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Abstract— This paper introduces a novel non-parametric sta-
tistical metric that can decide if the recovered set of parameters
from a Computer Vision optimization process can actually be
considered as a statistically significant solution. The level of
significance can be used as a quality metric of the solution which
makes it possible (i) to compare the solutions obtained using
different optimization methods, and also (ii) to set intuitive
thresholds on the acceptance criteria. We chose the stereo
correspondence optimization methods as the initial test bed for
the new technique. We compare and combine the results of Sum
of Squared Differences (SSD) and Sum of Absolute Differences
(SAD) methods for stereo correspondence. We validated our
claims by running experiments on standard stereo pairs with
ground truth. The results showed that the introduced ideas
actually work very well and they can be used to improve the
optimization results from different sources.

I. I NTRODUCTION

The most general task of Computer Vision is to extract
parameters of the real world objects from images or im-
age sequences using a model which is usually geometric,
physical, or statistical. The parameter extraction process can
also be viewed as imposing model related restrictions on
the images and retrieving the best set of parameters that
conform to these restrictions. The degree of efficiency and
applicability of a Computer Vision model is comparable to
the convenience of imposing model related constraints on the
images and how strict the restrictions can be made. If there is
a well defined method of imposing the model constraints on
the images, then the model parameters can be easily obtained.
Similarly, if the constraints can be made very strict on the
images, then the model parameters can be recovered even
with very noisy images.

In Computer Vision, the efficient and applicable recovery
of the model parameters are generally done by function
optimizations. Correctly optimized functions produce the
best set of parameters for the system model that define
the solution on the current images or image sequences.
However, the best set of parameters does not guarantee
the existence of a correct solution to the problem. The
optimization process cannot decide if there is no feasible
solution for the given problem on the current images. Using
a predetermined or dynamic threshold value on the optimized
function values usually does not produce reliable results
because the objective functions are very difficult to design
to allow such stable thresholds. Furthermore, the optimized
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values are almost always dependent on the system param-
eters, i.e., if the objective function is optimized using a
different parameter set, the resulting optimal function values
change dramatically. As a result, using the objective function
values to compare the quality of different solutions obtained
through different parameters sets is not possible. The above
problems about classical Computer Vision optimization make
it very difficult to design generic systems: (i) one always
needs to choose threshold parameters experimentally for each
application, (ii) it is not possible to compare solutions from
different optimization functions on the same problem, (iii)
as a result it is not trivial to automatically combine solutions
of different optimization processes.

In this paper, we propose a non-parametric statistical
method that measures the statistical significance of the results
found by the Computer Vision optimization methods. Since
the quality of the results are measured using the same
technique regardless of the optimized function types, it is
possible to compare and combine the results from different
optimization processes. In addition, the proposed solution
quality metric can be conveniently used to set thresholds
on the optimization results in a meaningful and intuitive
way that would eliminate any error-prone try-and-observe
threshold selection procedures.

Comparing and combining different optimization functions
are employed before by a few Computer Vision researchers.
The most common one is the weighted sum method, which is
used popularly in many regularization based methods such as
snakes and graph cuts where data and smoothness terms are
combined using weighs. This procedure introduces a new
weight parameter to the system and it does not guarantee
stability. Researchers proposed different methods to estimate
the weight parameters. In perceptual grouping [1], Sarkar and
Soundararajan [2] proposed a learning algorithm to decide
the relative importance of the salient relationships such as
proximity and continuity. In the stereo system of Klauset
al. [3], a self-adapting dissimilarity measure is employed to
combine the Sum of Absolute Differences (SAD) method
with a gradient based measure to find the correspondences.
This heuristic method finds the desired weight by maxi-
mizing the number of reliable correspondences between the
views. Although similarities exists between our method and
the other methods, there are fundamental differences. First,
our method is not based on heuristics. Second, our method
is easy to implement and understand because it is based
on standard statistical hypothesis testing mechanisms. Most
importantly, our method can be extended for any application
regardless of the Computer Vision problem domain, which
makes our system very flexible and generic.



