
1

Graph editing: algorithms and

experimental results

with Jean Blair, Anne-Aymone Bourguin, Benjamin Gras,
Daniel Lokshtanov, Remi Pellerin, Anthony Perez, Thi Ha Duong Phan,

Eric Thierry and Stéphan Thomassé

Christophe Crespelle

Université Côte d’Azur

Complex Networks

Complex networks

Real-world data

Ex of contexts :
computer science,
social sciences,
biology, linguistics,
medecine,
transportation,
communications,
industry, economy, ...

complex

large
+

unordered

Complex networks

Not complex

Real-world data

Ex of contexts :
computer science,
social sciences,
biology, linguistics,
medecine,
transportation,
communications,
industry, economy, ...

complex

large
+

unordered

small ordered

Complex networks

Word networks

commo
n
meanin
g

word air

sky wind

Proteine interactions

proteine

chemical
reaction

How does a living cell work? How does a language evolve?

Real-world data (not formally defined)
Ex of contexts :
 computer science, social sciences, biology, linguistics, medecine,
 Transportation, communications, industry, economy, ...

node

link

Internet

router

cable

How to carry information
across the Internet?

Complex networks

Real-world data

Ex of contexts :
computer science,
social sciences,
biology, linguistics,
medecine,
transportation,
communications,
industry, economy, ...

complex

large
+

unordered

Links depend on time

(1.25 , a , b)
(2.50 , b , c)
(4.58 , a , b)
(5.83 , a , b)
(7.08 , b , c)
(8.33 , c , e)
. . .

Four big classes of problems

Measurement

Analysis

Modelling

Algorithms

Four big classes of problems

Measurement

Analysis

Modelling

Algorithms

arbitrary graphs

random graphsstrongly structured graphs

complex
networks

Graph theory

Complex networks as

almost structured graphs

Almost structured graphs
loosely constrained

strongly impacted by their context

randomness

structure

Almost structured graphs
loosely constrained

strongly impacted by their context

randomness

structure

Complex networks = structure + randomness

High local density Short distances[Watts & Strogatz 1998]

Almost structured graphs
loosely constrained

strongly impacted by their context

randomness

structure

Complex networks = structure + randomness

strongly structured1

Almost structured graphs
loosely constrained

strongly impacted by their context

randomness

structure

Complex networks = structure + randomness

+

strongly structured random modifications1 2

Almost structured graphs
loosely constrained

strongly impacted by their context

randomness

structure

Complex networks = structure + randomness

+

strongly structured random modifications1 2

Almost structured graphs
loosely constrained

strongly impacted by their context

randomness

structure

Complex networks = structure + randomness

+

strongly structured random modifications1 2

???

Almost structured graphs
loosely constrained

strongly impacted by their context

randomness

structure

Complex networks = structure + randomness

+

strongly structured random modifications1 2

structure noise

Graph editing algorithms

18

Graph editing algorithms

INPUT TARGET CLASS

arbitrary graph

(ex: chordal graphs)

Definition:
Chordal graphs = graphs without induced cycle on at least 4 vertices

19

Graph editing algorithms

INPUT TARGET CLASS

arbitrary graph output graph
in the class

editing
algorithm (ex: chordal graphs)

Definition:
Chordal graphs = graphs without induced cycle on at least 4 vertices

20

Graph editing algorithms

INPUT TARGET CLASS

arbitrary graph output graph
in the class

editing
algorithm (ex: chordal graphs)

GOAL: perform as few modifications as possible

21

Graph editing algorithms

INPUT TARGET CLASS

arbitrary graph output graph
in the class

editing
algorithm (ex: chordal graphs)

Two constrained versions of the problem:

Only additions allowed

Only deletions allowed

completion
algorithm

deletion
algorithm

22

Motivations

Mathematics
Distance to and projection on a class of graphs.
How far is a graph from having a certain property?

Computation
Natural extension of the recognition problem of graph classes.
When the recognition fail, how to minimally correct the graph?

Data science
Remove noise in graph data.

 Measurement errors

 Randomness (non-constrained part of the data)

 Anything deviating from the main structure

23

Editing real-world networks

24

Cograph edition of real-world graphs

35 real-world
graphs

+

8 random
graphs

25

Cograph edition of real-world graphs

35 real-world
graphs

+

8 random
graphs

RESULTS

 Some networks are very

close from cographs

26

Cograph edition of real-world graphs

35 real-world
graphs

+

8 random
graphs

RESULTS

 Some networks are very

close from cographs

 Random graphs are never

27

Cograph edition of real-world graphs

35 real-world
graphs

+

8 random
graphs

RESULTS

 Some networks are very

close from cographs

 Random graphs are never

 A wide range of proximity :

12% to 93%

28

Cograph edition of real-world graphs

35 real-world
graphs

+

8 random
graphs

RESULTS

 Some networks are very

close from cographs

 Random graphs are never

 A wide range of proximity :

