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Complex networks

Not complex

Real-world data

Ex of contexts :
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Complex networks

Word networks

commo
n 
meanin
g

word air

sky wind

Proteine interactions

proteine

chemical 
reaction

How does a living cell work? How does a language evolve?
 

Real-world data (not formally defined)
Ex of contexts :
   computer science, social sciences, biology, linguistics, medecine,
   Transportation, communications, industry, economy, ...

node

link

Internet

router

cable

How to carry information 
across the Internet?



Complex networks

Real-world data

Ex of contexts :
computer science, 
social sciences, 
biology, linguistics, 
medecine, 
transportation, 
communications, 
industry, economy, ...

complex

large
+

unordered

Links depend on time

(1.25 , a , b)
(2.50 , b , c)
(4.58 , a , b)
(5.83 , a , b)
(7.08 , b , c)
(8.33 , c , e)
. . .
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Four big classes of problems

Measurement

Analysis

Modelling

Algorithms

arbitrary graphs

random graphsstrongly structured graphs

complex
networks

Graph theory



Complex networks as

almost structured graphs
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Almost structured graphs
loosely constrained

strongly impacted by their context

randomness

structure

Complex networks = structure + randomness

High local density Short distances[Watts & Strogatz 1998]
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Almost structured graphs
loosely constrained

strongly impacted by their context

randomness

structure

Complex networks = structure + randomness

+

strongly structured random modifications1 2

structure noise
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Graph editing algorithms

INPUT TARGET CLASS

arbitrary graph

(ex: chordal graphs)

Definition:
Chordal graphs = graphs without induced cycle on at least 4 vertices
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Graph editing algorithms

INPUT TARGET CLASS

arbitrary graph output graph
in the class

editing 
algorithm (ex: chordal graphs)

Definition:
Chordal graphs = graphs without induced cycle on at least 4 vertices
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Graph editing algorithms

INPUT TARGET CLASS

arbitrary graph output graph
in the class

editing 
algorithm (ex: chordal graphs)

GOAL: perform as few modifications as possible
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Graph editing algorithms

INPUT TARGET CLASS

arbitrary graph output graph
in the class

editing 
algorithm (ex: chordal graphs)

Two constrained versions of the problem:

Only additions allowed

Only deletions allowed

completion 
algorithm

deletion 
algorithm
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Motivations

Mathematics
Distance to and projection on a class of graphs.
How far is a graph from having a certain property?

Computation
Natural extension of the recognition problem of graph classes.
When the recognition fail, how to minimally correct the graph?

Data science
Remove noise in graph data.

 Measurement errors

 Randomness (non-constrained part of the data)

 Anything deviating from the main structure
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Editing real-world networks
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Cograph edition of real-world graphs

35 real-world 
graphs

+

8 random 
graphs
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Cograph edition of real-world graphs

35 real-world 
graphs

+

8 random 
graphs

RESULTS

 Some networks are very 

close from cographs

 Random graphs are never

 A wide range of proximity : 

12% to 93%

 The proximity with cographs 

highly depends on the

real-world context
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Cograph edition of real-world graphs

www

software

Close to cographs

 The proximity with cographs 

highly depends on the

real-world context
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Cograph edition of real-world graphs

Not close not far

internet

road

 The proximity with cographs 

highly depends on the

real-world context
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Cograph edition of real-world graphs

Far from cographs

citation

social

 The proximity with cographs 

highly depends on the

real-world context



Graph editing algorithms



33

Graph editing algorithms

INPUT TARGET CLASS

arbitrary graph output graph
in the class

editing 
algorithm (ex: chordal graphs)

GOAL: perform as few modifications as possible



34

Graph editing algorithms

INPUT TARGET CLASS

arbitrary graph output graph
in the class

editing 
algorithm (ex: chordal graphs)

