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Abstract: This paper proposes a new focus measurement method for
Depth From Focus to recover depth of scenes. The method employs an
all-focused image of the scene to address the focus measure ambiguity
problem of the existing focus measures in the presence of occlusions.
Depth discontinuities are handled effectively by using adaptively shaped
and weighted support windows. The size of the support window can be in-
creased conveniently for more robust depth estimation without introducing
any window size related Depth From Focus problems. The experiments
on the real and synthetically refocused images show that the introduced
focus measurement method works effectively and efficiently in real world
applications.
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1. Introduction

Images taken with finite aperture lens cameras contain depth cues about the real world due to
the limited depth of field properties of the finite aperture lenses. Limited depth of field induces
depth related blur in the images, except for the focused scene points. This information is effec-
tively utilized by many methods in order to estimate depth of the scenes from its images. Such
methods include depth from defocus (DFD) [1–6] and depth from focus (DFF) [7–10].

DFF uses a number of images (DFF set) of the same scene taken by focusing at different
depths. It then determines the best focused image for each scene point. Once the best focused
images are determined, the depth map of the scene can easily be computed by utilizing the
general rules of optical geometry. As a result, comparable measurement of focus quality of
image sections becomes the key task of DFF.

Focus quality of images is evaluated by a focus measure which traditionally analyzes the
intensity variations in the images either in spatial or frequency domain assuming that the best
focused image sections of the scene points have the highest intensity variations. In order to
increase robustness of measurement against the problems such as noise, edge bleeding, and
magnification, computed focus measures are aggregated in a local window. This approach im-
plicitly assumes that the surfaces of the objects in the scene can be approximated by surface
patches parallel to the image plane. Although this assumption makes the focus quality measure-
ment practical, it is not always valid in the real world because object surfaces can have very
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complex structure including depth discontinuities. As a result, the conventional DFF methods
fail to yield accurate results around depth discontinuities.

Another phenomenon induced by the finite aperture lenses is the occlusion effect which
makes occluded object visible through the occluding object (Fig. 1). The amount of the vis-
ibility of the occluded object depends on the focal settings and the relative distances of the
occluded and occluding objects. The conditions in which the occlusion occurs are presented
by Schechner and Kiryati [11]. In such cases, scene points near the occlusion regions may ap-
pear focused even focus is set to occluding or occluded objects. Consequently, determination of
best focused image sections and respective depth estimation for these regions will be ambigu-
ous [11]. The occlusion effects have been studied by several approaches [12–15], however, it is
mostly unaddressed in DFF methods.

In this paper, we introduce a novel focus measure for the detection of best focused image for
a given scene point. In order to address focus measure ambiguity that occurs in the presence of
the occlusions, we employ all-focused image of the scene, which has the radiance information
of only the visible parts of the scenes. Quality of focus is computed by measuring the similarity
between the images in the DFF set and the all-focused image assuming that best focused image
points have similar intensity variations with the corresponding all-focused image points.

We also employ adaptively weighted support windows [16] to aggregate the computed fo-
cus measure. The adaptive support windows would address the depth discontinuity problem
by assigning different weights for pixels with different depth values. Since the pixel depths
are not available, we use image intensities to determine whether given two neighboring pixels
have similar depth values. Our adaptive measurement method allows larger window sizes for a
more robust depth estimation without introducing any window size related DFF problems. The
large support window sizes help with the edge bleeding problem as well [17]. Our method also
has the advantage of recovering the depth values of the fine structure with considerably large
support windows. The experiments performed on synthetically refocused images with ground
truth depth values show that our method produced much more accurate depth values compared
with traditional DFF methods. Other experiments with real images show the effectiveness of
our method with sharp depth discontinuities and fine image structure.

The rest of the paper is organized as follows. Section 2 gives background of the DFF method
and explains the occlusion problem in DFF systems. Section 3 describes the details of our
novel focus measure operator. We describe the experiments performed in Section 4. Finally, we
provide concluding remarks in Section 5.