12% to 93%

 The proximity with cographs

highly depends on the

real-world context

29

Cograph edition of real-world graphs

www

software

Close to cographs

 The proximity with cographs

highly depends on the

real-world context

30

Cograph edition of real-world graphs

Not close not far

internet

road

 The proximity with cographs

highly depends on the

real-world context

31

Cograph edition of real-world graphs

Far from cographs

citation

social

 The proximity with cographs

highly depends on the

real-world context

Graph editing algorithms

33

Graph editing algorithms

INPUT TARGET CLASS

arbitrary graph output graph
in the class

editing
algorithm (ex: chordal graphs)

GOAL: perform as few modifications as possible

34

Graph editing algorithms

INPUT TARGET CLASS

arbitrary graph output graph
in the class

editing
algorithm (ex: chordal graphs)

Unfortunately: minimum number is NP-hard for most properties

GOAL: perform as few modifications as possible

Even when only one type of modifications is allowed

35

Graph editing algorithms

INPUT TARGET CLASS

arbitrary graph output graph
in the class

editing
algorithm (ex: chordal graphs)

Unfortunately: minimum number is NP-hard for most properties

GOAL: perform as few modifications as possible

Different approaches:

 Exact exponential algorithms

 Parameterized algorithms

 Approximation algorithms

 Inclusion minimal modification

Even when only one type of modifications is allowed

 Restricted inputs

36

Graph editing algorithms

INPUT TARGET CLASS

arbitrary graph output graph
in the class

editing
algorithm (ex: chordal graphs)

Unfortunately: minimum number is NP-hard for most properties

GOAL: perform as few modifications as possible

Different approaches:

 Exact exponential algorithms

 Parameterized algorithms (1st lecture)

 Approximation algorithms

 Inclusion minimal modification (2nd lecture)

Even when only one type of modifications is allowed

 Restricted inputs

Cographs

38

Cographs

S

//

S S

a

b

t zs yc d

2. Obtained from single vertices by using two operations:

disjoint union
(//)

complete union
(S)

G
1

G
2

G
1

G
2

cotree

O(n) space

1. Characterization by forbiden subgraphs:

no induced P
4

(path on 4 vertices)

39

Cographs

S

//

S S

a

b

t zs yc d

cotree

O(n) space

Exercise:

Is d adjacent to y ?

Is a adjacent to t ?

40

Cographs

S

//

S S

a

b

t zs yc d

cotree

O(n) space

Exercise:

Is d adjacent to y ?

Is a adjacent to t ?

Answer:

 // : non-adjacent
S : adjacent

 Find the lowest common ancestor of the two leaves

41

Cographs

G
1

G
2

Exercise: Are these two graphs cographs ?

e

e

a b

d c

a b

d c

42

Cographs

G
1

G
2

Exercise: Are these two graphs cographs ?

e

e

a b

d c

a b

d c

A P
4
 in G

1

43

Cographs

S

//

//

S

a

b

d

c

G
1

G
2

Cotree of G
2

Exercise: Are these two graphs cographs ?

e

e

e

a b

d c

a b

d c

A P
4
 in G

1

44

Coraph editing

INPUT TARGET CLASS:
Cographs

arbitrary graph
G

Editing ???

Exercise:
Give a minimum cograph editing of G

44

Coraph editing

INPUT TARGET CLASS:
Cographs

arbitrary graph
G

Editing ???

Exercise:
Give a minimum cograph editing of G

45

Coraph editing

INPUT TARGET CLASS:
Cographs

arbitrary graph
G

Editing ???

Exercise:
Give a minimum cograph editing of G

a

b d

c e

f

g

h

 3 modifications are enough

46

Coraph editing

INPUT TARGET CLASS:
Cographs

arbitrary graph
G

Editing ???

Exercise:
Give a minimum cograph editing of G

a

b d

c e

f

g

h

//

S

S

//a b

c

e

//

//

S

f g h

d

 3 modifications are enough

47

Coraph editing

INPUT TARGET CLASS:
Cographs

arbitrary graph
G

Editing ???

Exercise:
Give a minimum cograph editing of G

a

b d

c e

f

g

h

//

S

S

//a b

c

e

//

//

S

f g h

d

 Can you do it with 2 modifications only?

 3 modifications are enough

48

Coraph editing

INPUT TARGET CLASS:
Cographs

arbitrary graph
G

Editing ???

Exercise:
Give a minimum cograph editing of G

a

b d

c e

f

g

h

//

S

S

//a b

c

e

//

//

S

f g h

d

 Can you do it with 2 modifications only?

 3 modifications are enough

49

Coraph editing

INPUT TARGET CLASS:
Cographs

arbitrary graph
G

Editing ???

