Centrality in (static) graphs
Link streams formalism
Finding top nodes for global closeness
Closeness evolution
Other topics

# Algorithms for the analysis of interaction streams

### Clémence Magnien

work in collaboration with Tiphaine Viard, Matthieu Latapy, Pierluigi Crescenzi, Andrea Marino, Fabien Tarissan, Frédéric Simard, Mehdi Naima, . . .

ComplexNetworks(.fr)
LIP6 (CNRS, Sorbonne Université)
clemence.magnien@lip6.fr

June 5-6, 2023

C. Magnien 1/1:

# Context – Complex Networks

computer science: internet, web, peer-to-peer, usages, etc.

social sciences: collaboration, friendship, exchanges, economics, etc.

biology: brain, genes, proteins, ecosystems, etc.

linguistics: synonyms, co-occurrences, etc.

transportation: roads, air, electricity, etc.

etc, etc

relation networks
Very different contexts
No formal definition
Common questions



. Magnien 2/12

### Outline

- Centrality in (static) graphs
- 2 Link streams formalism
  - Paths in link streams
  - Some existing definitions of temporal centrality measures
  - Algorithmic ideas
- Finding top nodes for global closeness
  - Approach
  - Results
- Closeness evolution
  - Observations
- Other topics

C. Magnien 3/1:

### Outline

- Centrality in (static) graphs
- 2 Link streams formalism
  - Paths in link streams
  - Some existing definitions of temporal centrality measures
  - Algorithmic ideas
- Finding top nodes for global closeness
  - Approach
  - Results
- 4 Closeness evolution
  - Observations
- Other topics

C. Magnien 4/13

# Centrality in graphs

#### Goal

Capture node importance

### Why?

- Interesting web page
- Understand network structure
- Network reliability
- . . .

#### Three main notions

- Degree
- Closeness centrality
- Betweenness centrality

C. Magnien 5/12

# Centrality in graphs

#### Goal

Capture node importance

### Why?

- Interesting web page
- Understand network structure
- Network reliability
- . . .

#### Three main notions

- Degree
- Closeness centrality
- Betweenness centrality

C. Magnien 5/12

# Degree centrality

### Degree of a node

its number of links

more links = more important

$$\mathcal{A}$$

#### Context

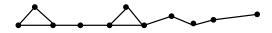
- Friendships
- Marketing
- ٥

C. Magnien

# Closeness centrality

#### Idea

closer to other nodes = more important



#### Formally

$$C(u) = \sum_{v \in V, v \neq u} \frac{1}{d(u, v)}$$

(other variants exists)

C. Magnien 7/13

Centrality in (static) graphs
Link streams formalism
Finding top nodes for global closeness
Closeness evolution
Other topics

# Closeness centrality – context

### Why?

- Epidemics
- Transportation networks

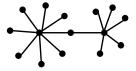
• . . .

C. Magnien 8/12

# Betweenness centrality

#### Idea

is on shortest paths between many nodes = more important



#### **Formally**

$$B(u) = \sum_{v,w \in V, v,w \neq u} \frac{\sigma(v,w,u)}{\sigma(v,w)}$$

- $\sigma(v, w)$ : # of shortest paths between v and w
- $\sigma(v, w, u)$ : # of shortest paths between v and w involving u

. Magnien 9/12

# Betweenness centrality – context

### Why?

- Identifiy communities/network robustness
- Influence/power in collaboration networks

. . .

C. Magnien 10/12

# How do we compute those?

#### Base brick

Breadth-First Search (BFS) to compute the distance

- from one source node
- to all other nodes

### Complexity O(m)

- n: number of nodes
- m: number of links

C. Magnien 11/12

# Algorithm

### noend 1 Breadth-first search algorithm

```
1: procedure BFS
    Input: Graph G, source node s.
        Q \leftarrow Empty queue (FIFO)
2:
        Add s to Q
3:
4:
        d \leftarrow \text{array initialized to } \infty
        while Q is not empty do
5:
6:
            Remove u from Q
            for v neighbour of u do
7:
                if d[v] = \infty then
8:
                    d[v] \leftarrow d[u] + 1
9:
                    Add v to Q
10:
```

C. Magnien 12/12

Centrality in (static) graphs
Link streams formalism
Finding top nodes for global closeness
Closeness evolution,
Other topics

# Closeness computation

#### For one node

one BFS : O(m)

#### For all nodes

one BFS per node : O(nm)

C. Magnien 13/12

## Betweenness computation

#### Naive version

For one node u:

- one BFS to compute distances from u to all other vertices
- ullet one BFS from each other node v to mark nodes on shortest paths between u and v
- $\longrightarrow O(nm)$  for one node

Brandes' algorithm O(nm) for all vertices

C. Magnien 14/12

### Betweenness computation

#### Naive version

For one node u:

- one BFS to compute distances from u to all other vertices
- ullet one BFS from each other node v to mark nodes on shortest paths between u and v
- $\longrightarrow O(nm)$  for one node

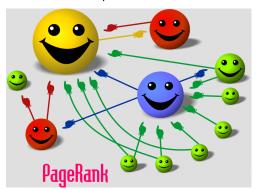
### Brandes' algorithm

O(nm) for all vertices

C. Magnien 14/12

# What is PageRank?

- PageRank is an algorithm used by Google Search to rank websites in their search engine results.
- It counts the number and quality of links to a page.
- The underlying assumption is that an important website is likely to receive links from other important websites.



C. Magnien 15/12

## Eigenvector

Definition: given an n by n matrix M a vector A is an eigenvector of M if it has at least one non-zero value and if there exists a scalar  $\lambda \in \mathbb{R}$  such that

$$M \times A = \lambda \times A$$

Definition: a top/dominant eigenvector is an eigenvector A such that its associated eigenvalue  $\lambda$  has maximum absolute value.

C. Magnien 16/12

# PageRank Computation

Definition: transition matrix T:

- n by n matrix
- for each directed edge (u,v),  $T_{vu}=rac{1}{d^{out}(u)}$

Definition: the PageRank vector *P* is given by:

$$P = (1 - \alpha) \times T \times P + \alpha \times I$$

1: vector with entries  $=\frac{1}{n}$ .

P is eigenvector of 
$$\left[\frac{\alpha}{n}\right]_{n\times n} + (1-\alpha)T$$

C. Magnien 17/12

# Other spectral centrality measures

- PageRank
- Eigenvector centrality
- HITS
- Katz centrality

Based on walks in the graph

C. Magnien 18/12

# Centrality in practice

Why different notions?

• Different notions of importance

No ground truth! (in general)

C. Magnien 19/12

### Outline

- Centrality in (static) graphs
- 2 Link streams formalism
  - Paths in link streams
  - Some existing definitions of temporal centrality measures
  - Algorithmic ideas
- 3 Finding top nodes for global closeness
  - Approach
  - Results
- 4 Closeness evolution
  - Observations
- Other topics

 $^{\circ}$  . Magnien  $^{\circ}$  20/1

# Taking time into account

I won't talk about static graphs.