Unfortunately: minimum number is NP-hard for most properties

GOAL: perform as few modifications as possible

Even when only one type of modifications is allowed



35

Graph editing algorithms

INPUT TARGET CLASS

arbitrary graph output graph
in the class

editing 
algorithm (ex: chordal graphs)

Unfortunately: minimum number is NP-hard for most properties

GOAL: perform as few modifications as possible

Different approaches:

 Exact exponential algorithms

 Parameterized algorithms

 Approximation algorithms

 Inclusion minimal modification

Even when only one type of modifications is allowed

 Restricted inputs
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Graph editing algorithms

INPUT TARGET CLASS

arbitrary graph output graph
in the class

editing 
algorithm (ex: chordal graphs)

Unfortunately: minimum number is NP-hard for most properties

GOAL: perform as few modifications as possible

Different approaches:

 Exact exponential algorithms

 Parameterized algorithms (1st lecture)

 Approximation algorithms

 Inclusion minimal modification (2nd lecture)

Even when only one type of modifications is allowed

 Restricted inputs



Cographs



38

Cographs

S

//

S S

a

b

t zs yc d

2. Obtained from single vertices by using two operations:

disjoint union 
(//)

complete union
(S)

G
1

G
2

G
1

G
2

cotree

O(n) space

1. Characterization by forbiden subgraphs:

no induced P
4

(path on 4 vertices)
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Cographs

S

//

S S

a

b

t zs yc d

cotree

O(n) space

Exercise:

Is d adjacent to y ?

Is a adjacent to t ?
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Cographs

S

//

S S

a

b

t zs yc d

cotree

O(n) space

Exercise:

Is d adjacent to y ?

Is a adjacent to t ?

Answer:

 // : non-adjacent
S : adjacent

 Find the lowest common ancestor of the two leaves
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Cographs

G
1

G
2

Exercise: Are these two graphs cographs ?

e

e

a b

d c

a b

d c
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Cographs

G
1

G
2

Exercise: Are these two graphs cographs ?

e

e

a b

d c

a b

d c

A P
4
 in G

1
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Cographs

S

//

//

S

a

b

d

c

G
1

G
2

Cotree of G
2

Exercise: Are these two graphs cographs ?

e

e

e

a b

d c

a b

d c

A P
4
 in G

1
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Coraph editing
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Editing ???

Exercise:
Give a minimum cograph editing of G
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Coraph editing

INPUT TARGET CLASS:
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arbitrary graph
G

Editing ???

Exercise:
Give a minimum cograph editing of G
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f

g

h

 3 modifications are enough
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Coraph editing

INPUT TARGET CLASS:
Cographs

arbitrary graph
G

Editing ???

Exercise:
Give a minimum cograph editing of G

a

b d

c e

f

g

h

//

S

S

//a b

c

e

//

//

S

f g h

d

 3 modifications are enough
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Coraph editing

INPUT TARGET CLASS:
Cographs

arbitrary graph
G

Editing ???

Exercise:
Give a minimum cograph editing of G

a

b d

c e

f

g

h

//

S

S

//a b

c

e

//

//

S

f g h

d

 Can you do it with 2 modifications only?

 3 modifications are enough
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Coraph editing

INPUT TARGET CLASS:
Cographs

arbitrary graph
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Coraph editing

INPUT TARGET CLASS:
Cographs

arbitrary graph
G

Editing ???

Exercise:
Give a minimum cograph editing of G

a

b d

c e

f

g

h

//

S

S

//a b

c

e

//

//

S

f g h

d

 Can you do it with 2 modifications only?

 3 modifications are enough
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Coraph editing

Unfortunately: minimum number is NP-hard for cograph editing

GOAL: perform as few modifications as possible

Even when only one type of modifications is allowed

INPUT TARGET CLASS:
Cographs

arbitrary graph

Editing
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Coraph editing

Unfortunately: minimum number is NP-hard for cograph editing

GOAL: perform as few modifications as possible

Even when only one type of modifications is allowed

INPUT TARGET CLASS:
Cographs

arbitrary graph

Editing

Are cographs a complicate class of graphs?
 Need a criterion : propositions?

