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Definitions

Definitions

Roman domination

Roman dominating function

» Cockayne, Dreyer, Hedetniemi, and Hedetniemi in 2004 defined a Roman
dominating function (RDF) on a graph G = (V/, E) to be a function
f: V —{0,1,2} satisfying the condition that every vertex u for which
f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. Roman
domination in graphs, Discrete Math. 278 (2004).
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dominating function (RDF) on a graph G = (V/, E) to be a function
f: V —{0,1,2} satisfying the condition that every vertex u for which
f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. Roman
domination in graphs, Discrete Math. 278 (2004).
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Definitions

Definitions

Roman domination

Roman dominating function

» For a real-valued function, f: V — R, the weight of f is w(f) = J,cy f(v).

» The Roman domination number, denoted vg(G), is the minimum weight of
an RDF in G; that is, 7g(G) = min{w(f) : f is a RDF in G}.
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Figure: w(f) = 4, 7r(G) =4
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Roman Domination

Roman graphs

Roman graphs

» Graphs which have Roman domination number equal to twice their
domination number are called Roman graphs.
> The following classes of graphs were found to be Roman (Cockayne et al.):
> Ps, Pakyo for k > 1,
> Gk, Gk for k > 1,
» Km,n for min{m, n} # 2,
» any graph with A(G) =n— 1.
» Henning characterized Roman trees.
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Roman trees

Henning, A characterization of Roman trees (2002)

P> Let F; denote the family of all rooted trees such that every leaf different
from the root is at distance 2 from the root and all, except for possibly one,
child of the root is a strong support vertex.

—

Figure: A tree from the family F7'
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Roman trees

Henning, A characterization of Roman trees (2002)

> Let F; denote the family of all rooted trees such that every leaf is at
distance 2 from the root and all but two children of the root are strong
support vertices.

—

Figure: A tree from the family F5
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Roman trees

Henning, A characterization of Roman trees (2002)

» For a tree T, we let

Vs(T)={ve V(T): veS{I) and yr(T — v) > v&(T)}.

NI

Figure: yr(T) =8
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Roman trees

Henning, A characterization of Roman trees (2002)

» For a tree T, we let

Vs(T)={ve V(T): veS{I) and yr(T — v) > v&(T)}.

N

Figure: vr(T —v) =7
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Henning, A characterization of Roman trees (2002)

» For a tree T, we let
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Roman trees

Henning, A characterization of Roman trees (2002)

» For a tree T, we let

Vs(T)={ve V(T): veS{I) and yr(T — v) > v&(T)}.
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Roman trees

Henning, A characterization of Roman trees (2002)

» For a tree T, we let

Vs(T)={ve V(T): veS{I) and yr(T — v) > v&(T)}.
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Figure: yr(T) =8
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Roman trees

Henning, A characterization of Roman trees (2002)

» For a tree T, we let

Vs(T)={ve V(T): veS{I) and yr(T — v) > v&(T)}.

Haoddh

Figure: vr(T — v) =8
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Roman trees

Henning, A characterization of Roman trees (2002)

> Let 7 be the family of unlabelled trees T that can be obtained from a
sequence T1,..., Tj (j > 1) of trees such that T; is a star Ky, for r > 1,
and, if j > 2, T;11 can be obtained recursively from T; by one of the three
operations 71, 7> and Ts.

Figure: A tree T;
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Roman trees

Henning, A characterization of Roman trees (2002)

» Operation 7;. Assume x € V5(T;). Then the tree T;;; is obtained from T;
by adding a star Kj s for s > 2 with central vertex w and adding the edge xw.

Figure: Operation 71
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Roman trees

Henning, A characterization of Roman trees (2002)

» Operation 7;. Assume x € V5(T;). Then the tree T;;; is obtained from T;
by adding a star Kj s for s > 2 with central vertex w and adding the edge xw.
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Figure: Operation 71
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Roman Domination

Roman trees

Henning, A characterization of Roman trees (2002)

» Operation 7;. Assume x € V(T;). Then the tree T;;; is obtained from T;
by adding a tree T from the family F; and adding the edge xw, where w is a
leaf of T if T = P3 or w is the central vertex of T if T # Ps.