### As time passes

- new web pages are created and links change
- we meet new people
- we talk to different persons
- we buy things
- . .

How to take this into account?

21/12 21/12

Paths in link streams
Some existing definitions of temporal centrality measures
Algorithmic ideas

### Relations vs. Interactions

relations (like friendship)

interactions (like face-to-face contacts)

evolution of relations (like new friends)

Many interesting links between the two.

Interactions important for: Recommender systems, epidemiology, anomaly detection, message passing, . . .

. Magnien 22/12

Paths in link streams
Some existing definitions of temporal centrality measures
Algorithmic ideas

### Relations vs. Interactions

```
relations (like friendship)

→ graph/networks
```

evolution of relations (like new friends)

→ dynamic graphs/networks

interactions
(like face-to-face contacts)
→ ?

Many interesting links between the two.

Interactions important for: Recommender systems, epidemiology, anomaly detection, message passing, . . .

Characteristics: speed of path vs speed of link evolution?

Framework for describing interactions?

C. Magnien 22/1

### definition of link streams

### Link stream S = (T, V, E)

T: time interval, V: node set

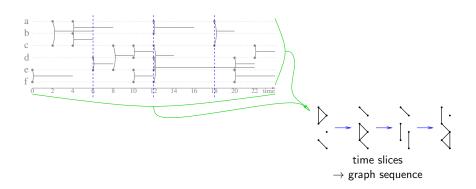
$$E \subseteq T \times V \otimes V$$

$$(t, uv) \in E \Leftrightarrow u \text{ and } v \text{ interact at time } t$$

$$E = [1,3] \times ab \cup [8,8] \times ab \cup [2,3] \times bd \cup [6,9] \times bc$$

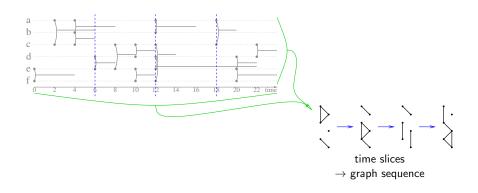
C. Magnien 23/12

# Related work: Describe structure and dynamics?



. Magnien 24/121

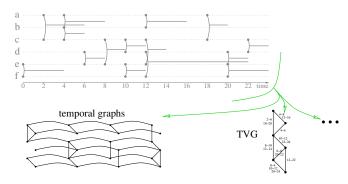
# Related work: **Describe structure and dynamics?**



information loss what slices?

. Magnien 24/1

## Related work: Describe structure and dynamics

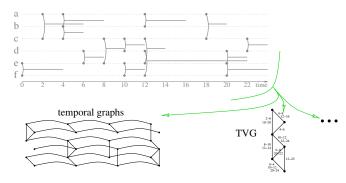


lossless but graph-oriented

+ other more specific contributions

C. Magnien 25/1

### Related work: Describe structure and dynamics



lossless but graph-oriented

+ other more specific contributions

. Magnien 25/1

## what we propose

#### deal with the stream directly

### **Approach**

very careful definition of the most basic concepts

+ ensure consistency with graph theory

+ ensure classical relations are preserved

C. Magnien 26/121

### Note on different models

Link streams, time varying graphs (TVG), temporal networks, ...

### Formally

Same power of representation

#### Intuition

Two possible cases

- evolving graph
- sequence of temporal links

2. Magnien 27/13

#### Paths in link streams

Some existing definitions of temporal centrality measures Algorithmic ideas

### Outline

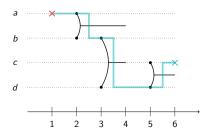
- Centrality in (static) graphs
- 2 Link streams formalism
  - Paths in link streams
  - Some existing definitions of temporal centrality measures
  - Algorithmic ideas
- 3 Finding top nodes for global closeness
  - Approach
  - Results
- Closeness evolution
  - Observations
- Other topics

C. Magnien 28/1

#### Paths in link streams

Some existing definitions of temporal centrality measures Algorithmic ideas

### Paths in link stream



Path from 
$$(\alpha, u)$$
 to  $(\omega, v)$ :  $(t_0, u_0, v_0), (t_1, u_1, v_1), \dots (t_k, u_k, v_k)$ :

• 
$$u_0 = u, v_k = v$$

• 
$$t_0 \geq \alpha, t_1 \leq \omega$$

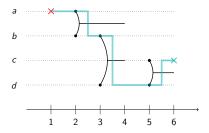
• 
$$(t_1, u_i v_i) \in E$$

• 
$$t_i \le t_{i+1}$$

Magnien

Some existing definitions of temporal centrality measures Algorithmic ideas

### Paths in link stream



Path from  $(\alpha, u)$  to  $(\omega, v)$ :  $(t_0, u_0, v_0), (t_1, u_1, v_1), \dots (t_k, u_k, v_k)$ :

#### Path characteristics

- k: path length
- t<sub>k</sub>: arrival time
- $t_k t_0$ : path duration

#### Paths in link streams

Some existing definitions of temporal centrality measures Algorithmic ideas

### Some remarks

### I will consider in general

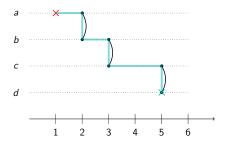
- instantaneous links only
- no two links at the same time

Everything can be extended to the general case

C. Magnien 30/12

Some existing definitions of temporal centrality measures Algorithmic ideas

### Path examples

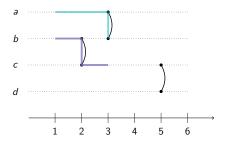


Paths are not symmetrical

No path from d to a

Some existing definitions of temporal centrality measures Algorithmic ideas

### Path examples

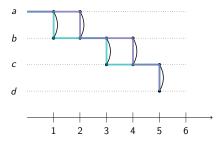


Paths are not transitive

No path from a to c

Some existing definitions of temporal centrality measures Algorithmic ideas

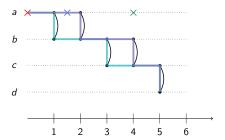
## Path examples



Different paths exist between two nodes

Some existing definitions of temporal centrality measures Algorithmic ideas

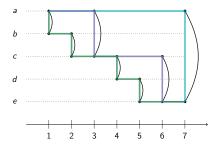
## Path examples



Path existence depends on starting time

Some existing definitions of temporal centrality measures Algorithmic ideas

## Shortest paths



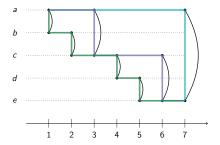
Different paths from (1, a) to (7, e)

Length 4 - Length 2 - Length 1: shortest path

We are not always willing to wait for the shortest path!

Some existing definitions of temporal centrality measures Algorithmic ideas

#### Shortest paths

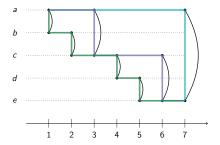


Different paths from (1, a) to (7, e)Length 4 – Length 2 – Length 1: shortest path

We are not always willing to wait for the shortest path!