Although the introduced fundamental idea is conveniently
applicable to other Computer Vision areas, we choose to
apply our technique to the classical stereo correspondence
as the initial test bed environment. We choose two pop-
ular stereo correspondence optimization methods: Sum of
Squared Differences (SSD) and Sum of Absolute Differences
(SAD). We analyze their results in terms of their statistical
significance using our new quality metric technique. This
analysis makes it possible to judge whether the optimized
solution can be considered as a valid solution. In addition,
for each pixel correspondence, it is also possible to choose
the statistically more meaningful solution among the two
solutions.

The paper is organized as follows. Section II introduces the
background about non-parametric tests and their applications
in Computer Vision. Section III introduces the fundamental
ideas of our technique and its application to stereo corre-
spondence. We describe the experiments and the validation
of our work in section IV. Finally, we provide concluding
remarks and future directions in Section V.

II. N ON-PARAMETRIC TESTS

Our task of measuring the quality of an optimization
process requires generality as well as robustness. The task of
comparing and combining the results of different optimiza-
tion processes requires even more generality and robustness.
The standard statistical hypothesis testing can be used to
compare results in a robust way with a given statistical model
at hand. However, due to the generality requirement, we
cannot assume a statistical model for our case, which forces
us to choose a non-parametric statistical method to compare
optimization results. Specifically, we employ permutation
tests which can provide us with the required generality as
well as the robustness features.

Statistical significance is a probability value, which is a
measurement whether the outcome can happen accidentally
or not. The permutation test is a type of statistical sig-
nificance test and it was first proposed by Fisher [4] and
Pitman [5]. Distribution of the observation are generated by
using all permutations of data rather than from formulas and
so it can be used in applications where traditional tests do not
apply. The permutation test generates a reference distribution
by means of randomization. This reference distribution is
then used to asses the significance of observed statistic.
Statistical significance of observed ordination is calculated
based on the location of the statistic on distribution of the
ordination. A value in the tail would rarely occur by chance
and so there is evidence that something other than chance
is operating. The generic way of forming the distributions
of the permutation tests makes them very suitable for our
purposes because we do not like to make any assumptions
about the optimization process for which we would like to
produce a statistical significance value.

While computing the distribution of the statistic of the
permutation test, using all permutations of the data will take
exponential time, especially when the data size is large.
This makes the method unpractical for usage in the real

time applications. Instead of using all permutations, shuffling
the data and creating different samples from the complete
permutation set can be used. Each shuffle generates one
permutation of the data. Empirical distribution of the test
statistic have been generated by calculating statistic for
each shuffle. This procedure is called Monte Carlo test or
approximate randomization test [6].

When the permutation tests first appeared in the 1930’s,
the high cost of calculating all the permutations made it
unpractical in real world, although it was considered a
powerful technique since it did not need any assumption
about the population. Later, approximate randomization tech-
niques were adopted for distribution generation [6] instead of
exhaustive permutations. Pagano [7] suggested polynomial
time algorithms for computing the distributions. Although
some researchers still work on generating distributions in an
efficient way, the current state of the art computers made
permutation tests increasingly feasible, even for large data
sets.

It comes as a surprise to us that in Computer Vision,
only a few researchers employed permutation tests for their
work. Golland and Fisch [8] have used permutation test
to measure statistical significance of classification accuracy.
They estimated statistical significance of the observed clas-
sification accuracy by chance due to spurious correlation
of the high-dimensional data patterns with the class labels
in the given training set. Other medical image analysis
studies which employ permutation test are Bullmore [9] and
Nichols [10]. Bullmore used a permutation test to estimate
statistical significance of individual voxels or clusters of
voxels. Nichols has used permutation test for functional
neuroimaging.

Although our new optimization result quality metric uses
permutations tests like the above systems, our application of
permutation tests is completely novel. We mainly use the
permutation test to bring the results of different optimization
processes into the same “comparable” base. As a result, along
with taking all the advantages of permutation tests, we can
conveniently compare and combine different optimization
techniques in a very efficient and elegant way.