Figure: Operation 7>
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Roman Domination

Roman trees

Henning, A characterization of Roman trees (2002)

» Operation 7;. Assume x € V(T;). Then the tree T;;; is obtained from T;
by adding a tree T from the family F; and adding the edge xw, where w is a
leaf of T if T = P3 or w is the central vertex of T if T # Ps.
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Figure: Operation 7>
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Roman Domination

Roman trees

Henning, A characterization of Roman trees (2002)

» Operation 7;. Assume x € V(T;). Then the tree T;;; is obtained from T;
by adding a tree T from the family F; and adding the edge xw, where w is a
leaf of T if T = P3 or w is the central vertex of T if T # Ps.

X

Figure: Operation 72
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Roman Domination

Roman trees

Henning, A characterization of Roman trees (2002)

» Operation 7;. Assume x € V(T;). Then the tree T;;; is obtained from T;
by adding a tree T from the family F; and adding the edge xw, where w is a
leaf of T if T = P3 or w is the central vertex of T if T # Ps.

e
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Figure: Operation 72
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Roman Domination

Roman trees

Henning, A characterization of Roman trees (2002)

> Operation 73. Assume x € Vs(T;). Then the tree T;.; is obtained from T;
by adding a tree T from the family 75 and adding the edge xw, where w
denotes the central vertex of T.

Figure: Operation T3
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Roman Domination

Roman trees

Henning, A characterization of Roman trees (2002)

> Operation 73. Assume x € Vs(T;). Then the tree T;.; is obtained from T;
by adding a tree T from the family 75 and adding the edge xw, where w
denotes the central vertex of T.

/
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Figure: Operation T3
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Roman trees

Bernal, Zuazua (2018)

Figure: A (g, 2y)—tree not obtained by the original characterization of Henning
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Roman Domination

Roman trees

Bernal, Zuazua (2018)

o—9

Figure: A (g, 2y)—tree not obtained by the original characterization of Henning
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Roman Domination

Roman trees

Bernal, Zuazua (2018)

Figure: A (g, 2y)—tree not obtained by the original characterization of Henning
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Roman trees

Bernal, Zuazua (2018)

Figure: A (g, 2y)—tree not obtained by the original characterization of Henning
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Roman Domination

Definitions

Weakly connected Roman domination

Weakly connected Roman dominating function

» We call the function f a weakly connected Roman dominating function in G
(WCRDF) if each vertex u € V is adjacent to a vertex v € V5 and the
subgraph (V4 U V5),, weakly induced by V; U V5 is connected in G.

R et (6O e Domination Parametersim Graphz 1l ST S— T



Definitions

Weakly connected Roman domination

Weakly connected Roman dominating function

» We call the function f a weakly connected Roman dominating function in G
(WCRDF) if each vertex u € V is adjacent to a vertex v € V5 and the
subgraph (V4 U V5),, weakly induced by V; U V5 is connected in G.
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Roman Domination

Definitions

Weakly connected Roman domination

Weakly connected Roman dominating number

> We define the weight w(f) of f to be |Vi| + 2|V5|.

» The weakly connected Roman domination number, denoted v5°(G), is the
minimum weight of a WCRDF in G.

» A WCRDF of weight vA°(G) we call a v£°(G)—function.

] D

Figure: w(f) =5,7%°(G) =5

Joanna Raczek (PG)




Roman Domination

Complexity results

Decision problem

WEAKLY CONNECTED ROMAN DOMINATING FUNCTION (WCRDF)
Instance: A connected graph and a positive integer k.

Question: Does G have a weakly connected Roman dominating function of weight
at most k7

oEe et (6O e Domination Parametersin Graphz 1l | ST e S— T



Roman Domination

Complexity results

Theorem
WCRDS is NP-complete, even for chordal graphs.
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Complexity results

WCRDS is NP-complete, even for chordal graphs.