Exercise:
Give a minimum cograph editing of G

a

b d

c e

f

g

h

//

S

S

//a b

c

e

//

//

S

f g h

d

 Can you do it with 2 modifications only?

 3 modifications are enough

50

Coraph editing

Unfortunately: minimum number is NP-hard for cograph editing

GOAL: perform as few modifications as possible

Even when only one type of modifications is allowed

INPUT TARGET CLASS:
Cographs

arbitrary graph

Editing

51

Coraph editing

Unfortunately: minimum number is NP-hard for cograph editing

GOAL: perform as few modifications as possible

Even when only one type of modifications is allowed

INPUT TARGET CLASS:
Cographs

arbitrary graph

Editing

Are cographs a complicate class of graphs?

52

Coraph editing

Unfortunately: minimum number is NP-hard for cograph editing

GOAL: perform as few modifications as possible

Even when only one type of modifications is allowed

INPUT TARGET CLASS:
Cographs

arbitrary graph

Editing

Are cographs a complicate class of graphs?
 Need a criterion : propositions?

53

Coraph editing

Unfortunately: minimum number is NP-hard for cograph editing

GOAL: perform as few modifications as possible

Even when only one type of modifications is allowed

INPUT TARGET CLASS:
Cographs

arbitrary graph

Editing

Are cographs a complicate class of graphs?
 Need a criterion : propositions?

Number of graphs in the class with n vertices ↔ size of the representation

54

Coraph editing

Unfortunately: minimum number is NP-hard for cograph editing

GOAL: perform as few modifications as possible

Even when only one type of modifications is allowed

INPUT TARGET CLASS:
Cographs

arbitrary graph

Editing

Are cographs a complicate class of graphs?
 Need a criterion : propositions?

Number of graphs in the class with n vertices ↔ size of the representation

 For labelled cographs: O(n) integers = O(n log n) bits

55

Coraph editing

Unfortunately: minimum number is NP-hard for cograph editing

GOAL: perform as few modifications as possible

Even when only one type of modifications is allowed

INPUT TARGET CLASS:
Cographs

arbitrary graph

Editing

Are cographs a complicate class of graphs?
 Need a criterion : propositions?

Number of graphs in the class with n vertices ↔ size of the representation

 For labelled cographs: O(n) integers = O(n log n) bits

 For graphs in general: O(n2) bits

56

Coraph editing

Unfortunately: minimum number is NP-hard
for clique + isolated vertices editing

GOAL: perform as few modifications as possible

INPUT TARGET CLASS:
Cographs

arbitrary graph

Editing

Even worse example: clique + isolated vertices

57

Coraph editing

Unfortunately: minimum number is NP-hard
for clique + isolated vertices editing

GOAL: perform as few modifications as possible

INPUT TARGET CLASS:
Cographs

arbitrary graph

Editing

Even worse example: clique + isolated vertices

 Up to isomorphism: 1 integer = O(log n) bits

58

Coraph editing

Unfortunately: minimum number is NP-hard
for clique + isolated vertices editing

GOAL: perform as few modifications as possible

INPUT TARGET CLASS:
Cographs

arbitrary graph

Editing

Even worse example: clique + isolated vertices

 Up to isomorphism: 1 integer = O(log n) bits

 For graphs in general: O(n2) bits

59

Coraph editing

Unfortunately: minimum number is NP-hard
for clique + isolated vertices editing

GOAL: perform as few modifications as possible

INPUT TARGET CLASS:
Cographs

arbitrary graph

Editing

Exercise:
Does it remain hard for pure completion ?
For pure deletion ?

60

Coraph editing

Unfortunately: minimum number is NP-hard
for clique + isolated vertices editing

GOAL: perform as few modifications as possible

INPUT TARGET CLASS:
Cographs

arbitrary graph

Editing

In general : no rule
Minimum editing to a split graph is polynomial time solvable

61

Coraph editing

Unfortunately: minimum number is NP-hard
for clique + isolated vertices editing

GOAL: perform as few modifications as possible

INPUT TARGET CLASS:
Cographs

arbitrary graph

Editing

In general : no rule
Minimum editing to a split graph is polynomial time solvable
Minimum completion and minimum deletion are NP-hard

62

Coraph editing

Unfortunately: minimum number is NP-hard for cograph editing

GOAL: perform as few modifications as possible

Different approaches:

 Exact exponential algorithms

 Parameterized algorithms (1st lecture)

 Approximation algorithms

 Inclusion minimal modification (2nd lecture)

Even when only one type of modifications is allowed

 Restricted inputs

INPUT TARGET CLASS:
Cographs

arbitrary graph

Editing

63

Polynomial Kernels for Edge

Modification Problems

64

Parameterized complexity

 Idea: the computational difficulty of treating an instance is not only
due to its size: also depend on a relevant alternative parameter k

65

Parameterized complexity

 Data Reduction: KERNEL

 Idea: the computational difficulty of treating an instance is not only
due to its size: also depend on a relevant alternative parameter k