III. A NEW QUALITY METRIC AND APPLICATION TO

STEREO

Although establishing the stereo correspondence is
one of the oldest problem of Computer Vision, it is still
heavily studied. The recent introduction of a ground truth
image base [11] made the research even more popular. The
input to the problem of stereo correspondence is more than
one image of the same sceneV taken from different viewing
angles (Figure 1). The stereo correspondence is defined
as finding the corresponding points in the left and right
images. For example, in Figure 1, pointp1 in the left image
corresponds to pointp2 in the right image because they are
both produced by the same real world pointP in volumeV .
Once the correspondences are found, the position of the real
world point P can be found using simple triangulation.
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Fig. 1. Streo image pair of the scene volumeV .

The offset between the image positions of the corre-
sponding points in the two images is called disparity, and
it is inversely proportional with the depth, which is an
important knowledge of 3D scene. The general dense stereo
algorithms match individual pixels in corresponding scanline
pairs by optimizing image similarity metrics. The literature
includes many different objective functions such as SSD,
SAD, cross correlation, and normalized cross correlation.
The SSD method picks two candidate image regions for
correspondence (such as the red boxes in Figure 2), calcu-
lates the square of the difference between each pixel and
sums them up. The SSD result is small if the selected boxes
are similar. The SAD method works the same way, except
it takes the absolute values of the differences instead of
squares. The stereo correspondence problem can be partially
solved using SSD or SAD by choosing a match for each
pixel that produces the smallest SSD or SAD value. For some
images SSD works better and for others SAD is better. Since
the optimal values of SSD and SAD are very different for
the same pixel correspondence, we cannot know which one
is more trustable without knowing the ground truth. Figure
2 shows the matches obtained using SSD and SAD and it
cannot be decided which match is better by looking at the
optimal SSD and SAD values. If the quality of the results
are measured using the same general technique regardless
of the optimized function types, comparing and combining
the results from different optimization process would be
possible.

The classical permutation test requires all possible prob-
lem inputs to be formed and solved. The solution values are
used to form a new statistical distribution. Any new problem
is solved and the result is looked up in this distribution for
the significance. Forming the all possible inputs or subsets
of inputs might be time consuming. In our case, we follow
a fundamentally different path to form our permutation
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Fig. 2. Sawtooth image pair from Middlebury image base [11]. Up:Left
camera image. Down: right camera image. The blue and red boxes in the
lower image corresponds to the red box in the upper image if we use SSD
and SAD, respectively. The optimal SSD value is 956 and the optimal SAD
value is 135.

distribution, which results in greater efficiency and more
robustness. For each pixel in the left image, we evaluate
all possible matches in the right image and measure the
similarity using SSD and SAD. The results of each similarity
evaluation is a permutation resample which forms empirical
distribution of the objective function on the observed image.
We continue this process until all optimal SSD and SAD
solutions are found. When this step is complete, our reference
distribution is also calculated with a very small computa-
tional load, which is very similar to histogram formation.
Figure 3 shows the obtained distributions of SSD and SAD
optimization methods on the same random image pair. An
observed SSD or SAD statistic (score) in the left tails of
the distribution is a strong evidence that this statistic can
rarely occur by chance (random variance). Similarly, a value
in the main body of the distribution could easily occur
by chance. A p-value indicating the statistical significance
of an observation can easily be produced by locating the
observation on the distribution and comparing the number of
observations from the left side to the right side. For example,
in Figure 2, the p-value of minimum SSD is calculated as
0.008, and the p-value of minimum SAD is calculated as
0.015. Since a smaller p-value indicates more significance



(less random variability or chance), we choose the match
obtained by SSD in this case. As can be seen very easily, this
approach makes it very convenient to compare solutions from
different optimization methods. It is also trivial to combine
two different solutions by choosing the statistically more
meaningful solution.
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Fig. 3. Reference distribution of the SSD(top) and SAD(bottom) optimiza-
tion functions. Location of the observed statistics on distributions produces
p-values. We can compare and combine solutions by using these p-values.