WCRDS is NP-complete, even for bipartite graphs.
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Complexity results

WCRDS is NP-complete, even for chordal graphs.

WCRDS is NP-complete, even for bipartite graphs.
Polynomial transformation from EXACT COVER BY 3-SETS (X3C).
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Roman Domination

Paths

For a path P, on n > 1 vertices,
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Roman Domination

Paths

For a path P, on n > 1 vertices,

20 @020 @20

Figure: y§°(Pwo) = 8
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Roman Domination

Lower bound on ~g° of a tree without strong support
vertices

Let T be a tree without a strong support vertex. Then
wc n

with equality if and only if T belongs to the family T .
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Roman Domination

Lower bound on ~g° of a tree without strong support
vertices

» Let 71, 7> and T3 be the following thee operations defined on a tree T.
> Let f be a y&°(T)- function and let v € V/(T).
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Roman Domination

Lower bound on ~g° of a tree without strong support
vertices

» Let 71, 7> and T3 be the following thee operations defined on a tree T.
> Let f be a y&°(T)- function and let v € V/(T).

Operation T;. If f(v) =0 and v is not a support vertex, then add a vertex x
and the edge vx.

|
|
|
|
|
|
!
!
!
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|
|
|
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Roman Domination

Lower bound on ~g° of a tree without strong support
vertices

» Let 71, 7> and T3 be the following thee operations defined on a tree T.
> Let f be a y&°(T)- function and let v € V/(T).
Operation Tp. If f(v) =2, add a path (x, y) and the edge vx.

T
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Roman Domination

Lower bound on ~g° of a tree without strong support
vertices

» Let 71, 7> and T3 be the following thee operations defined on a tree T.
> Let f be a y&°(T)- function and let v € V/(T).

Operation T3. If f(v) € {1,2}, add a path (x,y,z) and the edge vx.
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Roman Domination

Lower bound on ~g° of a tree without strong support
vertices

» Let 7 be the minimum family of trees obtained from P, by a finite sequence
of Operations 75 and at most one either Operation 77 or T3.
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Roman Domination

Lower bound on ~g° of a tree without strong support
vertices

» Let 7 be the minimum family of trees obtained from P, by a finite sequence
of Operations 7> and at most one either Operation 7 or 7s.

@——:>

Figure: v5°(T) =2=[2] +1
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Roman Domination

Lower bound on ~g° of a tree without strong support
vertices

» Let 7 be the minimum family of trees obtained from P, by a finite sequence
of Operations 7> and at most one either Operation 7 or 7s.

© . 00

Figure: y°(T) =3 =[3] +1
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Roman Domination

Lower bound on ~g° of a tree without strong support
vertices

Family 7

» Let 7 be the minimum family of trees obtained from P, by a finite sequence
of Operations 7> and at most one either Operation 7 or 7s.

o . 00

Figure: v5(T) =4 =[2] +1
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Roman Domination

Lower bound on ~g° of a tree without strong support
vertices

Family 7

» Let 7 be the minimum family of trees obtained from P, by a finite sequence
of Operations 7> and at most one either Operation 7 or 7s.

© 2\0—0

Figure: v5°(T) =5=[$] +1
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Roman Domination

Lower bound on ~g° of a tree without strong support
vertices

Family 7

» Let 7 be the minimum family of trees obtained from P, by a finite sequence
of Operations 7> and at most one either Operation 7 or 7s.

© : 000 . ©

Figure: v3°(T) =7=[3] +1
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Roman Domination

Lower bound on ~g° of a tree without strong support
vertices

Family 7

» Let 7 be the minimum family of trees obtained from P, by a finite sequence
of Operations 7> and at most one either Operation 7 or 7s.
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Figure: 7g°(T) =8=[%
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Roman Domination

Lower bound on ~g° of a tree without strong support
vertices

Family 7

» Let 7 be the minimum family of trees obtained from P, by a finite sequence
of Operations 7> and at most one either Operation 7 or 7s.