 A runs in polynomial time (wrt. |I|)

 (I’,k’) is a YES-instance iff (I,k) is a YES-instance

 |I’| ≤ g(k) and k’ ≤ k

 An algorithm A that reduces an instance (I,k) to an instance (I’,k’) s.t.

|I’| depends only on k (not on |I|)

66

Parameterized complexity

 Data Reduction: KERNEL

 Idea: the computational difficulty of treating an instance is not only
due to its size: also depend on a relevant alternative parameter k

 A runs in polynomial time (wrt. |I|)

 (I’,k’) is a YES-instance iff (I,k) is a YES-instance

 |I’| ≤ g(k) and k’ ≤ k

POLYNOMIAL KERNEL : g is a polynomial

 An algorithm A that reduces an instance (I,k) to an instance (I’,k’) s.t.

|I’| depends only on k (not on |I|)

67

Survey on edge modification
A survey of parameterized algorithms and the complexity of edge modification
Christophe Crespelle, Pål Grønås Drange, Fedor V. Fomin, Petr A. Golovach

68

Survey on edge modification
A survey of parameterized algorithms and the complexity of edge modification
Christophe Crespelle, Pål Grønås Drange, Fedor V. Fomin, Petr A. Golovach

69

Polynomial kernel algorithms

All rules are:

A set of reduction rules: (I,k) → (I’,k’)

A YES-instance (I,k) reduced under these rules always satisfies:
 |I| ≤ P(k) (with P a polynomial)

 Sound : (I’,k’) is a YES-instance iff (I,k) is a YES-instance

 Computable in polynomial time, wrt. |I|

Rule 1: if condition 1 then transformation 1
Rule 2: if condition 2 then transformation 2
...

Remarks:

 Reduced = no rule applies
 If after reduction |I| > P(k) then output a constant-size NO-instance

70

Kernels for edge modification

For forced modifications (that must be made)

For removing irrelevant parts of the input graph

 That do not need to be modified and
 That do not influence modifications in the rest of the graph

Two kinds of rules

71

O(n3)-vertex kernel for cograph

editing

Guillemot, Havet, Paul and Perez, 2010

72

O(k3) vertex kernel for cograph editing

On the (Non-)Existence of Polynomial Kernels for P
l
-Free Edge

Modification Problems. Guillemot, Havet, Paul & Perez, 2010.

 Rule 1 (cograph component):
Remove the connected components of G that are cographs.

Rules for removing the irrelevant parts :

73

O(k3) vertex kernel for cograph editing

On the (Non-)Existence of Polynomial Kernels for P
l
-Free Edge

Modification Problems. Guillemot, Havet, Paul & Perez, 2010.

 Rule 1 (cograph component):
Remove the connected components of G that are cographs.

Rules for removing the irrelevant parts :

! It works because it is a connected component

74

O(k3) vertex kernel for cograph editing

On the (Non-)Existence of Polynomial Kernels for P
l
-Free Edge

Modification Problems. Guillemot, Havet, Paul & Perez, 2010.

 Rule 1 (cograph component):
Remove the connected components of G that are cographs.

 Rule 2 (modules):
If M is a non-trivial module of G which is strictly contained in a connected
component and is not an independent set of size at most k + 1, then
return the graph G’ G[M] where G’ is obtained from G by replacing M by ⊕
an independent set module of size min{|M|, k+1}.

Rules for removing the irrelevant parts :

75

O(k3) vertex kernel for cograph editing

 Rule 2 (modules):
If M is a non-trivial module of G which is strictly contained in a connected
component and is not an independent set of size at most k + 1, then
return the graph G’ G[M] where G’ is obtained from G by replacing M by ⊕
an independent set module of size min{|M|, k+1}.

Definition (module)

M is a module if all the vertices of M have the same neighbours
outside of M.

Or equivalently, M is a module if each vertex outside of M sees M
uniformly.

76

O(k3) vertex kernel for cograph editing

Exercise

Prove that if M is a module of G, there exists a minimum editing of G
that edit the adjacencies between any vertex x∈M and vertices of V \
M in the same way for all x∈M.

77

O(k3) vertex kernel for cograph editing

Exercise

Prove that if M is a module of G, then G’’ G[M] admits a cograph ⊕
editing of size at most k iff G admits an editing of size at most k,
where G’’ is obtained from G by replacing M by an independent set module
of size |M|.

78

O(k3) vertex kernel for cograph editing

 Rule 2 (modules):
If M is a non-trivial module of G which is strictly contained in a connected
component and is not an independent set of size at most k + 1, then
return the graph G’ G[M] where G’ is obtained from G by replacing M by ⊕
an independent set module of size min{|M|, k+1}.

