+1}.

Rule 2 (modules):

If **M** is a non-trivial module of G which is strictly contained in a connected component and is not an independent set of size at most k + 1, then return the graph $G' \oplus G[M]$ where G' is obtained from G by replacing M by an independent set module of size min{|M|, k+1}.

Definition (module)

M is a module if all the vertices of M have the same neighbours outside of M.

Or equivalently, M is a module if each vertex outside of M sees M

uniformly.

Exercise

Prove that if M is a module of G, there exists a minimum editing of G that edit the adjacencies between any vertex $x \in M$ and vertices of V \ M in the same way for all $x \in M$.

Exercise

Prove that if M is a module of G, then $G'' \oplus G[M]$ admits a cograph editing of size at most k iff G admits an editing of size at most k, where G'' is obtained from G by replacing M by an independent set module of size IM.

Rule 2 (modules):

If **M** is a non-trivial module of G which is strictly contained in a connected component and is not an independent set of size at most k + 1, then return the graph $G' \oplus G[M]$ where G' is obtained from G by replacing M by an independent set module of size min{|M|, k+1}.

Soundness

We only need to prove that if G admits a cograph editing of size k and if M has size more than k+1, then we can keep only k+1 vertices in the independent set replacing M in G'.

Rules 1 and 2 work together

Rules 1 and 2 work together

Modular decomposition tree

Can be computed in O(n+m) time

Rules 1 and 2 work together

Modular decomposition tree

Theorem:

A graph is a cograph iff it has no P node in its modular decomposition tree.

Rules 1 and 2 work together

Rules 1 and 2 work together

With rule 1 only: cannot cut anything...

Rules 1 and 2 work together

With rule 1 and 2:

Rule 2 first

Rules 1 and 2 work together

With rule 1 and 2:

Rule 2 first

Rules 1 and 2 work together

With rule 1 and 2:

Rule 2 first

Rules 1 and 2 work together

With rule 1 and 2:

Rule 2 first

Then Rule 1

Rules 1 and 2 work together

With rule 1 and 2:

Rule 2 first

Then Rule 1

On the (Non-)Existence of Polynomial Kernels for P_i -Free Edge Modification Problems. Guillemot, Havet, Paul & Perez, 2010.

Rules for forced modifications:

Rule 3 (P_4 sunflower):

If $\{x, y\}$ is a pair of vertices of G that belongs to a set S of $t \ge k + 1$ quadruples $P_i = \{x, y, a_i, b_i\}$ such that for $1 \le i \le t$, every P_i induces a P_4 and for any $1 \le i < j \le t$, $P_i \cap P_i = \{x, y\}$, then edit $\{x,y\}$ and decrease k by one.

Theorem (size of the kernel):

Let G be a graph *reduced under rules 1, 2 and 3*. If G admits a cograph editing of size k, then G has O(k³) vertices.

Theorem (size of the kernel):

Let G be a graph *reduced under rules 1, 2 and 3*. If G admits a cograph editing of size k, then G has O(k³) vertices.

Theorem (size of the kernel):

Let G be a graph *reduced under rules 1, 2 and 3*. If G admits a cograph editing of size k, then G has O(k³) vertices.

Theorem (size of the kernel):

Let G be a graph *reduced under rules 1, 2 and 3*. If G admits a cograph editing of size k, then G has $O(k^3)$ vertices.

Proof: consider a minimum modification of G into a cograph having

cotree T as follows

Affected vertices ≤ 2k

Affected internal nodes ≤ 2k

Affected vertices ≤ 2k

Affected internal nodes ≤ 2k

The generic reduction algorithm:

- While there exists some rules that applies
 - Apply an arbitrary rule among the rules that apply

The generic reduction algorithm:

- While there exists some rules that applies
 - Apply an arbitrary rule among the rules that apply
- At the end: you get a reduced graph

The generic reduction algorithm:

- While there exists some rules that applies
 - Apply an arbitrary rule among the rules that apply
- At the end: you get a reduced graph

One particular way of doing it:

- Apply rule 3 until it does not apply anymore
- Apply rule 2 until it does not apply anymore
- Apply rule 1 until it does not apply anymore

The generic reduction algorithm:

- While there exists some rules that applies
 - Apply an arbitrary rule among the rules that apply
- At the end: you get a reduced graph

One particular way of doing it:

- Apply rule 3 until it does not apply anymore
- Apply rule 2 until it does not apply anymore
- Apply rule 1 until it does not apply anymore

Question: Is the graph obtained reduced under rules 1,2,3?