2. Previous Work

2.1. Depth From Focus

DFF is a method for recovering depth from a set of N images (DFF set) taken with gradually
changing focus settings. In other words, for each scene point viewed, there are N pixels taken
with different focus setting. For each pixel of the same scene point, the quality of the focus is
measured locally and the best focused image is determined. The focus setting of the selected
image is then used for depth estimation of the corresponding point. The relation between the
scene point depth and focal length of the lens is found by using

1
f

=
1
u

+
1
v
, (1)

where f is the focal length of the lens, u is distance between lens and image plane, and v
is the depth of the scene point. DFF can be implemented by changing either f , u, v, or any
combination of them.
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The first objective of DFF methods is therefore to find the best focused image points in the
DFF set. In order to measure the focus quality of an image region around a pixel, a focus mea-
sure operator is used. The operator should produce high response to high frequency variations
of the image intensity, since better focused image has higher frequency components. It should
produce maximal response to the perfectly focused image regions.

After the focus measure computation, the focus setting f for each pixel (x,y) of the same
scene point is simply selected as

fi(x,y) = arg
i

max(FMi(x,y)), (2)

where i = 1..N and N is the number of images in the set. FMi(x,y) is the focus measure com-
puted for the image region around the pixel position (x,y) of the ith image in the set.

A wide range of focus measures has been proposed in the literature. Simple and frequently
used focus measure operators include Tenengrad [18], Variance [19], and Laplacian [7]. Since
the x and y components of the Laplacian operator may cancel out each other, the operator might
produce incorrect responses, even in the presence of high frequency variations in image intensi-
ties. In order to prevent cancelation of components, Nayar and Nakagawa [9] introduced a new
focus operator called Modified Laplacian (ML) which sums the absolute values of the com-
ponents. There are also several other focus measures based on the entropy [8], power spectra
analysis [20], moment filters [21], wavelets [22], discrete cosine transforms [23], and shapelet
decompositions [24]. Comparison of different focus measures under certain circumstances can
be found in [25–27].

2.2. Focus Measure Ambiguity due to Occlusion

The focus measures of the literature analyze the intensity variations around the local image
regions to detect the degree of focus. The main assumption of these methods is that the real
aperture lenses would produce blurry observations for object points unless they are in perfect
focus. The blurriness of defocused image regions is due to the lack of high frequency image
components. In other words, an object point is in its best focus on an image that produces the
highest frequency components. The above assumption is realistically acceptable for smooth
and continuous surfaces. However, it is problematic around the depth discontinuities where the
analysis of intensity variations would be affected from object points at different depths.

Another problem with the frequency analysis based focus measures is the occlusion problem.
In the presence of occlusion, real aperture lenses exhibit a complex optical phenomenon that
the pinhole model cannot explain. They make the occluded scene points visible through the oc-
cluding objects. As a result, the scene points on the occluding region may appear focused when
focus is set to occluding or occluded objects. In such circumstances, existing focus measures
would encounter difficulty in detecting which focus setting would produce the best focused im-
ages around these regions. Therefore depth estimation for these regions will be ambiguous [11].

A sample image formation process explaining the occlusion effect in real aperture lenses
is illustrated in Fig. 1. Two images of the same scene are taken one with focus is set to oc-
cluding and the other with focus is set to occluded. When the focus is set to occluded object
(background object), the image points near the occluding boundary receive a mixture of light
both from focused occluded and blurred occluding regions [Fig. 1(a) and 1(c)]. As a result,
the occluding object may appear to be in focus even though the focus is set to the occluded
object. Interestingly, the same occluding object would also be in focus if the focus is set on
it [Fig. 1(b) and 1(d)]. Therefore, it is not sufficient to estimate the focus quality of occlud-
ing objects by simply performing an intensity variation analysis. More scene radiance based
information needs to incorporated into the focus measurement process.
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Fig. 1. Image formation process of a scene with two fronto parallel layers where focus is
set to (a) background (occluded) and (b) foreground (occluding). The image point q may
appear focused when focus is set to foreground or background. Real images of a sample
scene taken with focus setting set to (c) occluded and (d) occluding. Although the antlers
are defocused in (c), its corresponding image regions contain higher frequency variation
than in (d). The images in (c) and (d) are cropped from the images of the scene in Fig. 8

Image formation process is approximated by convolving the scene irradiance with a point
spread function. Point spread function would be a Dirac δ function for focused cases and a
gaussian blur kernel for defocused cases. Consequently, the image formation process for image
point q in Fig. 1(b) can be written as