Number of graphs in the class with n vertices ↔ size of the representation

 For labelled cographs: O(n) integers = O(n log n) bits
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Coraph editing

Unfortunately: minimum number is NP-hard for cograph editing

GOAL: perform as few modifications as possible

Even when only one type of modifications is allowed

INPUT TARGET CLASS:
Cographs

arbitrary graph

Editing

Are cographs a complicate class of graphs?
 Need a criterion : propositions?

Number of graphs in the class with n vertices ↔ size of the representation

 For labelled cographs: O(n) integers = O(n log n) bits

 For graphs in general: O(n2) bits
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Coraph editing

Unfortunately: minimum number is NP-hard 
for clique + isolated vertices editing

GOAL: perform as few modifications as possible

INPUT TARGET CLASS:
Cographs

arbitrary graph

Editing

Even worse example: clique + isolated vertices
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Coraph editing

Unfortunately: minimum number is NP-hard 
for clique + isolated vertices editing

GOAL: perform as few modifications as possible

INPUT TARGET CLASS:
Cographs

arbitrary graph

Editing

Even worse example: clique + isolated vertices

 Up to isomorphism: 1 integer = O(log n) bits
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Coraph editing

Unfortunately: minimum number is NP-hard 
for clique + isolated vertices editing

GOAL: perform as few modifications as possible

INPUT TARGET CLASS:
Cographs

arbitrary graph

Editing

Even worse example: clique + isolated vertices

 Up to isomorphism: 1 integer = O(log n) bits

 For graphs in general: O(n2) bits
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Coraph editing

Unfortunately: minimum number is NP-hard 
for clique + isolated vertices editing

GOAL: perform as few modifications as possible

INPUT TARGET CLASS:
Cographs

arbitrary graph

Editing

Exercise:
Does it remain hard for pure completion ?
For pure deletion ?
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Coraph editing

Unfortunately: minimum number is NP-hard 
for clique + isolated vertices editing

GOAL: perform as few modifications as possible

INPUT TARGET CLASS:
Cographs

arbitrary graph

Editing

In general : no rule
Minimum editing to a split graph is polynomial time solvable
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Coraph editing

Unfortunately: minimum number is NP-hard 
for clique + isolated vertices editing

GOAL: perform as few modifications as possible

INPUT TARGET CLASS:
Cographs

arbitrary graph

Editing

In general : no rule
Minimum editing to a split graph is polynomial time solvable
Minimum completion and minimum deletion are NP-hard
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Coraph editing

Unfortunately: minimum number is NP-hard for cograph editing

GOAL: perform as few modifications as possible

Different approaches:

 Exact exponential algorithms

 Parameterized algorithms (1st lecture)

 Approximation algorithms

 Inclusion minimal modification (2nd lecture)

Even when only one type of modifications is allowed

 Restricted inputs

INPUT TARGET CLASS:
Cographs

arbitrary graph

Editing
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Polynomial Kernels for Edge 

Modification Problems
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Parameterized complexity

 Idea: the computational difficulty of treating an instance is not only 
due to its size: also depend on a relevant alternative parameter k
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Parameterized complexity

 Data Reduction: KERNEL

 Idea: the computational difficulty of treating an instance is not only 
due to its size: also depend on a relevant alternative parameter k

 A runs in polynomial time (wrt. |I|)

 (I’,k’) is a YES-instance iff (I,k) is a YES-instance

 |I’| ≤ g(k) and k’ ≤ k

 An algorithm A that reduces an instance (I,k) to an instance (I’,k’) s.t.

|I’| depends only on k (not on |I|)
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Parameterized complexity

 Data Reduction: KERNEL

 Idea: the computational difficulty of treating an instance is not only 
due to its size: also depend on a relevant alternative parameter k

 A runs in polynomial time (wrt. |I|)