Some existing definitions of temporal centrality measures Algorithmic ideas

### Shortest paths

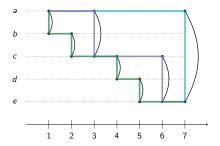


Different paths from (1, a) to (7, e)Length 4 – Length 2 – Length 1: shortest path

We are not always willing to wait for the shortest path!

Some existing definitions of temporal centrality measures Algorithmic ideas

### Foremost path



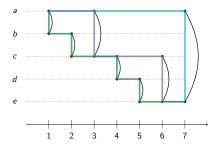
Different paths from (1,a) to (7,e)

Arrival time 6 - Arrival time 7 - Arrival time 5: foremost path

C. Magnien

Some existing definitions of temporal centrality measures Algorithmic ideas

### Fastest path



Different paths from (1, a) to (7, e)Duration 4 – Duration 3 – Duration 1: fastest path

Centrality in (static) graphs
Link streams formalism
Finding top nodes for global closeness
Closeness evolution
Other topics

#### Paths in link streams

Some existing definitions of temporal centrality measures Algorithmic ideas

#### No best definition

#### Relevance for different questions

Foremost paths: quick information/virus spread

Shortest: more robust paths? Fastest: identify key instants?

We will focus on foremost path

Some existing definitions of temporal centrality measures Algorithmic ideas

## Foremost path

#### Time to reach

$$T_t(u, v) = t_a - t$$
, with  $t_a$ :

 $\bullet$  earliest arrival time of a path from u starting at time t to v

#### Foremost path

Path realizing the time to reach

#### Outline

- Centrality in (static) graphs
- 2 Link streams formalism
  - Paths in link streams
  - Some existing definitions of temporal centrality measures
  - Algorithmic ideas
- Finding top nodes for global closeness
  - Approach
  - Results
- Closeness evolution
  - Observations
- Other topics

Paths in link streams

Some existing definitions of temporal centrality measures

Algorithmic ideas

# From path to centrality

How do we go from temporal paths to centrality definitions? How to take into account path starting and ending times?

Incomplete review of exising definitions

Paths in link streams

Some existing definitions of temporal centrality measures

Algorithmic ideas

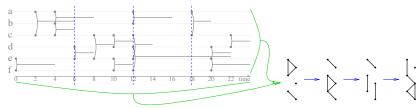
# From path to centrality

How do we go from temporal paths to centrality definitions? How to take into account path starting and ending times?

Incomplete review of exising definitions

# First approach: snapshots

#### [Uddin et al, 2013]



#### Advantages and drawbacks

Works for any static centrality metrics

Takes data evolution into account

Information loss

Which snapshot size?

Does not consider all paths

. Magnien 39/1

# Temporal paths, first approach

[Nicosia et al, 2013]

- choose a notion of optimal path/centrality
- compute centrality/for each node
- for paths starting at time 0

```
Advantages and drawbacks
```

uses temporal paths

considers only paths that occur early in the dataset

# Temporal paths, first approach

[Nicosia et al, 2013]

- choose a notion of optimal path/centrality
- compute centrality/for each node
- for paths starting at time 0

#### Advantages and drawbacks

uses temporal paths considers only paths that occur early in the dataset

# Temporal paths, second approach

Compute centrality values For all starting times

Aggregate into a single value per node

Paths in link streams

Some existing definitions of temporal centrality measures

Algorithmic ideas

# Temporal paths, second approach

Compute centrality values For all starting times

Aggregate into a single value per node

# Spectral centrality measures

Possible to extend spectral measures.

#### Need adjacency/transition matrices!

- combine adjacency matrices at different time steps
- block matrix: rows/columns correspond to temporal vertices

. Magnien

## Temporal closeness

#### Time to reach

$$T_t(u, v) = t_a - t$$
, with  $t_a$ :

 $\bullet$  earliest arrival time of a path from u starting at time t to v

#### Temporal closeness at time t

$$C_t(u) = \sum_{v \neq u} \frac{1}{T_t(u,v) + 1}$$

Why +1?

## Temporal closeness

#### Time to reach

$$T_t(u, v) = t_a - t$$
, with  $t_a$ :

 $\bullet$  earliest arrival time of a path from u starting at time t to v

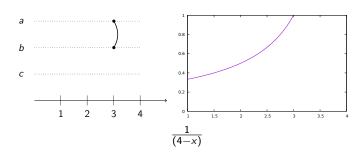
#### Temporal closeness at time t

$$C_t(u) = \sum_{v \neq u} \frac{1}{T_t(u,v) + 1}$$

Why +1?

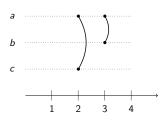
# Example

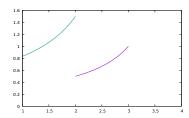
#### Closeness of a



# Example

#### Closeness of a





C. Magnien 44/12:

# Aggregate in a single value

 $C_t(u)$ : one value for each  $t \longrightarrow$  what is an important node? Several possibilities:

- maximum value
- average value
- time during which it has a high rank
- . . .

$$C(u) = \frac{1}{\omega - \alpha} \int_{\alpha}^{\omega} C_t(u) dt$$

C. Magnien 45/12:

# Aggregate in a single value

 $C_t(u)$ : one value for each  $t \longrightarrow$  what is an important node? Several possibilities:

- maximum value
- average value
- time during which it has a high rank
- ...

$$C(u) = \frac{1}{\omega - \alpha} \int_{\alpha}^{\omega} C_t(u) dt$$

#### Outline

- Centrality in (static) graphs
- 2 Link streams formalism
  - Paths in link streams
  - Some existing definitions of temporal centrality measures
  - Algorithmic ideas
- 3 Finding top nodes for global closeness
  - Approach
  - Results
- Closeness evolution
  - Observations
- Other topics

Paths in link streams
Some existing definitions of temporal centrality measures
Algorithmic ideas

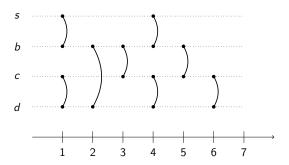
# Two basic algorithmic ideas -1: going forward in time

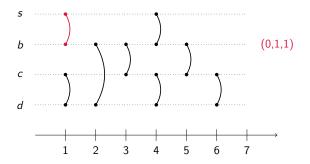
#### Compute earliest arrival times from:

- a single source node s
- to all other nodes
- for all starting times

#### By considering each link once

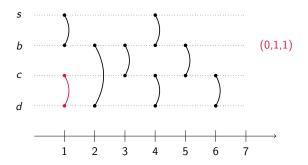
Complexity O(m)