It should be noted that our approach requires minimal
extra computational load because in order to find the minimal
SSD and SAD solutions, all possible cases have to be tested
for the classic SSD or SAD based correspondence. The
only additional computational load is to form distributions
and deciding which solution is statistically more significant
by looking up the distribution, which are both linear time
operations.

Note also that the position of a statistical observation on
the distribution can be used as a very intuitive threshold
value. The threshold selection is a very popular technique in
many Computer Vision systems. However, choosing a good
threshold can only be done by experimentation in most of the
systems because the function values do not necessarily make
any sense for humans. For example, the SSD value of 956 in
Figure 2 does not make any sense in terms of acceptability.
However, the corresponding p-value of 0.008 indicates that

such a match can occur by chance only 8 out of 1000 times,
which is much more meaningful.

IV. EXPERIMENTS

In order to validate our claims, we performed various
experiments using the stereo test data with the ground truth
from the Middlebury stereo base [11]. We run both SSD and
SAD correspondence algorithms on different stereo image
pairs and calculated the disparity maps for each algorithm.
We also calculated the disparity maps for our method that
combines SSD with SAD (SSD+SAD) using the new non-
parametric statistical approach. We also changed the sizes
of the match regions to eliminate any dependency on the
window size parameter. Figure 4 shows the visual results
from SSD, SAD, and SSD+SAD systems along with the
ground truth for a sample image.

TABLE I

NUMBER OF INCORRECT MATCHES FORSSD, SAD,AND OUR

SSD+SADMETHODS

# of incorrect # of incorrect # of incorrect
Window matches matches matches

Image Size by SAD by SSD by SAD+SSD

barn1 7 32682 32056 31628
barn1 9 32296 32450 31538
barn1 11 32744 33334 32176
barn2 7 45682 43874 43968
barn2 9 43518 42408 42288
barn2 11 43067 42165 42092
bull 7 44596 41948 42101
bull 9 42217 40403 40120
bull 11 41553 40300 39830

cones 9 105961 104038 102805
cones 11 105009 104234 102666
cones 13 104292 105293 103643
map 5 19259 19437 19169
map 7 17814 17727 17538
map 9 17720 17371 17375

poster 9 47696 45885 45798
poster 11 46263 44865 44506
poster 13 45635 44786 43967

sawtooth 7 42609 42920 42228
sawtooth 9 42741 43751 42596
sawtooth 11 43866 45209 43863

teddy 7 87204 85502 84749
teddy 9 86839 85802 84332
teddy 11 87330 86833 84788
venus 9 39816 39518 39039
venus 11 38243 38654 37882
venus 13 38191 39241 38006

Table I shows the number of incorrectly matched pixels
by each method for 9 different image pairs with 3 different
match window sizes. As can be seen from the table, we
cannot claim that SSD is always better than SAD or vice
versa. This means that one cannot use only one method all
the time for best performance, which was argued before in
this paper.

The number of incorrectly matched pixels are the lowest
for most of the time with our new approach SSD+SAD,
which shows its effectiveness. There are a few cases where
our method does not produce the lowest number of incor-
rectly matched pixel. However, it never produces the highest
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Fig. 4. (a) Ground truth disparity map for the bull image, (b) Depth map obtained by SAD function, number of error pixel is 41816, (c) Depth map
obtained by SSD function, number of error pixel is 41199, (d)Depth map obtained by SAD+SSD function using our combination approach, number of
error pixel is 40576. Percentage correction of SAD is 23% and percentage correction of SSD is 12%.

number of errors. In fact, if we average all the error values
from all the experiments, we obtain the average error values
shown in Table II. As it can be seen in Table II, our method
(SSD+SAD) performs the best when we consider the average
performance. This is due to the fact that our method always
produces either the lowest number of incorrect matches or
the second lowest, which cannot be said for either of SSD
or SAD. We can conclude that it is always best to use our
method for stereo correspondence because we know that SSD
and SAD cannot perform at the same level if a number of
images are considered. They can only perform better rarely
for specific images due to random variability.