 (I’,k’) is a YES-instance iff (I,k) is a YES-instance

 |I’| ≤ g(k) and k’ ≤ k

POLYNOMIAL KERNEL : g is a polynomial

 An algorithm A that reduces an instance (I,k) to an instance (I’,k’) s.t.

|I’| depends only on k (not on |I|)
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Survey on edge modification
A survey of parameterized algorithms and the complexity of edge modification
Christophe Crespelle, Pål Grønås Drange, Fedor V. Fomin, Petr A. Golovach
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Survey on edge modification
A survey of parameterized algorithms and the complexity of edge modification
Christophe Crespelle, Pål Grønås Drange, Fedor V. Fomin, Petr A. Golovach
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Polynomial kernel algorithms

All rules are:

A set of reduction rules: (I,k) → (I’,k’)

A YES-instance (I,k) reduced under these rules always satisfies:
                             |I| ≤ P(k) (with P a polynomial)

 Sound : (I’,k’) is a YES-instance  iff  (I,k) is a YES-instance

 Computable in polynomial time, wrt. |I|

Rule 1: if condition 1 then transformation 1
Rule 2: if condition 2 then transformation 2
...

Remarks:

 Reduced = no rule applies
 If after reduction |I| > P(k) then output a constant-size NO-instance
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Kernels for edge modification

For forced modifications (that must be made)

For removing irrelevant parts of the input graph

 That do not need to be modified and
 That do not influence modifications in the rest of the graph

Two kinds of rules
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O(n3)-vertex kernel for cograph 

editing

Guillemot, Havet, Paul and Perez, 2010 
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O(k3) vertex kernel for cograph editing

On the (Non-)Existence of Polynomial Kernels for P
l
-Free Edge 

Modification Problems.    Guillemot, Havet, Paul & Perez, 2010.

 Rule 1 (cograph component):
Remove the connected components of G that are cographs.

Rules for removing the irrelevant parts :
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O(k3) vertex kernel for cograph editing

On the (Non-)Existence of Polynomial Kernels for P
l
-Free Edge 

Modification Problems.    Guillemot, Havet, Paul & Perez, 2010.

 Rule 1 (cograph component):
Remove the connected components of G that are cographs.

Rules for removing the irrelevant parts :

! It works because it is a connected component
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O(k3) vertex kernel for cograph editing

On the (Non-)Existence of Polynomial Kernels for P
l
-Free Edge 

Modification Problems.    Guillemot, Havet, Paul & Perez, 2010.

 Rule 1 (cograph component):
Remove the connected components of G that are cographs.

 Rule 2 (modules):
If M is a non-trivial module of G which is strictly contained in a connected 
component and is not an independent set of size at most k + 1, then 
return the graph G’  G[M ] where G’ is obtained from G by replacing M by ⊕
an independent set module of size min{|M|, k+1}.

Rules for removing the irrelevant parts :
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O(k3) vertex kernel for cograph editing

 Rule 2 (modules):
If M is a non-trivial module of G which is strictly contained in a connected 
component and is not an independent set of size at most k + 1, then 
return the graph G’  G[M] where G’ is obtained from G by replacing M by ⊕
an independent set module of size min{|M|, k+1}.

Definition (module)

M is a module if all the vertices of M have the same neighbours 
outside of M. 

Or equivalently, M is a module if each vertex outside of M sees M 
uniformly.
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O(k3) vertex kernel for cograph editing

Exercise

Prove that if M is a module of G, there exists a minimum editing of G 
that edit the adjacencies between any vertex x∈M and vertices of V \ 
M in the same way for all x∈M.
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O(k3) vertex kernel for cograph editing

Exercise

Prove that if M is a module of G, then G’’  G[M] admits a cograph ⊕
editing of size at most k iff G admits an editing of size at most k, 
where G’’ is obtained from G by replacing M by an independent set module 
of size |M|.
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O(k3) vertex kernel for cograph editing

 Rule 2 (modules):
If M is a non-trivial module of G which is strictly contained in a connected 
component and is not an independent set of size at most k + 1, then 
return the graph G’  G[M] where G’ is obtained from G by replacing M by ⊕
an independent set module of size min{|M|, k+1}.