Iq = Loccluding ∗δ (R), (3)

where Loccluding is the radiance of the occluding object, and ∗ is the convolution operator. Sim-
ilarly, the image formation process for image point q in Fig. 1(a) can be written as

Iq = αLoccluded ∗δ (P)+Loccluding ∗HR, (4)

where Loccluded is the radiance of the occluded object, 0 < α < 1 is the attenuation in the light
rays emanating from the point R due to the blocking of occluding object, and HR is the gaussian
blur kernel at the point R. It can be easily inferred from Eq. (4) and Eq. (3) that image point
q seems to be focused for both cases. Therefore, depending on the frequency variations in the
scene radiance at point P and R, the image point q can be assigned to either depth of P or R.

3. Robust Focus Measure

In order to address the ambiguity problem present in existing focus measures, radiance of the
scene can be examined so that contribution of occluded object to the corresponding image
intensities can be detectable. Radiance of the scene can be obtained by using multi-focus image
fusion on the DFF image set [28]. However, multi-focus image fusion methods are also based
on the image intensity variations and eventually they suffer from the occlusion problem as well.
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As a practical solution, we infer the radiance information of the visible part of the scene from
its all-focused image. The all-focused image can be obtained optically by setting the diameter
of the lens aperture to a small value. In this case, the camera acts like a pin-hole camera and the
captured image closely represents the radiance of the visible scene. All-focused image is also
employed by some DFF and DFD methods in order to measure image focus quality around the
image edge regions [17] or measure the degree of blur in the images [8].

We measure the image focus quality without suffering from the occlusion problem by ex-
ploiting the scene radiance information. Because the intensities of the focused image regions
should resemble the intensities of the all-focused image, it is used as a reference in our focus
measure. Therefore, we define our focus measure as the similarity between the all-focused im-
age and the DFF image set. This focus measurement is robust against the occlusion problem
because it does not depend on the degree of local intensity variations. However, measuring
the image similarity is not trivial because different aperture and focus settings would result in
brightness changes between images of the same scene. In order to address this situation, we use
normalized cross-correlation (NCC) as the similarity metric because of its insensitivity to the
brightness differences.

NCCΩ(A,B) = ∑(A− Ā)(B− B̄)
√

∑(A− Ā)2 ∑(B− B̄)2
, (5)

where Ω is the local evaluation window in which the similarity is computed. By using Eq. (5),
the focus measure of image point (x,y) is defined as

FMi(x,y) = NCCΩ(I f (x,y), Ii(x,y)), (6)

where I f is the all-focused image of the scene and Ii is the ith image in the DFF set.
Another optical phenomenon which occurs with the finite aperture lens is image magnifi-

cation due to the different aperture and focus settings used by each image. The magnification
causes misregistration between all-focused image and images of the DFF set. This problem can
be avoided by estimating the magnification factor [29]. Images in the DFF set are registered
with respect to the all-focused image.

The focus measure for an image pixel should be aggregated in a finite support window so that
it is robust against the problems due to the noise, edge bleeding, etc. The size of the window
must be large enough in regard to blur radius to be free from edge bleeding [17] and to handle
noisy and homogeneous image parts. This approach assumes that the depth of the scene does not
change inside the window. However, larger support windows located on depth discontinuities
contain pixels from different depths which violate the depth constancy assumption. Therefore,
depth estimation around these regions would be in accurate.

In order to recover scene depth not only around depth-homogeneous regions but also around
depth discontinuities, a proper support window should be selected for each pixel adaptively by
considering the shapes of the objects in the scene. However the structure of the scene in not
known a priori, hence it should be inferred from a reasonable source. Assuming that the scene
radiance contains cues about the scene structure, it is possible to produce an adaptive support
window for each pixel [16]. Adaptivity of windows is achieved by assigning weights to each
pixel in the rectangular support window. A different support window is computed for each pixel
in the all-focused image. The weights are assigned to the support window pixels according to
similarity and proximity scores between the pixels of the window and the pixel for which the
window is computed. Similar and closer pixels get larger weights in the assumption that they
probably lie on the same surface

Weights of the support window ωx0,y0 centered around the pixel x0,y0 are computed using
all-focused image I f according to formula,
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Fig. 2. Computed adaptive support windows for four different pixels in an image. The
brighter pixel means larger weight. The weights for darker regions are close to zero.