TABLE II

AVERAGE PIXEL MATCH ERRORS OF ALL EXPERIMENTS

Method Average Errors

SSD 50370,52
SAD 50920,11

SSD+SAD 49656,89

We should also note that SSD performs second in the
average error case, which might explain why it is more
popular than SAD among the Computer Vision community.

It might seem that the differences between the perfor-
mance of our method and the others are very small. Our
method finds only about 700 correct pixels more on the av-
erage. However, it should be noted that our method is limited
by the performance of SSD and SAD. We can find a correct

pixel match only if one of the methods finds it correctly. For
this reason, it is logical to calculate how many pixels are
found correctly by SSD and incorrectly by SAD, and how
many of them are corrected by our method SSD+SAD. The
inverse process should also be calculated. Table III shows the
results. The SSD+SAD method performance is bounded by
the number of pixels that only one of the methods finds the
correct results. The calculated values (Table IV) show that,
our method can correct about 11% to 18% of the upperbound
which is very encouraging. Considering that we do not use
extra computational time in the correspondence, the obtained
gain can be considered as valuable and effective.

V. CONCLUSIONS ANDFUTURE WORK

Function optimization is a popular model feature en-
forcement technique in Computer Vision. Comparing and
combining the results of different function optimizations
are attractive and efficient ways of achieving more robust
results. In this paper, we presented a new non-parametric
statistical method that can assign a significance value to
optimized function values. These values can be used to
compare and combine different functions in a very efficient
and effective way. The new method uses permutation tests
without using lengthy computations to calculate the non-
parametric distributions.

The ideas presented in this paper are applied in the
stereo correspondence area to compare and combine the
results obtained by SSD and SAD methods. The extensive



TABLE III

# of pixels # of pixels
Window correct by SSD correct by SAD # of corrected # of corrected

Image Size incorrect by SAD incorrect by SSD in SSD in SAD

barn1 7 2952 2326 428(8%) 1054(20%)
barn1 9 2386 2540 912(19%) 758(15%)
barn1 11 2110 2700 1158 (24%) 568(12%)
barn2 7 4856 3048 -94 (-1%) 1714 (22%)
barn2 9 3863 2753 120 (2%) 1230 (19%)
barn2 11 3429 2527 73 (1%) 9754 (16%)
bull 7 5332 2684 -153(-2%) 2495(31%)
bull 9 4279 2465 283(4%) 2097(31%)
bull 11 3696 2443 470(8%) 1723(28%)

cones 9 5158 3235 1233(15%) 3156(38%)
cones 11 4486 3711 1568(19%) 2343(29%)
cones 13 3469 4470 1650(21%) 649(8%)
map 5 1734 1556 268(8%) 90(3%)
map 7 1314 1401 144(5%) 231(9%)
map 9 1003 1352 -4(0%) 345(15%)

poster 9 4233 2422 87(1%) 1898(29%)
poster 11 3912 2534 359(6%) 1757(27%)
poster 13 3544 2695 819(13%) 1668(27%)

sawtooth 7 2509 2820 692(13%) 381(7%)
sawtooth 9 1904 2914 1155(24%) 145(3%)
sawtooth 11 1771 3114 1346(28%) 3(0%)

teddy 7 5415 3713 753(8%) 2455(27%)
teddy 9 5269 4232 1470(15%) 2507(26%)
teddy 11 5095 4648 2045(21%) 2542(26%)
venus 9 3955 3657 479(6%) 777(10%)
venus 11 3099 3510 772(12%) 361(5%)
venus 13 2466 3516 1235(21%) 185(3%)

TABLE IV

AVERAGE CORRECTION PERCENTAGES FORSSDAND SAD METHODS

Method Average Correction

SSD 11%
SAD 18%

experiments showed that our combination method performs
better than both methods on the average and it can correct the
problems of these methods at a considerable level. We are
very encouraged by these results and we plan to expand our
method in many different directions including the possible
solution to the classical Computer Vision regularization
problem such as the weighting terms between the smoothness
and the data energy in snakes or in graph cut algorithms.

We are also encouraged by the performance of the per-
mutation test based vision systems and we plan to explore
ways of using these techniques for the classification in the
medical imaging and fault detection in industrial inspection.
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