Soundness

We only need to prove that if G admits a cograph editing of size k 
and if M has size more than k+1, then we can keep only k+1 vertices 
in the independent set replacing M in G’.



79

O(k3) vertex kernel for cograph editing

 Rules 1 and 2 work together

Modular decomposition tree

G

M
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O(k3) vertex kernel for cograph editing

 Rules 1 and 2 work together

Modular decomposition tree

G

M

G’

G’’

Find a module
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O(k3) vertex kernel for cograph editing

 Rules 1 and 2 work together

Modular decomposition tree

G

M

G’

G’’

Find a module

Substitution 
composition
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O(k3) vertex kernel for cograph editing

 Rules 1 and 2 work together

Modular decomposition tree

G

M

Modular 
decomposition

1 2 3 4

P

S

//

1
2 3

4

Definition :
A graph is prime iff it has no non-trivial module.

P stands for prime.
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O(k3) vertex kernel for cograph editing

 Rules 1 and 2 work together

Modular decomposition tree

G

M

Modular 
decomposition

1 2 3 4

P

S

//

1
2 3

4

Can be computed in O(n+m) time

Modular decomposition tree
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O(k3) vertex kernel for cograph editing

 Rules 1 and 2 work together

Modular decomposition tree

G

M

Modular 
decomposition

1 2 3 4

P

S

//

1
2 3

4

Theorem :
A graph is a cograph iff it has no P node in its modular 
decomposition tree.
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O(k3) vertex kernel for cograph editing

 Rules 1 and 2 work together

With rule 1 only :

//

S

S

//

PP
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O(k3) vertex kernel for cograph editing

 Rules 1 and 2 work together

With rule 1 only :

//

S

S

//

PP

Cograph
component
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O(k3) vertex kernel for cograph editing

 Rules 1 and 2 work together

With rule 1 only :
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PP
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O(k3) vertex kernel for cograph editing

 Rules 1 and 2 work together

With rule 1 only :

//

S

S

//

PP

P
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O(k3) vertex kernel for cograph editing

 Rules 1 and 2 work together

With rule 1 only : cannot cut anything...

//

S

S

//

PP

P
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O(k3) vertex kernel for cograph editing

 Rules 1 and 2 work together

With rule 1 and 2 :

//

S

S

//

PP

P

Rule 2 first

Module
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O(k3) vertex kernel for cograph editing

 Rules 1 and 2 work together

With rule 1 and 2 :

//

S

S

//

PP

Rule 2 first

Module

P

//
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O(k3) vertex kernel for cograph editing

 Rules 1 and 2 work together

With rule 1 and 2 :
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Rule 2 first
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O(k3) vertex kernel for cograph editing

 Rules 1 and 2 work together

With rule 1 and 2 :

//

S

S

//

PP

Rule 2 first

P

//

Then Rule 1

Cograph
component
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O(k3) vertex kernel for cograph editing

 Rules 1 and 2 work together

With rule 1 and 2 :

//

PP

Rule 2 first

P

Then Rule 1
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O(k3) vertex kernel for cograph editing

On the (Non-)Existence of Polynomial Kernels for P
l
-Free Edge 

Modification Problems.    Guillemot, Havet, Paul & Perez, 2010.

Rules for forced modifications :

 Rule 3 (P
4
 sunflower):

If {x, y} is a pair of vertices of G that belongs to a set S of t ≥ k + 1 
quadruples P

i
 = {x, y, a

i
, b

i
} such that for 1 ≤ i ≤ t, every P

i
 induces a P

4
 and 

for any 1 ≤ i < j ≤ t, P
i
 ∩ P

j
 = {x, y}, then edit {x,y} and decrease k by one.
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Proof of the size of the kernel : O(k3)

Theorem (size of the kernel) :

Let G be a graph reduced under rules 1, 2 and 3. If G admits a 
cograph editing of size k, then G has O(k3) vertices.
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Proof of the size of the kernel : O(k3)

Theorem (size of the kernel) :

Let G be a graph reduced under rules 1, 2 and 3. If G admits a 
cograph editing of size k, then G has O(k3) vertices.