Soundness

We only need to prove that if G admits a cograph editing of size k
and if M has size more than k+1, then we can keep only k+1 vertices
in the independent set replacing M in G’.

79

O(k3) vertex kernel for cograph editing

 Rules 1 and 2 work together

Modular decomposition tree

G

M

80

O(k3) vertex kernel for cograph editing

 Rules 1 and 2 work together

Modular decomposition tree

G

M

G’

G’’

Find a module

81

O(k3) vertex kernel for cograph editing

 Rules 1 and 2 work together

Modular decomposition tree

G

M

G’

G’’

Find a module

Substitution
composition

82

O(k3) vertex kernel for cograph editing

 Rules 1 and 2 work together

Modular decomposition tree

G

M

Modular
decomposition

1 2 3 4

P

S

//

1
2 3

4

Definition :
A graph is prime iff it has no non-trivial module.

P stands for prime.

83

O(k3) vertex kernel for cograph editing

 Rules 1 and 2 work together

Modular decomposition tree

G

M

Modular
decomposition

1 2 3 4

P

S

//

1
2 3

4

Can be computed in O(n+m) time

Modular decomposition tree

84

O(k3) vertex kernel for cograph editing

 Rules 1 and 2 work together

Modular decomposition tree

G

M

Modular
decomposition

1 2 3 4

P

S

//

1
2 3

4

Theorem :
A graph is a cograph iff it has no P node in its modular
decomposition tree.

85

O(k3) vertex kernel for cograph editing

 Rules 1 and 2 work together

With rule 1 only :

//

S

S

//

PP

86

O(k3) vertex kernel for cograph editing

 Rules 1 and 2 work together

With rule 1 only :

//

S

S

//

PP

Cograph
component

87

O(k3) vertex kernel for cograph editing

 Rules 1 and 2 work together

With rule 1 only :

//

PP

88

O(k3) vertex kernel for cograph editing

 Rules 1 and 2 work together

With rule 1 only :

//

S

S

//

PP

P

89

O(k3) vertex kernel for cograph editing

 Rules 1 and 2 work together

With rule 1 only : cannot cut anything...

//

S

S

//

PP

P

90

O(k3) vertex kernel for cograph editing

 Rules 1 and 2 work together

With rule 1 and 2 :

//

S

S

//

PP

P

Rule 2 first

Module

91

O(k3) vertex kernel for cograph editing

 Rules 1 and 2 work together

With rule 1 and 2 :

//

S

S

//

PP

Rule 2 first

Module

P

//

92

O(k3) vertex kernel for cograph editing

 Rules 1 and 2 work together

With rule 1 and 2 :

//

S

S

//

PP

Rule 2 first

P

//

93

O(k3) vertex kernel for cograph editing

 Rules 1 and 2 work together

With rule 1 and 2 :

//

S

S

//

PP

Rule 2 first

P

//

Then Rule 1

Cograph
component

94

O(k3) vertex kernel for cograph editing

 Rules 1 and 2 work together

With rule 1 and 2 :

//

PP

Rule 2 first

P

Then Rule 1

95

O(k3) vertex kernel for cograph editing

On the (Non-)Existence of Polynomial Kernels for P
l
-Free Edge

Modification Problems. Guillemot, Havet, Paul & Perez, 2010.

Rules for forced modifications :

 Rule 3 (P
4
 sunflower):

If {x, y} is a pair of vertices of G that belongs to a set S of t ≥ k + 1
quadruples P

i
 = {x, y, a

i
, b

i
} such that for 1 ≤ i ≤ t, every P

i
 induces a P

4
 and

for any 1 ≤ i < j ≤ t, P
i
 ∩ P

j
 = {x, y}, then edit {x,y} and decrease k by one.

96

Proof of the size of the kernel : O(k3)

Theorem (size of the kernel) :

Let G be a graph reduced under rules 1, 2 and 3. If G admits a
cograph editing of size k, then G has O(k3) vertices.

97

Proof of the size of the kernel : O(k3)

Theorem (size of the kernel) :

Let G be a graph reduced under rules 1, 2 and 3. If G admits a
cograph editing of size k, then G has O(k3) vertices.

Proof : consider a minimum modification of G into a cograph having
cotree T as follows

//

//

S

////

S

S

////

//

S

////

S

////

//

S

////

S

S

////

//

S

////

S

////

Affected vertices ≤ 2k Affected internal nodes ≤ 2k

98

Proof of the size of the kernel : O(k3)

Theorem (size of the kernel) :

Let G be a graph reduced under rules 1, 2 and 3. If G admits a
cograph editing of size k, then G has O(k3) vertices.

Proof : consider a minimum modification of G into a cograph having
cotree T as follows

//

//

S

////

S

S

////

//

S

////

S

////

//

S

////

S

S

////

//

S

////

S

////

Affected vertices ≤ 2k Affected internal nodes ≤ 2k

99

Proof of the size of the kernel : O(k3)

Theorem (size of the kernel) :

Let G be a graph reduced under rules 1, 2 and 3. If G admits a
cograph editing of size k, then G has O(k3) vertices.