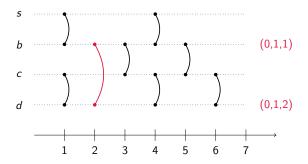
Triple 
$$(t_1, t_2, t_a)$$

For t,  $t_1 < t < t_2$ , earliest arrival time is ta



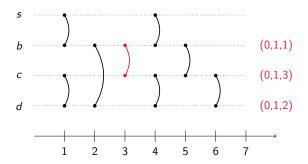
Triple 
$$(t_1, t_2, t_a)$$

For t,  $t_1 < t < t_2$ , earliest arrival time is ta



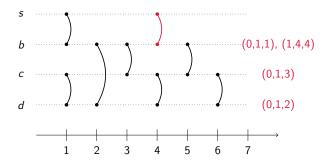
Triple 
$$(t_1, t_2, t_a)$$

For t,  $t_1 < t < t_2$ , earliest arrival time is ta



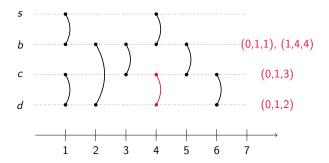
Triple 
$$(t_1, t_2, t_a)$$

For t,  $t_1 < t < t_2$ , earliest arrival time is ta



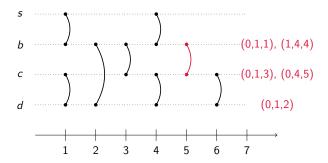
Triple 
$$(t_1, t_2, t_a)$$

For t,  $t_1 < t < t_2$ , earliest arrival time is ta



Triple 
$$(t_1, t_2, t_a)$$

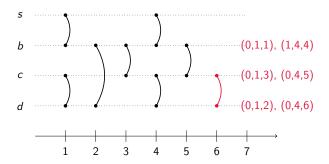
For t,  $t_1 < t < t_2$ , earliest arrival time is ta



Triple 
$$(t_1, t_2, t_a)$$

For t,  $t_1 < t < t_2$ , earliest arrival time is ta

## Two basic algorithmic ideas -1: going forward in time

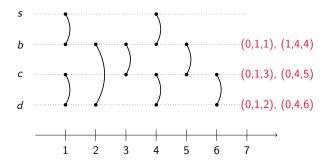


Triple 
$$(t_1, t_2, t_a)$$

For t,  $t_1 < t < t_2$ , earliest arrival time is ta

C. Magnien 48/1

## Two basic algorithmic ideas -1: going forward in time



Triple 
$$(t_1, t_2, t_a)$$

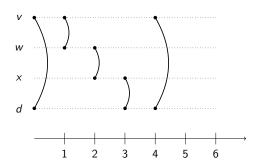
For t,  $t_1 < t < t_2$ , earliest arrival time is ta

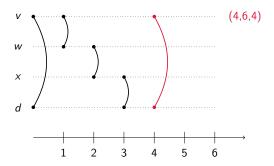
C. Magnien 48/12

# Algorithm (assumes edges are directed)

```
procedure Earliest arrival times
          for x \leftarrow 1 to |V| do \tau[x] = [(t_{\alpha} - 2, t_{\alpha} - 1, \infty)]
 2:
          while there are other edges to be read do
 3:
               let e \leftarrow (x, y, t) be the next edge
 4:
              \tau[s] \leftarrow (t-1, t, t-1)
 5:
              (I_x, r_x, a_x) \leftarrow \text{last elem. of } \tau[x]
 6:
              (I_v, r_v, a_v) \leftarrow \text{last elem. of } \tau[v]
 7:
              if r_x > r_v then
 8:
                   append (r_v, r_x, t) to \tau[v]
 9:
          Return \tau
10:
```

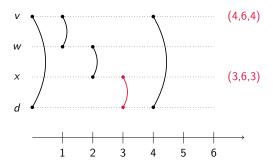
C. Magnien 49/12:





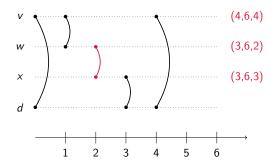
Triple 
$$(t_1, t_2, t_s)$$
,

For arrival time t,  $t_1 < t \le t_2$ , latest strating time is  $t_s$ 



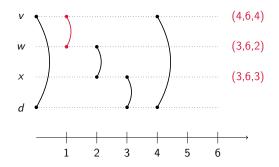
Triple 
$$(t_1, t_2, t_s)$$
,

For arrival time t,  $t_1 < t \le t_2$ , latest strating time is  $t_s$ 



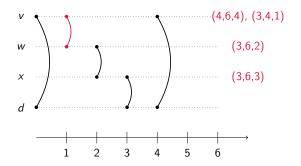
Triple 
$$(t_1, t_2, t_s)$$
,

For arrival time t,  $t_1 < t \le t_2$ , latest strating time is  $t_s$ 



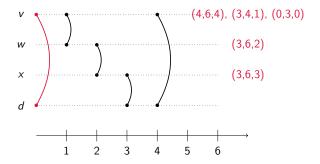
Triple 
$$(t_1, t_2, t_s)$$
,

For arrival time t,  $t_1 < t \le t_2$ , latest strating time is  $t_s$ 



Triple 
$$(t_1, t_2, t_s)$$
,

For arrival time t,  $t_1 < t \le t_2$ , latest strating time is  $t_s$ 



Triple 
$$(t_1, t_2, t_s), (t_3, t_4, t_{s2})$$

For arrival time t,  $t_1 < t \le t_2$ , latest strating time is  $t_s$ For starting time t',  $t_{s2} < t' \le t_s 2$ , earliest arrival time is  $t_1$ 

# Backward Algorithm (assumes edges are directed)

```
procedure Latest starting times
          for x \leftarrow 1 to |V| do \tau[x] = [(\omega + 1, \omega + 2, \infty)]
 2:
          while there are other edges to be read do
 3:
               let e \leftarrow (x, y, t) be the next edge
 4:
              \tau[d] \leftarrow (t, t+1, t+1)
 5:
              (I_x, r_x, s_x) \leftarrow \text{last elem. of } \tau[x]
 6:
              (I_v, r_v, s_v) \leftarrow \text{last elem. of } \tau[v]
 7:
              if I_{v} < I_{x} then
 8:
                   append (I_v, I_x, t) to \tau[x]
 9:
          Return \tau
10:
```

Paths in link streams
Some existing definitions of temporal centrality measures
Algorithmic ideas

#### Data Structure

Link Stream storage:

list of temporal links, ordered by (increasing or decreasing) time

No need to store stream in memory

## Outline

- Centrality in (static) graphs
- 2 Link streams formalism
  - Paths in link streams
  - Some existing definitions of temporal centrality measures
  - Algorithmic ideas
- 3 Finding top nodes for global closeness
  - Approach
  - Results
- 4 Closeness evolution
  - Observations
- Other topics

## Outline

- Centrality in (static) graphs
- 2 Link streams formalism
  - Paths in link streams
  - Some existing definitions of temporal centrality measures
  - Algorithmic ideas
- 3 Finding top nodes for global closeness
  - Approach
  - Results
- Closeness evolution
  - Observations
- Other topics