Proof : consider a minimum modification of G into a cograph having 
cotree T as follows

//

//

S

////

S

S

////

//

S

////

S

////

//

S

////

S

S

////

//

S

////

S

////

Affected vertices ≤ 2k Affected internal nodes ≤ 2k
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Affected vertices ≤ 2k Affected internal nodes ≤ 2k
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Proof : consider a minimum modification of G into a cograph having 
cotree T as follows

Length  ≤ 2k+3

We want to show :
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Proof of the size of the kernel : O(k3)
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Proof of the size of the kernel : O(k3)

Proof : consider a minimum modification of G into a cograph having 
cotree T as follows
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Proof of the size of the kernel : O(k3)

Proof : consider a minimum modification of G into a cograph having 
cotree T as follows
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Proof of the size of the kernel : O(k3)

Proof : consider a minimum modification of G into a cograph having 
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Proof of the size of the kernel : O(k3)

Proof : consider a minimum modification of G into a cograph having 
cotree T as follows
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Rule 3
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Counting the number of vertices
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Counting the number of vertices
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Counting the number of vertices
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The generic reduction algorithm :

 While there exists some rules that applies

 Apply an arbitrary rule among the rules that apply

 At the end: you get a reduced graph

One particular way of doing it :

 Apply rule 3 until it does not apply anymore

 Apply rule 2 until it does not apply anymore

 Apply rule 1 until it does not apply anymore

Question : Is the graph obtained reduced under rules 1,2,3 ?
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The reduction algorithm

Lemma :
If graph G is reduced under rule 3, then applying rule 2 to G gives a 
graph G’ that is also reduced under rule 3.

Exercise : Prove the lemma above.
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The reduction algorithm

Lemma :
If graph G is reduced under rule 3, then applying rule 2 to G gives a 
graph G’ that is also reduced under rule 3.

Hint :

If M is a (non-trivial) module of graph G, then any P
4
 of G that is 

not included in M has at most one vertex in M.

Exercise : Prove the lemma above.
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The reduction algorithm

Lemma :
If graph G is reduced under rules 2 and 3, then applying rule 1 to G 
gives a graph G’ that is also reduced under rules 2 and 3.



127

The reduction algorithm

The generic reduction algorithm :

 While there exists some rules that applies

 Apply an arbitrary rule among the rules that apply

 At the end: you get a reduced graph

One particular way of doing it :

 Apply rule 3 until it does not apply anymore
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 Apply rule 1 until it does not apply anymore

Question : Is the graph obtained reduced under rules 1,2,3 ?

Question : does this algorithm run in polynomial time ?
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The reduction algorithm

The generic reduction algorithm :

 While there exists some rules that applies

 Apply an arbitrary rule among the rules that apply

 At the end: you get a reduced graph

One particular way of doing it :

 Apply rule 3 until it does not apply anymore

 Apply rule 2 until it does not apply anymore

 Apply rule 1 until it does not apply anymore

Question : Is the graph obtained reduced under rules 1,2,3 ?

Question : does this algorithm run in polynomial time ?

Subquestion : does it even terminate ?
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Practical limitations of kernels 

for edge modification problems

with Anne-Aymone Bourguin
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What happens when k varies ?

 Why would k vary ?