Proof : consider a minimum modification of G into a cograph having
cotree T as follows

//

//

S

////

S

S

////

//

S

////

S

////

//

S

////

S

S

////

//

S

////

S

////

Affected vertices ≤ 2k Affected internal nodes ≤ 2k

100

Proof of the size of the kernel : O(k3)

Proof : consider a minimum modification of G into a cograph having
cotree T as follows

101

Proof of the size of the kernel : O(k3)

Proof : consider a minimum modification of G into a cograph having
cotree T as follows

Length ≤ 2k+3

We want to show :

102

Proof of the size of the kernel : O(k3)

Proof : consider a minimum modification of G into a cograph having
cotree T as follows

103

Proof of the size of the kernel : O(k3)

Proof : consider a minimum modification of G into a cograph having
cotree T as follows

104

Proof of the size of the kernel : O(k3)

Proof : consider a minimum modification of G into a cograph having
cotree T as follows

Module

105

Proof of the size of the kernel : O(k3)

Proof : consider a minimum modification of G into a cograph having
cotree T as follows

106

Proof of the size of the kernel : O(k3)

Proof : consider a minimum modification of G into a cograph having
cotree T as follows

//

x

y

107

Proof of the size of the kernel : O(k3)

Proof : consider a minimum modification of G into a cograph having
cotree T as follows

//

//

S

//

S

//

S

//

x

y

108

Proof of the size of the kernel : O(k3)

Proof : consider a minimum modification of G into a cograph having
cotree T as follows

//

//

S

//

S

//

S

//

x

y

a
1

b
1

a
1 b

1

xy

109

Proof of the size of the kernel : O(k3)

Proof : consider a minimum modification of G into a cograph having
cotree T as follows

//

//

S

//

S

//

S

//

x

y

a
1

b
1

a
1 b

1

xy

110

Proof of the size of the kernel : O(k3)

Proof : consider a minimum modification of G into a cograph having
cotree T as follows

//

//

S

//

S

//

S

//

x

y

a
1

b
1

a
2

b
2

a
1 b

1

a
2 b

2xy

111

Proof of the size of the kernel : O(k3)

Proof : consider a minimum modification of G into a cograph having
cotree T as follows

//

//

S

//

S

//

S

//

x

y

a
1

b
1

a
2

b
2

a
1 b

1

a
2 b

2

a
t b

t

xy

112

Proof of the size of the kernel : O(k3)

Proof : consider a minimum modification of G into a cograph having
cotree T as follows

//

//

S

//

S

//

S

//

x

y

a
1

b
1

a
2

b
2

a
1 b

1

a
2 b

2

a
t b

t

xy
t≤k

Rule 3

113

Proof of the size of the kernel : O(k3)

Proof : consider a minimum modification of G into a cograph having
cotree T as follows

//

//

S

//

S

//

S

//

x

y

a
1

b
1

a
2

b
2

a
1 b

1

a
2 b

2

a
t b

t

xy
t≤k

Length ≤ 2k+3

Rule 3

114

Counting the number of vertices

//

//

S

////

S

S

////

//

S

////

S

////

//

S

////

S

S

////

//

S

////

S

////

Affected vertices ≤ 2k Affected internal nodes ≤ 2k

115

Counting the number of vertices

//

//

S

////

S

S

////

//

S

////

S

////

//

S

////

S

S

////

//

S

////

S

////

Affected vertices ≤ 2k Affected internal nodes ≤ 2k

116

Counting the number of vertices

//

//

S

////

S

S

//

//

S

//

S

//

//

S

//

S

//

S

//

S

//

117

Counting the number of vertices

//

//

S

////

S

S

//

//

S

//

S

//

//

S

//

S

//

S

//

S

//

118

Counting the number of vertices

//

//

S

////

S

S

//

//

S

//

S

//

//

S

//

S

//

S

//

S

//

module

119

Counting the number of vertices

//

//

S

////

S

S

//

//

S

//

S

//

//

S

//

S

//

S

//

S

//

module
≤k+1

Rule 2

120

The reduction algorithm

The generic reduction algorithm :

 While there exists some rules that applies

 Apply an arbitrary rule among the rules that apply

121

The reduction algorithm

The generic reduction algorithm :

 While there exists some rules that applies

 Apply an arbitrary rule among the rules that apply

 At the end: you get a reduced graph

122

The reduction algorithm

The generic reduction algorithm :

 While there exists some rules that applies

 Apply an arbitrary rule among the rules that apply

 At the end: you get a reduced graph

One particular way of doing it :

 Apply rule 3 until it does not apply anymore

 Apply rule 2 until it does not apply anymore

 Apply rule 1 until it does not apply anymore

123

The reduction algorithm

The generic reduction algorithm :

 While there exists some rules that applies

 Apply an arbitrary rule among the rules that apply

 At the end: you get a reduced graph

One particular way of doing it :

 Apply rule 3 until it does not apply anymore

 Apply rule 2 until it does not apply anymore

 Apply rule 1 until it does not apply anymore

Question : Is the graph obtained reduced under rules 1,2,3 ?