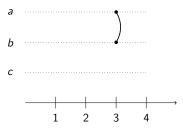
## Global closeness defition

#### Overall closeness over time

$$C(u) = \frac{1}{\omega - \alpha} \int_{\alpha}^{\omega} C_t(u) dt$$

 $\alpha, \omega$ : fist and last time in the stream

## Example



$$C(a) = \int_{1}^{3} \frac{1}{4-x} dx = \log 3$$

TODO Histoire de la gestion du dernier triplet

# Algorithm - Closeness (assumes edges are directed)

```
1: procedure CLOSENESS
             for x \leftarrow 1 to |V| do \tau[x] = (t_{\alpha} - 2, t_{\alpha} - 1, \infty)
 2:
             C \leftarrow 0
 3:
             for edges (x, y, t), t increasing do
 4:
                   \tau[s] \leftarrow (t-1, t, t-1)
 5:
                   (I_x, r_x, a_x) \leftarrow \tau[x]
 6:
                   (I_v, r_v, a_v) \leftarrow \tau[y]
 7:
                   if r_x > r_v then
 8:
                          C \leftarrow C + \ln \frac{a_y - \max(\alpha, l_y) + 1}{a_y - \max(\alpha, r_y) + 1}
 9.
                          \tau[y] \leftarrow (r_v, r_x, t)
10:
             for x \leftarrow 1 to |V| do (I_x, r_x, a_x) \leftarrow \tau[x]
11:
                   C \leftarrow C + \log \frac{a_x - \max(\alpha, l_x) + 1}{a_x - \max(\alpha, r_x) + 1}
12:
             Return \frac{C}{(\omega - \alpha)}
13:
```

Approach Results

## Complexity

Above algorithm

O(m)

Must be run for each node

Global complexity O(nm)

Untractable in many cases

# Other approach – sampling

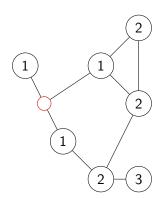
General idea: sample paths randomly

- Which paths?
- Which complexity?

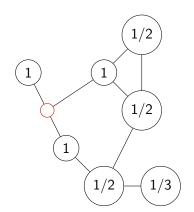
# Back to graphs

1 BFS: Distances from one node to all others

→ this node's closeness



# Compute the contribution of one node to the others' closeness



C. Magnien 61/12

# Nothing changed?

We must compute the contribution

- from all nodes
- to all nodes

Global complexity is still O(nm)

Must we?

C. Magnien 62/12

## Nothing changed?

We must compute the contribution

- from all nodes
- to all nodes

Global complexity is still O(nm)

Must we?

C. Magnien 62/12

# Sampling

#### [Cohen et al 2014]

#### Reduce computation time

compute the contribution of some nodes

Given *u*, *v* 

$$C(u,v)=\frac{1}{d(u,v)}$$

$$C(v) = \sum_{u \neq v} C(u, v)$$

Given  $X \subseteq V$ 

$$\frac{n}{|X|}\sum_{u\in X}C(u,v)$$

#### Back to linkstreams

#### Closeness of u

$$C(u) = \frac{1}{\omega - \alpha} \int_{\alpha}^{\omega} C_t(u) dt$$

$$C(u) = \frac{1}{\omega - \alpha} \int_{\alpha}^{\omega} \sum_{d \neq u} \frac{1}{T_t(u, d) + 1}$$

#### Contribution of d to the closeness of u

$$C(u,d) = \frac{1}{\omega - \alpha} \int_{\alpha}^{\omega} \frac{1}{T_t(u,d) + 1} dt$$

C. Magnien 64/1

## **Estimation**

Random node sample  $X = \{x_1, \dots, x_h\}$ 

$$C^{X}(u) = \frac{n}{h} \sum_{i=1}^{h} C(u, x_i)$$

h << n

## Contribution – algorithm

```
1: procedure Contribution
              for x \leftarrow 1 to |V| do \tau[x] = (\omega + 1, \omega + 2, \infty); S[x] \leftarrow \infty
 2:
              C \leftarrow 0
 3:
              for edges (x, y, t), t decreasing do
 4:
                    \tau[d] \leftarrow (t, t+1, t+1); S[d] \leftarrow t
 5:
                    (I_x, r_x, s_x) \leftarrow \tau[x]
 6:
                    (I_{v}, r_{v}, s_{v}) \leftarrow \tau[v]
 7:
                    if I_{\rm v} < I_{\rm x} then
 8:
                           C \leftarrow C + \ln \frac{\min(\omega, l_x) - t + 1}{\min(\omega, l_x) - \epsilon + 1}
 9.
                           \tau[x] \leftarrow (I_v, I_x, t); S[x] \leftarrow s_x
10:
             for x \leftarrow 1 to |V| do (I_x, r_x, s_x) \leftarrow \tau[x]
11:
                    C \leftarrow C + \log \frac{\min(\omega, l_x) - s_x + 1}{\min(\omega, l_x) - s_x + 1} + \log \frac{l_x - \alpha + 1}{l_x - s_x + 1}
12:
             Return \frac{C}{(\omega - \alpha)}
13:
```

## Theoretical result

#### Theorem

If 
$$h = |X| = \Theta(\log n/\epsilon^2)$$
, then  $\forall u$ ,  $|C(u) - C^X(u)| \le \epsilon$  with high probability

C. Magnien 67/121

Approach Results

#### Choice of h to get a good estimate?

 $\Theta(\log n/\epsilon^2)$  in practice?

Choice of  $\epsilon$ ?

C. Magnien 68/12

## Our approach

- Choose a sample of h nodes
- Compute the approximated closeness of all nodes
- ullet Sort by decreasing approximated closeness and select the K>k top nodes
- Ompute their exact closeness
- Sank them and select the k top nodes

In practice h = K = 1024 works for finding the top 100-nodes

#### Complexity

 $O(2048 \times m)$ 

## Outline

- Centrality in (static) graphs
- 2 Link streams formalism
  - Paths in link streams
  - Some existing definitions of temporal centrality measures
  - Algorithmic ideas
- 3 Finding top nodes for global closeness
  - Approach
  - Results
- Closeness evolution
  - Observations
- Other topics

#### **Datasets**

#### Link streams from different contexts

- Internet topology
- Movie actors
- Public transportation
- Facebook
- Twitter
- Linux mailing list

$$20,000 \le n \le 3.5 \cdot 10^6$$
  
 $80,000 \le m \le 16 \cdot 10^6$ 

# Methodology

#### Compute exact closeness values

For all datasets except Twitter

to evaluate the quality of results

Run approximate method with h = 32, 64, 128, 256, 512, 1024

50 times each

C. Magnien 72/12

# Running times

| Name | Nodes     | Edges      | EXACT       | APX-1024 |
|------|-----------|------------|-------------|----------|
| FANT | 34 464    | 87 331     | 1 815       | 33       |
| MELB | 19 493    | 1 098 227  | 6 258       | 380      |
| ТОРО | 34 761    | 154 842    | 1 649       | 47       |
| FBWA | 46 952    | 876 993    | 12 184      | 264      |
| COME | 162 303   | 666 568    | 29 601      | 203      |
| LINU | 63 400    | 1 096 400  | 19 313      | 317      |
| ALL  | 527 535   | 3 152 994  | 484 906     | 941      |
| TWIT | 3 511 241 | 16 438 790 | *97 553 304 | 28 449   |