N
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Figure: 7°(T) =9=[%
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Roman Domination

Lower bound on ~g° of a tree without strong support
vertices

» Let 7 be the minimum family of trees obtained from P, by a finite sequence
of Operations 7; and at most one either Operation 75 or 7s.

o—©0

Figure: v5°(T) =2=[2] +1
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Roman Domination

Lower bound on ~g° of a tree without strong support
vertices

» Let 7 be the minimum family of trees obtained from P, by a finite sequence
of Operations 7; and at most one either Operation 75 or 7s.

o—0 © : ©

Figure: v (T) =4=[3]+1
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Roman Domination

Lower bound on ~g° of a tree without strong support
vertices

Family 7

» Let 7 be the minimum family of trees obtained from P, by a finite sequence
of Operations 7; and at most one either Operation 75 or 7s.

O—0 0 . ©

Figure: yg°(T) =5=[4] +1
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Roman Domination

Lower bound on ~g° of a tree without strong support
vertices

Family 7

» Let 7 be the minimum family of trees obtained from P, by a finite sequence
of Operations 7; and at most one either Operation 75 or 7s.

/\

Figure: y8°(T) =6 = g
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Roman Domination

Lower bound on ~g° of a tree without strong support
vertices

» Let 7 be the minimum family of trees obtained from P, by a finite sequence
of Operations 7; and at most one either Operation 75 or 7s.
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Figure: y°(T) =2=[3]+1
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Roman Domination

Lower bound on ~g° of a tree without strong support
vertices

» Let 7 be the minimum family of trees obtained from P, by a finite sequence
of Operations 7; and at most one either Operation 75 or 7s.
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Figure: y°(T) =3 =[2] +1
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Roman Domination

Lower bound on ~g° of a tree without strong support
vertices

» Let 7 be the minimum family of trees obtained from P, by a finite sequence
of Operations 7; and at most one either Operation 75 or 7s.

—0 : o—0

Figure: yp°(T) =4=[3]+1
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Roman Domination

Lower bound on ~g° of a tree without strong support
vertices

Corollary

Let T be a tree without a strong support vertex and with diam(T) > 9. Then

YE(T) 2 m +2,
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Roman Domination

Upper bound on g of a tree

Theorem

If T is a tree of order n > 3, then

| o

'YE’/C(T) < -n,

with equality if and only if T € F.
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Roman Domination

Upper bound on g of a tree

Family 7

P> Let F be a family of all trees T whose vertex set can be partitioned into sets,
each set inducing a path Pg, such that the subgraph induced by the two
central vertices of these Pg's is connected.
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Roman Domination

Upper bound on g of a tree

P> Let F be a family of all trees T whose vertex set can be partitioned into sets,
each set inducing a path Pg, such that the subgraph induced by the two
central vertices of these Pg's is connected.

» We call the subtree induced by these central vertices the underlying subtree of
the resulting tree T, and we call each such path Ps a base path of the tree T.
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Roman Domination

Upper bound on g of a tree

Figure: A tree in F with underlying tree denoted black
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Roman Domination

Upper bound on g of a tree
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Figure: A tree in F
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Upper bound on g of a tree

0-2 @@ 2 -0

O — N —

Figure: A tree in F
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Roman Domination

Upper bound on g of a tree

0

— N — O

N — O

AN

O — N —

Figure: A tree in F
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Roman Domination

Upper bound on g of a tree

0
I
0 2 0
AN | |
2 2
-2 -@-@ 0 :
|
2
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0 2—0
2
|
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Figure: A tree in F
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Roman Domination

Upper bound on g of a tree
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Figure: A tree in F
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Roman Domination

Ywe—excellent trees

» Domke, Hattingh, Marcus have defined the class £ to be the class of trees
obtained from P, by a finite sequence of the following operation: attach to
any vertex a Ps.

oEe et (6O e Domination Parametersin Graphz 1l ST S— T



Roman Domination

Ywe—excellent trees

» Domke, Hattingh, Marcus have defined the class £ to be the class of trees
obtained from P, by a finite sequence of the following operation: attach to
any vertex a Ps.