124

The reduction algorithm

Lemma :
If graph G is reduced under rule 3, then applying rule 2 to G gives a
graph G’ that is also reduced under rule 3.

Exercise : Prove the lemma above.

125

The reduction algorithm

Lemma :
If graph G is reduced under rule 3, then applying rule 2 to G gives a
graph G’ that is also reduced under rule 3.

Hint :

If M is a (non-trivial) module of graph G, then any P
4
 of G that is

not included in M has at most one vertex in M.

Exercise : Prove the lemma above.

126

The reduction algorithm

Lemma :
If graph G is reduced under rules 2 and 3, then applying rule 1 to G
gives a graph G’ that is also reduced under rules 2 and 3.

127

The reduction algorithm

The generic reduction algorithm :

 While there exists some rules that applies

 Apply an arbitrary rule among the rules that apply

 At the end: you get a reduced graph

One particular way of doing it :

 Apply rule 3 until it does not apply anymore

 Apply rule 2 until it does not apply anymore

 Apply rule 1 until it does not apply anymore

Question : Is the graph obtained reduced under rules 1,2,3 ?

Question : does this algorithm run in polynomial time ?

128

The reduction algorithm

The generic reduction algorithm :

 While there exists some rules that applies

 Apply an arbitrary rule among the rules that apply

 At the end: you get a reduced graph

One particular way of doing it :

 Apply rule 3 until it does not apply anymore

 Apply rule 2 until it does not apply anymore

 Apply rule 1 until it does not apply anymore

Question : Is the graph obtained reduced under rules 1,2,3 ?

Question : does this algorithm run in polynomial time ?

Subquestion : does it even terminate ?

129

Practical limitations of kernels

for edge modification problems

with Anne-Aymone Bourguin

130

What happens when k varies ?

 Why would k vary ?

131

What happens when k varies ?

 Why would k vary ?

 We are not only interested in the decision problem

132

What happens when k varies ?

 Why would k vary ?

 We are not only interested in the decision problem

 If k
2
 > k

1
 and rule 3 applies to (G,k

2
) and gives (H

2
,k

2
’) then

 rule 3 also applies to (G,k
1
) to give (H

1
,k

1
’) and

 k
1
’<k

2
’

133

What happens when k varies ?

 Why would k vary ?

 We are not only interested in the decision problem

 If k
2
 > k

1
 and rule 3 applies to (G,k

2
) and gives (H

2
,k

2
’) then

 rule 3 also applies to (G,k
1
) to give (H

1
,k

1
’) and

 k
1
’<k

2
’

If k
2
 > k

1,
 then a series of reduction rules 3 performed from (G,k

2
)

can also be performed from (G,k
1
) and gives a smaller graph

134

What happens when k varies ?

 Why would k vary ?

 We are not only interested in the decision problem

 If k
2
 > k

1
 and rule 3 applies to (G,k

2
) and gives (H

2
,k

2
’) then

 rule 3 also applies to (G,k
1
) to give (H

1
,k

1
’) and

 k
1
’<k

2
’

If k
2
 > k

1,
 then a series of reduction rules 3 performed from (G,k

2
)

can also be performed from (G,k
1
) and gives a smaller graph

 The same should be checked for rules 2 and 1

135

What happens when k varies ?

 Why would k vary ?

 We are not only interested in the decision problem

 If k
2
 > k

1
 and rule 3 applies to (G,k

2
) and gives (H

2
,k

2
’) then

 rule 3 also applies to (G,k
1
) to give (H

1
,k

1
’) and

 k
1
’<k

2
’

The size of the kernel increases when k increases

If k
2
 > k

1,
 then a series of reduction rules 3 performed from (G,k

2
)