<sup>\*</sup>estimated  $\sim$  3 years

C. Magnien 73/12

## Accuracy

#### Compare approximate result to exact

#### Two ways to evaluate accuracy:

- absolute error
- relative error

Advantages and drawbacks

C. Magnien 74/12

#### Absolute error

#### Mean absolute error

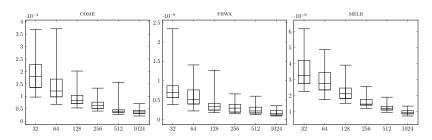
$$\sum_{X} |C^X(u) - C(u)|/n$$

One value per experiments  $\longrightarrow$  50 values for each value of h

#### We plot

- median
- 25% and 75% quartiles
- minimum and maximum

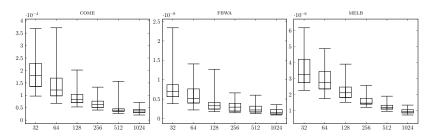
## Absolute error, examples



Average closeness:  $6.1 \cdot 10^{-4}$ ,  $5.4 \cdot 10^{-9}$ ,  $2.4 \cdot 10^{-5}$ Average error and variability decrease with h.

C. Magnien 76/121

## Absolute error, examples



Average closeness:  $6.1 \cdot 10^{-4}$ ,  $5.4 \cdot 10^{-9}$ ,  $2.4 \cdot 10^{-5}$ Average error and variability decrease with h.

C. Magnien 76/121

## Relative error

### For a node u and sample X

$$|C^X(u) - C(u)|/C(u)$$

### Rank nodes according to closeness

small rank = high closeness

We study relative error with respect to rank

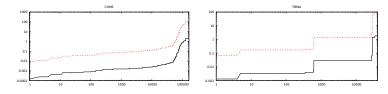
### For each rank i

we are interested in the maximum error observed for all ranks < i.

C. Magnien 77/12

# Relative error, examples

Maximum and average value over 50 experiments, h = 1024



- Relative error can be quite high
- Is low for top nodes

Note discussion sur pourquoi les nœuds de faible closeness sont mal estimés, sur le fait qu'une erreur relative > 1 veut dire une closeness sur estimée, n'arrive que pour le max

## Quality of ranking

### How do we compare rankings?

#### Kendall tau-coefficient

$$C(u_1), \ldots, C(u_i), \ldots, C(u_j), \ldots, C(u_n)$$
  
 $C^X(u_1), \ldots, C^X(u_i), \ldots, C^X(u_j), \ldots, C^X(u_n)$ 

nodes  $u_i$  and  $u_i$  are concordant if

$$C(u_i) < C(u_i)$$
and $C^X(u_i) < C^X(u_i)$ 

$$\tau = \frac{\# \text{concordant pairs} - \# \text{discordant pairs}}{\# \text{pairs}}$$

We use a variant that puts more weight on top nodes

## Quality of ranking

How do we compare rankings?

#### Kendall tau-coefficient

$$C(u_1), \ldots, C(u_i), \ldots, C(u_j), \ldots, C(u_n)$$
  
 $C^X(u_1), \ldots, C^X(u_i), \ldots, C^X(u_j), \ldots, C^X(u_n)$ 

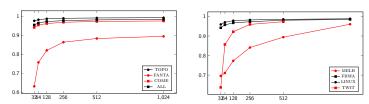
nodes  $u_i$  and  $u_j$  are concordant if

$$C(u_i) < C(u_i)$$
and $C^X(u_i) < C^X(u_i)$ 

$$\tau = \frac{\# \text{concordant pairs} - \# \text{discordant pairs}}{\# \text{pairs}}$$

We use a variant that puts more weight on top nodes

# Quality of ranking, results



Twitter: used ranking for h = 1024 as reference Larger than 0.9 for h = 1024 in all cases

C. Magnien 80/121

# Quality for top-k

We care only about the first nodes in the order

How to evaluate the quality?

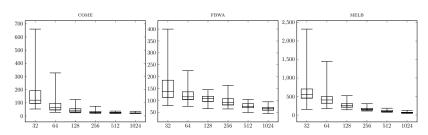
 $\gamma(k)$ : maximum approximated rank among the top-k exact nodes

Note: Example au tableau

C. Magnien 81/1:

# Quality in practice

### Results for top-20



C. Magnien 82/121

### In practice,

- use h = 1024
- compute approximate ranking,
- select the top *h* nodes and compute their exact closeness always works for finding the top 100 nodes

### Open questions

- Why do some datasets behave worse than others?
- what if edge have travelling time?

C. Magnien

## Outline

- Centrality in (static) graphs
- Link streams formalism
  - Paths in link streams
  - Some existing definitions of temporal centrality measures
  - Algorithmic ideas
- 3 Finding top nodes for global closeness
  - Approach
  - Results
- Closeness evolution
  - Observations
- Other topics

2. Magnien 84/1

## How does closeness evolve with time?

Is it enough to study the global closeness?

Are important nodes always important? Are they important most of the time? Do unimportant nodes become important? . . .

C. Magnien 85/12

Observation

### Need to compute the closeness

- of all nodes
- for all starting times

O(nmT)????

#### Here

We assume networks not too large

We can store a  $n \times n$  matrix

C. Magnien 86/12

## Foremost paths and time to reach

It is possible to compute the time to reach:

- for all pairs of nodes
- for all starting times

in a single reading of the input  $\mathcal{O}(n^2)$  space

[Kossinets, Kleinberg, Watts, 2008]

How would you do it?

C. Magnien 87/1:

## Foremost paths and time to reach

It is possible to compute the time to reach:

- for all pairs of nodes
- for all starting times

in a single reading of the input  $\mathcal{O}(n^2)$  space

[Kossinets, Kleinberg, Watts, 2008]

How would you do it?

C. Magnien 87/12

# Algorithm - Principle

### Perform the backward in time algorithm

for all destination nodes at once

```
In memory data
```

 $n \times n$  evolving matrix

[i][j]: earliest arrival time from i to j

Why not the forward algorithm?

. Magnien 88/12

## Algorithm - Principle

Perform the backward in time algorithm

for all destination nodes at once!

### In memory data

 $n \times n$  evolving matrix

[i][j]: earliest arrival time from i to j

Why not the forward algorithm?

C. Magnien 88/12

# Algorithm - Principle

Perform the backward in time algorithm

for all destination nodes at once!

### In memory data

 $n \times n$  evolving matrix

[i][j]: earliest arrival time from i to j

Why not the forward algorithm?