Lemma:

If graph G is reduced under rule 3, then applying rule 2 to G gives a graph G' that is also reduced under rule 3.

Exercise : Prove the lemma above.

Lemma:

If graph G is reduced under rule 3, then applying rule 2 to G gives a graph G' that is also reduced under rule 3.

Exercise: Prove the lemma above.

Hint:

If M is a (non-trivial) module of graph G, then any P_4 of G that is not included in M has at most one vertex in M.

Lemma:

If graph G is reduced under rules 2 and 3, then applying rule 1 to G gives a graph G' that is also reduced under rules 2 and 3.

The generic reduction algorithm:

- While there exists some rules that applies
 - Apply an arbitrary rule among the rules that apply
- At the end: you get a reduced graph

One particular way of doing it:

- Apply rule 3 until it does not apply anymore
- Apply rule 2 until it does not apply anymore
- Apply rule 1 until it does not apply anymore

Question: Is the graph obtained reduced under rules 1,2,3?

Question: does this algorithm run in polynomial time?

The generic reduction algorithm:

- While there exists some rules that applies
 - Apply an arbitrary rule among the rules that apply
- At the end: you get a reduced graph

One particular way of doing it:

- Apply rule 3 until it does not apply anymore
- Apply rule 2 until it does not apply anymore
- Apply rule 1 until it does not apply anymore

Question: Is the graph obtained reduced under rules 1,2,3?

Question: does this algorithm run in polynomial time?

Subquestion: does it even terminate?

Q1: Can it really Is it a problem it it happens?

Practical limitations of kernels for edge modification problems

with Anne-Aymone Bourguin

Why would k vary ?

- Why would k vary ?
 - We are not only interested in the decision problem

- Why would k vary ?
 - We are not only interested in the decision problem
- If $k_2 > k_1$ and rule 3 applies to (G, k_2) and gives (H_2 , k_2 ') then
 - rule 3 also applies to (G,k_1) to give (H_1,k_1') and
 - k₁'<k₂'

- Why would k vary ?
 - We are not only interested in the decision problem
- If $k_2 > k_1$ and rule 3 applies to (G,k_2) and gives (H_2,k_2) then
 - rule 3 also applies to (G,k_1) to give (H_1,k_1) and
 - k₁'<k₂'
- If $k_2 > k_{1,1}$ then a series of reduction rules 3 performed from (G,k_2) can also be performed from (G,k_1) and gives a smaller graph

- Why would k vary ?
 - We are not only interested in the decision problem
- If $k_2 > k_1$ and rule 3 applies to (G_1k_2) and gives (H_2,k_2) then
 - rule 3 also applies to (G,k_1) to give (H_1,k_1) and
 - k₁'<k₂'
- If $k_2 > k_{1,1}$ then a series of reduction rules 3 performed from (G,k_2) can also be performed from (G,k_1) and gives a smaller graph
- The same should be checked for rules 2 and 1

- Why would k vary ?
 - We are not only interested in the decision problem
- If $k_2 > k_1$ and rule 3 applies to (G,k_2) and gives (H_2,k_2) then
 - rule 3 also applies to (G,k_1) to give (H_1,k_1) and
 - k₁'<k₂'
- If $k_2 > k_1$, then a series of reduction rules 3 performed from (G,k_2) can also be performed from (G,k_1) and gives a smaller graph
- The same should be checked for rules 2 and 1

The size of the kernel increases when k increases

138

parameter k

Results on real-world networks

			k _{no}			k _{ras}	\mathbf{k}_{inf}
			k max	k max	k max	k_{ras} : algo	borne
Graphe	n	m	pour la	où règle 2	où règle 3	devient	inf
			réponse non	s'applique	s'applique	inefficace	k_{inf}
gene_fusion	110	124	11	14	14	15	22
maayan-pdzbase	161	209	14	-	15	16	43
foodweb	183	2434	79	2=	80	81	599
arenas-jazz	198	2742	85	-	86	87	698
dimacs10-netscience	379	914	19		23	24	118
sociopatterns-infect	410	2765	66	2=	71	72	688
celegans_metabolic	453	2025	124	-	134	135	517
moreno_crime	829	1473	33		34	35	412
hamster-household	874	4003	153	-	158	159	1215
opsahl-ucforum	899	7019	174	-	185	186	2250
email-Eu-core	986	16064	346		360	361	5006
subelj_euroroad	1039	1305	11	-	11	12	341
moreno_propro	1458	1948	33	45	47	48	432
moreno_names	1707	9059	300	1.5	316	317	2462
figeys	2217	6418	172	-	238	239	1542
maayan-vidal	2783	6007	120	-	149	150	1658
ca-GrQC	4158	13422	73	-	88	89	2133
as2000	6474	12572	426	-	706	707	2575