» A graph G is a 7,—excellent graph if each vertex of G is contained in some
Ywe(G)-set.
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Roman Domination

Ywe—excellent trees

» Domke, Hattingh, Marcus have defined the class £ to be the class of trees
obtained from P, by a finite sequence of the following operation: attach to
any vertex a Ps.

» A graph G is a 7,—excellent graph if each vertex of G is contained in some
Ywe(G)-set.

Theorem (G.S. Domke, J.H. Hattingh, L.R. Marcus (2005))

A nontrivial tree T is y,—excellent if and only if T belongs to the family £.
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Roman Domination

Ywe—excellent trees

Corollary (JR (2008))

Let T be a tree of order n at least 3. Then the following conditions are
equivalent:

1. T belongs to the family &;
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Roman Domination

Ywe—excellent trees

Corollary (JR (2008))

Let T be a tree of order n at least 3. Then the following conditions are
equivalent:
1. T belongs to the family &;

2. T is a yyc—excellent tree;
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Roman Domination

Ywe—excellent trees

Corollary (JR (2008))

Let T be a tree of order n at least 3. Then the following conditions are
equivalent:
1. T belongs to the family &;

2. T is a yyc—excellent tree;
3. B(T)=3;
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Roman Domination

Ywe—excellent trees

Corollary (JR (2008))

Let T be a tree of order n at least 3. Then the following conditions are
equivalent:
1. T belongs to the family &;
2. Tisa 'ywc—exce//ent tree;
3. 8(T) =
4. Yue(T)

[N

n.
27
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Roman Domination

Ywe—excellent trees

Corollary (JR (2008))

Let T be a tree of order n at least 3. Then the following conditions are
equivalent:
1. T belongs to the family &;

. T is a yyc—excellent tree;

oA W
)
3
—~
\'
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Roman Domination

Upper bound on g of a tree

Figure: A tree in F
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Total Roman domination

@ H. Abdollahzadeh Ahangar, M.A. Henning, V. Samodivkin, |I. Gonzalez Yero,
Total Roman Domination in Graphs, Applicable Analysis and Discrete Math.
(2016).

|

» A total Roman domination function is a Roman dominating function with the
additional property that the subgraph of G induced by the set of all vertices
of positive weight has no isolated vertex.
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Total Roman domination

@ H. Abdollahzadeh Ahangar, M.A. Henning, V. Samodivkin, |I. Gonzalez Yero,
Total Roman Domination in Graphs, Applicable Analysis and Discrete Math.
(2016).

» A total Roman domination function is a Roman dominating function with the
additional property that the subgraph of G induced by the set of all vertices
of positive weight has no isolated vertex.

» The total Roman domination number is the minimum weight of a total
Roman domination function on G.
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Roman Domination

Weak Roman domination

@ S.T. Hedetniemi, M.A. Henning, Defending the Roman Empire — A new
strategy, Discrete Math. 266 (2003) 239-251.

> A vertex u with f(u) = 0 is said to be undefended with respect to f, if it is
not adjacent to a vertex with positive weight.
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Roman Domination

Weak Roman domination

@ S.T. Hedetniemi, M.A. Henning, Defending the Roman Empire — A new
strategy, Discrete Math. 266 (2003) 239-251.

> A vertex u with f(u) = 0 is said to be undefended with respect to f, if it is
not adjacent to a vertex with positive weight.

» The function f is a weak Roman dominating function (WRDF) if each vertex
u with f(u) = 0 is adjacent to a vertex v with 7(v) > 0 such that the
function ': V — {0, 1,2} defined by f'(v) =1, f'(v) = f(v) — 1 and
f'(w) = f(w) if w e V —{u, v}, has no undefended vertex.

e et (6O e Domination Parametersin Graphz 1l ST S— T



Roman Domination

Weak Roman domination

@ S.T. Hedetniemi, M.A. Henning, Defending the Roman Empire — A new
strategy, Discrete Math. 266 (2003) 239-251.