 We are not only interested in the decision problem

 If k
2
 > k

1
 and rule 3 applies to (G,k

2
) and gives (H

2
,k

2
’) then 

 rule 3 also applies to (G,k
1
) to give (H

1
,k

1
’) and

 k
1
’<k

2
’

The size of the kernel increases when k increases 

If k
2
 > k

1,
 then a series of reduction rules 3 performed from (G,k

2
) 

can also be performed from (G,k
1
) and gives a smaller graph

 The same should be checked for rules 2 and 1
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Size of reduced instance as a function of k
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Results on real-world networks
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A less caricaturistic behaviour
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A full range of behaviours
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An O(k2 log k) Vertex kernel for 

cograph editing

with Remi Pellerin and Stéphan Thomassé 
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Guillemot et al. : O(k3) vertex

S

//

S

//

S
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New rule : definitions

Our goal : reduce the size of the kernel to O(k2 log k)
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Definition : (t-module)
A t-module in G is a set of vertices X such that by editing a set of 
at most t pairs in G, we obtain G’ in which X is a module.

Definition : (budget)
The budget of a set X of G is the minimum b such that all minimum 
cograph editings S of G satisfy |S ∩ δ(X)| ≤ b.
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New rule : definitions

Definition : (t-module)
A t-module in G is a set of vertices X such that by editing a set of 
at most t pairs in G, we obtain G’ in which X is a module.

Definition : (budget)
The budget of a set X of G is the minimum b such that all minimum 
cograph editings S of G satisfy |S ∩ δ(X)| ≤ b.

Remark :T can always be chosen in δ(X).

Lemma :
Let X be a t-module such that |X| > k + t. If there exists an editing 
of size at most k, then the budget of X is at most t.

Our goal : reduce the size of the kernel to O(k2 log k)
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New rule : definitions

Lemma :
Let X be a t-module such that |X| > k + t. If there exists an editing 
of size at most k, then the budget of X is at most t.

Exercise : Prove the lemma above.



153

New rule : definitions

Lemma :
Let X be a t-module such that |X| > k + t. If there exists an editing 
of size at most k, then the budget of X is at most t.

Exercise : Prove the lemma above.

Exercise : Prove that testing if X is a t-module can be done in 
polynomial time.
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New rule : the main idea

 Purpose:
Avoid long paths (≥51.l) in the cotree T of the edited cograph 
that interact with only few (l) edited pairs: 51-sparse path.

Definition : (interact)
The edited pair xy interacts with path P when the 
path from x to y in T shares an edge with P.

Lemma :
If T has a 51-sparse path then the nested
t-module reduction rule applies (our 4th rule). 
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New rule : the main idea

 Rule 4 (nested t-module reduction):
If there exists a partition A⊔B⊔C⊔I⊔K of V that 
satisfies the following conditions:

 A, A⊔B, A⊔B⊔C are t-modules
 |A|>k+t

 B
S
, B

//
, C

S
, C// all have size >3t

 B
S
 and B

//
 have the required 

adjacencies with A, I, K
 C

S
 and C

//
 have the required 

adjacencies with A, B, I, K

Then remove all edges between A and I 
and add missing edges between  A and K.
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New rule : the main idea

 Purpose:
Avoid long paths (≥51.l) in the cotree T of the edited cograph 
that interact with only few (l) edited pairs: 51-sparse path.

Definition : (interact)
The edited pair xy interacts with path P when the 
path from x to y in T shares an edge with P.

Lemma :
If T has a 51-sparse path then the nested
t-module reduction rule applies (our 4th rule). 

Lemma :
If the reduced graph H has Ω(k2 log k) 
vertices then its cotree has size Ω(k log k) 
and if H is a yes-instance then T has a 51 
sparse path.
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Perspectives (Lecture I)

 Kernels or FPT algorithms for edge modification problems with 
other (smaller) parameters

 Reduction rules without knowing the value of the parameter k

 O(k2) kernel for cograph editing?

Local search?



158

Graph editing: algorithms and 

experimental results

with Jean Blair, Anne-Aymone Bourguin, Benjamin Gras,
Daniel Lokshtanov, Remi Pellerin, Anthony Perez, Thi Ha Duong Phan, 

Eric Thierry and Stéphan Thomassé 
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