C. Magnien 88/12

## Algorithm

### In memory data

 $n \times n$  evolving matrix

[i][j]: earliest arrival time from i to j

#### Idea

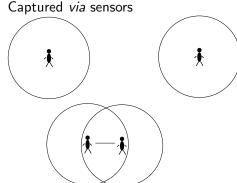
Deal with time from end to beginning

- Suppose we computed all t.t.r. for starting times > t
- Link (u, v) at time t
  - u et v can reach each other at time t
  - for each node  $x \neq u, v$ 
    - dux: t.t.r. from u to x, dvx: t.t.r. from v to x
    - if  $T_t(u,x) < d_t(T,x)$  then u should go through v to reach x earlier
    - and conversely

## Datasets (1) - Rollernet experiment

[Tournoux et al, 2009]

Proximity networks between individuals



#### Rollerblade tour

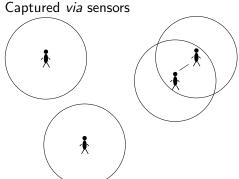
- 62 nodes
- $\bullet \sim 3h$

C. Magnien 90/1

## Datasets (1) - Rollernet experiment

[Tournoux et al, 2009]

Proximity networks between individuals



#### Rollerblade tour

- 62 nodes
- $\bullet \sim 3h$

C. Magnien 90/1

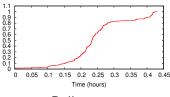
# Datasets (2) – Enron email

### All emails between Enron employees

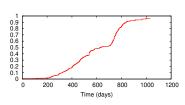
- 151 employees
- more than three years

C. Magnien 91/12

## Fraction of reachable pairs



Rollernet



Enron

### Compare to linkstream duration

• Rollernet: 3 hours

• Enron: 3 years

Very different dynamics

C. Magnien 92/1

## Outline

- Centrality in (static) graphs
- 2 Link streams formalism
  - Paths in link streams
  - Some existing definitions of temporal centrality measures
  - Algorithmic ideas
- 3 Finding top nodes for global closeness
  - Approach
  - Results
- Closeness evolution
  - Observations
- Other topics

C. Magnien 93/1

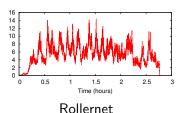
# Temporal efficiency

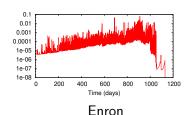
### Efficiency: average closeness

$$E_t(G) = \frac{1}{n} \sum_{v \in V} C_t(v)$$

C. Magnien 94/12

## Temporal efficiency - observations



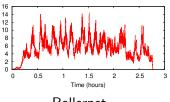


- Fluctuates a lot
- Global increase over time for Enror

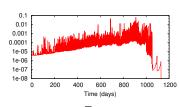
What about individual nodes?

. Magnien 95/1:

## Temporal efficiency - observations



Rollernet



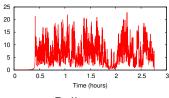
Enron

- Fluctuates a lot
- Global increase over time for Enron

What about individual nodes?

Magnien

## Temporal closeness of random nodes



0.01 0.001 0.0001 1e-05 1e-06 0 200 400 600 800 1000 1200 Time (days)

Rollernet

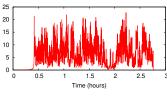
Enron

#### Problems

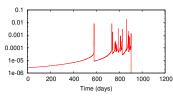
- Fluctuates a lot
- Difficult to interpret
- Comparison with other nodes?

. Magnien 96/121

## Temporal closeness of random nodes



Rollernet



Enron

#### **Problems**

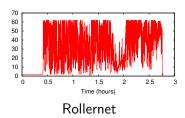
- Fluctuates a lot
- Difficult to interpret
- Comparison with other nodes ?

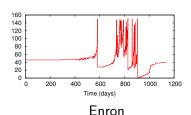
### Global comparison

- Compute closeness for all nodes at all times
- Compute rank of node at each time

C. Magnien 96/1

## Rank evolution





\_...0

small rank = small closeness

#### Observations

- Artefact in Enron: arbitrary rank in case of ties
- correlation between closeness and rank, but not perfect
- Very different behaviors

C. Magnien

### Global statistics

#### Idea

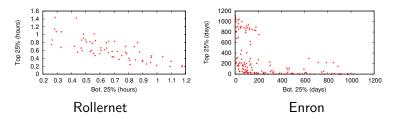
An important node will often have a high rank

#### For each node

Compute time spent with rank in top/bottom 25%

C. Magnien 98/17

## Global statistics



Note that x + y < total duration

#### Observations

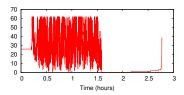
- Differences between nodes
- Rollernet: no node important or unimportant for more than half dataset duration

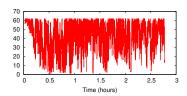
• Enron: some overall important or unimportant nodes

C. Magnien

### Extremes - Rollernet

Rank of nodes with longest time in top 25% ranks - bottom 25% ranks





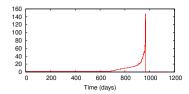
#### Observations

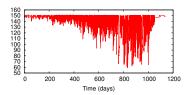
- Most important (numerically)  $\neq$  globally important
- No notion of global importance?

C. Magnien 100/121

## Extremes - Enron

Rank of nodes with longest time in top 25% ranks - bottom 25% ranks





#### Observations

- Bottom node has only two links, yet reaches high rank
- Top node has consistently high rank for half the dataset

• Globally important  $\neq$  always important

. Magnien 101/123

## Delta centrality

Impact on a given node on efficiency

$$\Delta(u) = \frac{E_t(G) - E_t(G \setminus u)}{E_t(G)}$$

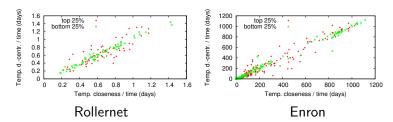
→ for each node, one value per time instant

### To evaluate the global impact of a node

- Rank for all times
- Compute time spent in top/bot 25%

. Magnien 102/1

### Global statistics



#### Observations

- High correlation between high/low closeness and high/low Delta-centrality
- Some nodes have a relatively higher delta-centrality than closeness

→ high impact on paths

C. Magnien 103/121

Observations

### Conclusion

#### Results

- Importance does vary with time
- Notion of global importance not always meaningful

Different observations for different datasets

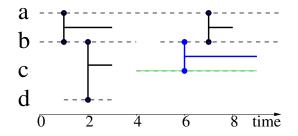
C. Magnien 104/12

### Outline

- Centrality in (static) graphs
- 2 Link streams formalism
  - Paths in link streams
  - Some existing definitions of temporal centrality measures
  - Algorithmic ideas
- Finding top nodes for global closeness
  - Approach
  - Results
- 4 Closeness evolution
  - Observations
- Other topics

C. Magnien 105/1

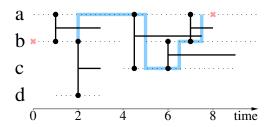
### More general case – dynamics on nodes