> A vertex u with f(u) = 0 is said to be undefended with respect to f, if it is
not adjacent to a vertex with positive weight.

» The function f is a weak Roman dominating function (WRDF) if each vertex
u with f(u) = 0 is adjacent to a vertex v with f(v) > 0 such that the
function ': V — {0, 1,2} defined by f'(u) =1, f’(v) = f(v) —1 and
f'(w) = f(w) if w e V —{u, v}, has no undefended vertex.

» The weight of f is w(f) = .\ f(v). The weak Roman domination
number, denoted by ~,(G), is the minimum weight of a WRDF in G.
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Roman Domination

Weak Roman domination

@ S.T. Hedetniemi, M.A. Henning, Defending the Roman Empire — A new
strategy, Discrete Math. 266 (2003) 239-251.
]

> A vertex u with f(u) = 0 is said to be undefended with respect to f, if it is
not adjacent to a vertex with positive weight.

» The function f is a weak Roman dominating function (WRDF) if each vertex
u with f(u) = 0 is adjacent to a vertex v with f(v) > 0 such that the
function ': V — {0, 1,2} defined by f'(u) =1, f’(v) = f(v) —1 and
f'(w) = f(w) if w e V —{u, v}, has no undefended vertex.

» The weight of f is w(f) = .\ f(v). The weak Roman domination
number, denoted by ~,(G), is the minimum weight of a WRDF in G.

» For any graph G,

Y(G) < 7(G) < Vr(G) < 29(G).

R et (6O e Domination Parametersin Graphz 1l | ST S— T



Secondary domination number

Definitions

(1,2)-domination

> Aset D C V(G) is a (1,2)-dominating set if each vertex v of V — D has a
neighbour in D as well as another vertex of D at a distance not greater
than 2 from v.
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Secondary domination number

Definitions

(1,2)-domination

> Aset D C V(G) is a (1,2)-dominating set if each vertex v of V — D has a
neighbour in D as well as another vertex of D at a distance not greater
than 2 from v.

» The (1,2)-domination number, denoted by 71 2(G), is the cardinality of a
smallest (1,2)-dominating set of G.
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Secondary domination number

Definitions

(1,2)-domination

> Aset D C V(G) is a (1,2)-dominating set if each vertex v of V — D has a
neighbour in D as well as another vertex of D at a distance not greater
than 2 from v.

» The (1,2)-domination number, denoted by 71 2(G), is the cardinality of a
smallest (1,2)-dominating set of G.

» The (1,2)-domination in graphs is a special case of (1, k)-domination. Here
we only deal with the case when k = 2, that is, secondary domination.
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(1,2)-DOMINATING SET
Instance: A graph G and a positive integer k.
Question: Does G have a (1,2)-dominating set of size at most k?

Theorem
(1,2)-DOMINATING SET is NP-complete, even for split graphs.
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Secondary domination number

Proof

»> The reduction is from EXACT COVER BY 3-SETS (X3C).

> Instance: X = {xi1,...,x3q} and C = {4, ..., Gy} of X3C, where C; are
subsets of X of size |Cj| =3 for 1 < j < m. Assume that m > 2, since
otherwise the answer is trivial.
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Secondary domination number

Proof

»> The reduction is from EXACT COVER BY 3-SETS (X3C).

> Instance: X = {xi1,...,x3q} and C = {4, ..., Gy} of X3C, where C; are
subsets of X of size |Cj| =3 for 1 < j < m. Assume that m > 2, since
otherwise the answer is trivial.
> We construct a split graph G with vertices for each x; € X, for each ¢; € C
and with edges x;C; for all x; € C; and edges so that the subgraph induced by
{G,...,Cn} is a complete graph Ki,,. Let k = g.
OJ
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Domination number and (1, 2)-domination number

If G is a graph with 6(G) > 1 and without a triangle, then

’Y(G) = ’7(1,2)(G)-

Proof.