can also be performed from (G,k
1
) and gives a smaller graph

 The same should be checked for rules 2 and 1

136

Size of reduced instance as a function of k

parameter k

s
iz

e
 o

f
th

e
 k

e
rn

e
l

137

Size of reduced instance as a function of k
s

iz
e

 o
f

th
e

 k
e
rn

e
l

parameter k

138

Size of reduced instance as a function of k

s
iz

e
 o

f
th

e
 k

e
rn

e
l

parameter k

139

Size of reduced instance as a function of k

s
iz

e
 o

f
th

e
 k

e
rn

e
l

parameter k

140

Results on real-world networks

k
no

k
ras

k
inf

141

Result for an almost cograph
s

iz
e

 o
f

th
e

 k
e

rn
e

l

parameter k

142

Result for an almost cograph
s

iz
e

 o
f

th
e

 k
e

rn
e

l

parameter k

143

A less caricaturistic behaviour

s
iz

e
 o

f
th

e
 k

e
rn

e
l

parameter k

144

A full range of behaviours

V
a

lu
e

s
 o

f
k

ra
s
 a

n
d

 k
n

o

Number of modifications done on the initial cograph

k
ras

k
no

k
inf

145

An O(k2 log k) Vertex kernel for

cograph editing

with Remi Pellerin and Stéphan Thomassé

146

Guillemot et al. : O(k3) vertex

S

//

S

//

S

//

S

//

S

//

S

//

S

//

S

//

S

//

x

y

a

b

k ver.

k copies

k alt.

147

New rule : definitions

Our goal : reduce the size of the kernel to O(k2 log k)

148

New rule : definitions

Definition : (t-module)
A t-module in G is a set of vertices X such that by editing a set of
at most t pairs in G, we obtain G’ in which X is a module.

Our goal : reduce the size of the kernel to O(k2 log k)

149

New rule : definitions

Definition : (t-module)
A t-module in G is a set of vertices X such that by editing a set of
at most t pairs in G, we obtain G’ in which X is a module.

Remark :T can always be chosen in δ(X).

Our goal : reduce the size of the kernel to O(k2 log k)

150

New rule : definitions

Definition : (t-module)
A t-module in G is a set of vertices X such that by editing a set of
at most t pairs in G, we obtain G’ in which X is a module.

Definition : (budget)
The budget of a set X of G is the minimum b such that all minimum
cograph editings S of G satisfy |S ∩ δ(X)| ≤ b.

Remark :T can always be chosen in δ(X).

Our goal : reduce the size of the kernel to O(k2 log k)

151

New rule : definitions

Definition : (t-module)
A t-module in G is a set of vertices X such that by editing a set of
at most t pairs in G, we obtain G’ in which X is a module.

Definition : (budget)
The budget of a set X of G is the minimum b such that all minimum
cograph editings S of G satisfy |S ∩ δ(X)| ≤ b.

Remark :T can always be chosen in δ(X).

Lemma :
Let X be a t-module such that |X| > k + t. If there exists an editing
of size at most k, then the budget of X is at most t.

Our goal : reduce the size of the kernel to O(k2 log k)

152

New rule : definitions

Lemma :
Let X be a t-module such that |X| > k + t. If there exists an editing
of size at most k, then the budget of X is at most t.

Exercise : Prove the lemma above.

153

New rule : definitions

Lemma :
Let X be a t-module such that |X| > k + t. If there exists an editing
of size at most k, then the budget of X is at most t.

Exercise : Prove the lemma above.

Exercise : Prove that testing if X is a t-module can be done in
polynomial time.

154

New rule : the main idea

 Purpose:
Avoid long paths (≥51.l) in the cotree T of the edited cograph
that interact with only few (l) edited pairs: 51-sparse path.

Definition : (interact)
The edited pair xy interacts with path P when the
path from x to y in T shares an edge with P.

Lemma :
If T has a 51-sparse path then the nested
t-module reduction rule applies (our 4th rule).

155

New rule : the main idea

 Rule 4 (nested t-module reduction):
If there exists a partition A⊔B⊔C⊔I⊔K of V that
satisfies the following conditions:

 A, A⊔B, A⊔B⊔C are t-modules
 |A|>k+t

 B
S
, B

//
, C

S
, C// all have size >3t

 B
S
 and B

//
 have the required

adjacencies with A, I, K
 C

S
 and C

//
 have the required

adjacencies with A, B, I, K

Then remove all edges between A and I
and add missing edges between A and K.

156

New rule : the main idea

 Purpose:
Avoid long paths (≥51.l) in the cotree T of the edited cograph
that interact with only few (l) edited pairs: 51-sparse path.

Definition : (interact)
The edited pair xy interacts with path P when the
path from x to y in T shares an edge with P.

Lemma :
If T has a 51-sparse path then the nested
t-module reduction rule applies (our 4th rule).

Lemma :
If the reduced graph H has Ω(k2 log k)
vertices then its cotree has size Ω(k log k)
and if H is a yes-instance then T has a 51
sparse path.

157

Perspectives (Lecture I)

 Kernels or FPT algorithms for edge modification problems with
other (smaller) parameters

 Reduction rules without knowing the value of the parameter k

 O(k2) kernel for cograph editing?

Local search?

158

Graph editing: algorithms and

experimental results

with Jean Blair, Anne-Aymone Bourguin, Benjamin Gras,
Daniel Lokshtanov, Remi Pellerin, Anthony Perez, Thi Ha Duong Phan,

Eric Thierry and Stéphan Thomassé

Christophe Crespelle

Université Côte d’Azur