Node *b* is present during  $[0,4] \cup [5,10]$ 

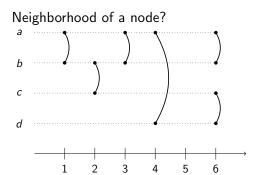
C. Magnien 106/121

# Impact on paths



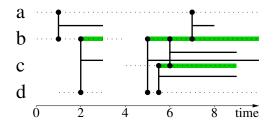
C. Magnien 107/121

# Degree centrality?



C. Magnien 108/12

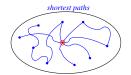
# Neighborhood



Neighborhood of *d d*'s degree: 9.5

C. Magnien

# Betweenness centrality in graphs



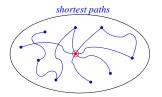
$$B(v) = \sum_{u \in V, w \in V} \frac{\sigma(u, w, v)}{\sigma(u, w)}$$

fraction of all sp  $u \longrightarrow w$  involving v

C. Magnien

# Betweenness centrality in link streams graphs:

nodes, shortest paths, all *u* and *v* 



linkstreams: temporal nodes, shortest fastest paths (sfp), all (t, u), (t', v)



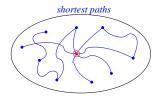
$$B(t,v) = \sum_{u \in V, w \in V} \int_{i \in T, j \in T} \frac{\sigma((i,u),(j,w),(t,v))}{\sigma((i,u),(j,w))} di dj$$

fraction of all sfp

C. Magnien 111/1

# Betweenness centrality in link streams graphs:

nodes, shortest paths, all u and v



linkstreams: temporal nodes, shortest fastest paths (sfp),

all 
$$(t, u)$$
,  $(t', v)$ 

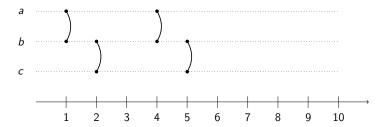


$$B(t,v) = \sum_{u \in V, w \in V} \int_{i \in T, j \in T} \frac{\sigma((i,u),(j,w),(t,v))}{\sigma((i,u),(j,w))} \, \mathrm{d}i \, \mathrm{d}j$$

fraction of all sfp

C. Magnien

# Betweenness Centrality in link streams



C. Magnien 112/12:

In static networks

#### Connected component

Set of nodes such that there exists a path

between any pair of nodes



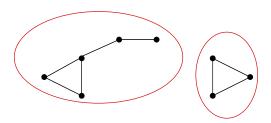
C. Magnien 113/12:

In static networks

#### Connected component

Set of nodes such that there exists a path

between any pair of nodes



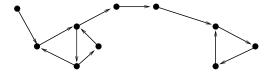
. Magnien 113/121

In static directed networks

#### Strongly connected component

Set of nodes such that there exists a path

- from any node
- to any other node



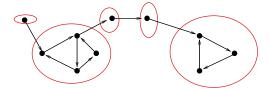
C. Magnien 113/12:

In static directed networks

#### Strongly connected component

Set of nodes such that there exists a path

- from any node
- to any other node



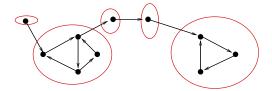
. Magnien 113/121

In static directed networks

#### Strongly connected component

Set of nodes such that there exists a path

- from any node
- to any other node



(Strongly) connected component form a partition of nodes

C. Magnien 113/1

Centrality in (static) graphs
Link streams formalism
Finding top nodes for global closeness
Closeness evolution
Other topics

### Previous definitions

#### A link stream is strongly connected if:

There exists a temporal path

- from any node
- to any other node

C. Magnien 114/12:

### Previous definitions

#### A link stream is strongly connected if:

There exists a temporal path

- from any node
- to any other node

#### Covers vastly different cases:

```
a
b
c
```

C. Magnien 114/12

### Previous definitions

#### A link stream is strongly connected if:

There exists a temporal path

- from any node
- to any other node

#### Covers vastly different cases:

```
a b c
```

C. Magnien 114/12

### Previous definitions

#### A link stream is strongly connected if:

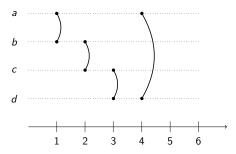
There exists a temporal path

- from any node
- to any other node

#### Covers vastly different cases:

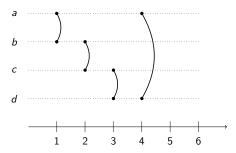
```
a
b
c
```

C. Magnien 114/12



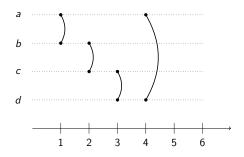
#### There are paths

- from a to b and back
- from a to c and back
- from c to b and back



#### There are paths

- from a to b and back
- from a to c and back
- from c to b and back

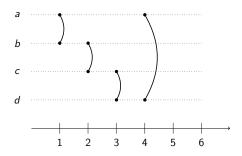


 $\{a, b, c\}$  and  $\{a, c, d\}$  are connected components

Components overlap!

Huge number of components in practice

C. Magnien 116/121



 $\{a, b, c\}$  and  $\{a, c, d\}$  are connected components

Components overlap! Huge number of components in practice

C. Magnien 116/121

### What is a community?

Set of nodes that share something:

- Affiliation (friends, colleagues, club, ...)
- Similar interests (tagging systems, ...)
- Similar contents (movies, books, products, web pages, ...)

. . .

What is the connexion with the network structure?

. Magnien 117/12:

### What is a community?

Set of nodes that share something:

- Affiliation (friends, colleagues, club, ...)
- Similar interests (tagging systems, ...)
- Similar contents (movies, books, products, web pages, ...)

...

What is the connexion with the network structure?

. Magnien 117/12:

### What is a community?

Set of nodes that share something:

- Affiliation (friends, colleagues, club, ...)
- Similar interests (tagging systems, ...)
- Similar contents (movies, books, products, web pages, ...)

. . .

What is the connexion with the network structure?

More densely connected inside than outside

. Magnien 117/12:

# Community detection

**Goal**: Identify communities automatically **Applications**:

- Understand the structure of a network
- Help visualization
- Detect specific communities (web pages, proteins, ...)
- Improve information retrieval (search engines, recommendation, ...)

C. Magnien 118/12:

Centrality in (static) graphs
Link streams formalism
Finding top nodes for global closeness
Closeness evolution
Other topics

# Challenges

- Unknown number of communities
- Unknown sizes of communities
- Scalability

C. Magnien 119/121

Centrality in (static) graphs
Link streams formalism
Finding top nodes for global closeness
Closeness evolution
Other topics

### Challenges

- Unknown number of communities
- Unknown sizes of communities
- Scalability

Many definitions of a community

C. Magnien 119/121

# Using betweenness centrality for community detection

[Girvan and Newman, 2002]

- **Step 1**: All nodes are in the same community (initialization)
- Step 2: Compute the betweenness of each link
- **Step 3:** Delete the highest betweenness link
- **Step 4:** Iterate from step 1

Use definition of betweenness centrality in link streams?

C. Magnien 120/123

# I hope this lecture

- Made you grasp the challenges of dealing with temporal paths
- Showed you that digging into the data can be easy
- Showed that it is not easy to find relevant indicators

... and gave you some hints!

C. Magnien 121/12