Result for an almost cograph

Result for an almost cograph

A less caricaturistic behaviour

A full range of behaviours

An O(k² log k) Vertex kernel for cograph editing

with Remi Pellerin and Stéphan Thomassé

Guillemot et al. : O(k³) vertex

Our goal: reduce the size of the kernel to O(k² log k)

Our goal: reduce the size of the kernel to O(k² log k)

<u>Definition</u>: (t-module)

A t-module in G is a set of vertices X such that by editing a set of at most t pairs in G, we obtain G' in which X is a module.

Our goal: reduce the size of the kernel to O(k² log k)

<u>Definition</u>: (t-module)

A t-module in G is a set of vertices X such that by editing a set of at most t pairs in G, we obtain G' in which X is a module.

Remark : T can always be chosen in $\delta(X)$.

Our goal: reduce the size of the kernel to O(k² log k)

<u>Definition</u>: (t-module)

A t-module in G is a set of vertices X such that by editing a set of at most t pairs in G, we obtain G' in which X is a module.

Remark : T can always be chosen in $\delta(X)$.

<u>Definition</u>: (budget)

The budget of a set X of G is the minimum b such that all minimum cograph editings S of G satisfy $|S \cap \delta(X)| \le b$.

Our goal: reduce the size of the kernel to O(k² log k)

<u>Definition</u>: (t-module)

A t-module in G is a set of vertices X such that by editing a set of at most t pairs in G, we obtain G' in which X is a module.

Remark : T can always be chosen in $\delta(X)$.

Definition: (budget)

The budget of a set X of G is the minimum b such that all minimum cograph editings S of G satisfy $|S \cap \delta(X)| \le b$.

Lemma:

Let X be a t-module such that |X| > k + t. If there exists an editing of size at most k, then the budget of X is at most t.

Lemma:

Let X be a t-module such that |X| > k + t. If there exists an editing of size at most k, then the budget of X is at most t.

Exercise : Prove the lemma above.

Lemma:

Let X be a t-module such that |X| > k + t. If there exists an editing of size at most k, then the budget of X is at most t.

Exercise: Prove the lemma above.

Exercise: Prove that testing if X is a t-module can be done in polynomial time.

New rule: the main idea

Purpose:

Avoid long paths ($\geq 51.\ell$) in the cotree T of the edited cograph that *interact* with only few (ℓ) edited pairs: **51-sparse** path.

Definition: (interact)

The edited pair xy *interacts* with path P when the path from x to y in T shares an edge with P.

Lemma:

If T has a 51-sparse path then the nested t-module reduction rule applies (our 4th rule).

New rule: the main idea

Rule 4 (nested t-module reduction): If there exists a partition $A \sqcup B \sqcup C \sqcup I \sqcup K$ of V that satisfies the following conditions:

- A, A⊔B, A⊔B⊔C are t-modules
- |A|>k+t
- B_s , $B_{//}$, C_s , C// all have size >3t
- B_s and B_{\parallel} have the required adjacencies with A, I, K
- C_s and C_{\parallel} have the required adjacencies with A, B, I, K

Then remove all edges between A and I and add missing edges between A and K.

New rule: the main idea

Purpose:

Avoid long paths ($\geq 51.\ell$) in the cotree T of the edited cograph that *interact* with only few (ℓ) edited pairs: **51-sparse** path.

Definition: (interact)

The edited pair xy *interacts* with path P when the path from x to y in T shares an edge with P.

Lemma:

If T has a 51-sparse path then the nested t-module reduction rule applies (our 4th rule).

Lemma:

If the reduced graph H has $\Omega(k^2 \log k)$ vertices then its cotree has size $\Omega(k \log k)$ and if H is a yes-instance then T has a 51 sparse path.

Perspectives (Lecture I)

 \bigcirc O(k^2) kernel for cograph editing?

Reduction rules without knowing the value of the parameter k

- Kernels or FPT algorithms for edge modification problems with other (smaller) parameters
 - Local search?

Graph editing: algorithms and experimental results

Christophe Crespelle

Université Côte d'Azur

with Jean Blair, Anne-Aymone Bourguin, Benjamin Gras, Daniel Lokshtanov, Remi Pellerin, Anthony Perez, Thi Ha Duong Phan, Eric Thierry and Stéphan Thomassé