Let G be a graph with §(G) > 1 and without a triangle. Suppose
7(G) < 7v1,2)(G). Then... O
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Domination number and (1, 2)-domination number

Proposition

If a graph G is bipartite and without a leaf, then v(G) = v(1,2)(G).
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Domination number and (1, 2)-domination number

It is co-NP-hard to determine if for a given graph G there is ¥(G) = 7(1,2)(G)
even for bipartite graphs with only one leaf.

Proof.

» Given an instance E, the set of literals U = {u1, ua, ..., up} and the set of
clauses C = {Cy, Gy, ..., Cp} of 3SAT, we construct a bipartite graph G
whose order is polynomially bounded in terms of n and m, and such that the
formula is satisfiable if and only if v(G) < v1,2)(G).

O
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For each literal u;

LA

For each clause ;
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Secondary domination number

For each literal u;

u; u
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Secondary domination number

For each literal u;

u; u

> At least two vertices of each Cp belong to each v(G)-set and to each
7(1,2)(G)—set.

R et (6O e Domination Parametersin Graphz 1l | ST T S— T



Secondary domination number

For each literal u;

u; u

> At least two vertices of each Cp belong to each v(G)-set and to each

Y(1,2) ( G)—set.

> Assume two vertices belong. If u; belongs, then u! does not. If u/ belongs,
then u; does not.
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> ~(G)>2n+1.
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> ~(G)>2n+1.
> 1.2)(G) =2n+2.
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Secondary domination number




Secondary domination number
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Secondary domination number

4

> y(H1) = n(G).
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Secondary domination number

4

> y(Hi) = n(G).
> Y12 (H1) = n(G) +~(G).
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Secondary domination number

Y
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Secondary domination number

> y(Hz) = n(G) +~(G).
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Secondary domination number

> y(Hz) = n(G) +~(G).

> '}/(1,2)(H2) = 2n(G).

Joanna Raczek (PG)

N




Secondary domination number

Domination number and (1, 2)-domination number

Theorem

There is a class of bipartite graphs for which determining the domination number
is NP-hard and determining the (1,2)-domination number is polynomial and there
is a class of bipartite graphs for which determining the domination number is
polynomial and determining the (1,2)-domination number is NP-hard.
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Domination number and (1, 2)-domination number

(1,2)-DOMINATING SET is NP-complete for chordal bipartite graphs, Cy-free
graphs, maximum degree 4 graphs, partial grid graphs and planar graphs.

Proof.
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Domination number and (1, 2)-domination number

(1,2)-DOMINATING SET is NP-complete for chordal bipartite graphs, Cy-free
graphs, maximum degree 4 graphs, partial grid graphs and planar graphs.

Proof.

» Since v(1,2)(H1) = 7(G), the operation of obtaining H; from G is a
polynomial reduction from an NP-complete problem of DOMINATING SET
to the (1,2)-DOMINATING SET.

O
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Certified domination

Certified domination number

Certified dominating set

> A subset S of V(G) is a certified dominating set of G if S is a dominating
set and every vertex belonging to S has either zero or at least two neighbours

in V(G) - S.

» The cardinality of a minimum certified dominating set in G is called the
certified domination number of G and is denoted e (G).
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Certified domination

Theorem (M. Dettlaff, et. al., Graphs with equal domination and

certified domination numbers)

If G is a graph in which 6(G) > 2, then ¥(G) = Ycer(G)-
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Certified domination

Theorem (M. Dettlaff, et. al., Graphs with equal domination and

certified domination numbers)

If G is a graph in which 6(G) > 2, then ¥(G) = Ycer(G)-

Theorem (JR (2019+))

It is NP-hard to determine if veer(G) # v(G) even for graphs G with only one
vertex of degree 1.
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Certified domination

uj

Figure: The graph G(u;)
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Figure: The edges between G(Ci) and G(u1) U G(u2) U G(us) for the clause
CG=-wmnVuwVu
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Figure: The edges between G(Ci) and G(u1) U G(u2) U G(us) for the clause
CG=-wmnVuwVu
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Figure: The edges between G(Ci) and G(u1) U G(u2) U G(us) for the clause
CG=-wmnVuwVu
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Thank you!
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