ωx0y0 (x,y) = exp(−(�d/γ1 +ΔI f /γ2)), (7)

where
Δd = [(x− x0)2 +(y− y0)2]

1/2
, (x,y) ∈ Ωx0,y0 (8)

and
ΔI f =

∥∥I f (x,y)− I f (x0,y0)
∥∥ (9)

where γ1 and γ2 are constant parameters to supervise relative weights. Δd can be considered
as the euclidian distance in spatial domain and ΔIf can be considered as the euclidian distance
in color space. Figure 2 shows sample adaptive support windows computed for four different
pixel regions of a sample image.

Using the introduced focus measure operator (FM) focus measures are computed for all
images of the DFF set. Then the aggregated Adaptive Focus Measures (AFM) for pixel x0,y0 is
computed using support window produced by Eq. (7).

AFMi (x0,y0) = ∑ωx0y0 (x,y)FMi(x,y) i = 1..N (10)

where N is the number of images in the DFF set.
Once the new focus measures are computed for each image in the set, the best-focused image

region and its corresponding focus setting f are obtained for each pixel. Depth of the pixels are
computed by substituting the focus settings in Eq. (1) as in the traditional depth from focus
methods.

Note that, the all-focused image of the scene has to be taken with a small aperture diameter
to produce a sharp image at all depth values. However, producing an equally sharp image of
a scene is not trivial for real aperture lenses because even for small aperture values the lenses
cannot behave like a perfect pinhole camera. It means that, for some sections of the images, the
best focused images in the DFF set become sharper than the all-focus image. In this case, our
method cannot detect the best focused image section. It selects the image near the best focused
image, which creates problems for Eq. (6) [see Fig. 4(a) and 4(b)]. We conveniently address
this problem by finding the best focus setting from Eq. (10) and then searching for the nearest
peak of the Modified Laplacian Operator in a neighborhood of 3 focus settings. Although the
ML operator usually produces two peaks in the presence of occlusions, our approach considers
only the peak near the result estimated by our focus measure. This solution makes our final
results very robust against the practical problems of obtaining real all-focused images.
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Fig. 3. Comparison of different focus measures for synthetically generated images. The
focus measures are the proposed adaptive focus measure (AFM), sum of laplace (LPC),
sum of modified laplace (SML), and variance (VAR)

4. Experiments

In order to test and verify the accuracy and effectiveness of our method, we performed several
experiments using the DFF sets with synthetic images, synthetically refocused real images with
ground truth depth values, and real images of a scene with occlusion. We took γ1 as 5 and γ2 as
half of the window size for weight computation parameters in Eq. (7).

As the first experiment, we produced a highly textured synthetic image and its blurred images
in order to test the response of our focus measure with respect to the degree of blurring. The
blurring of images are performed by convolving the synthetic image with gaussian blur kernels
whose sizes are gradually increased. Figure 3 shows the graph of computed focus measures
with respect to the degree of blurring (blur radius). We compared our adaptive focus measure
(AFM) with sum of laplace (LPC), sum of modified laplace (SML), and variance (VAR) focus
measures. As seen in Fig. 3 our focus measure shows monotonic behavior like existing focus
measures (i.e. focus measure values decrease as the degree of blurring increases).

Our second experiment uses a real DFF set to show the robustness of our focus measure
under occlusion positions. Figure 4(a) shows two sample regions that cause problems for the
existing focus measures, which produce either ambiguous or incorrect peak positions. Our focus
measure, on the other hand, produces unambiguous peaks at the correct depth values as shown
in Fig. 5

(a) (b) (c) (d)

Fig. 4. All-focused image of a sample real scene (a) and its images with different focus
settings (b-d). Sample occlusion regions causing focus measure ambiguity are marked with
red and yellow squares in (a).

It is difficult to validate a DFF method numerically because there is no publicly available
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ground truth data for DFF methods. For our third experiment, we partially addressed this prob-
lem by using the Middlebury stereo data set [30] with ground truth depth values and produced
synthetically refocused images using the depth map by Iris Filter [31]. Iris Filter is a software
plug-in meant to reproduce the depth of field and bokeh (defocused image regions) texture. Iris
Filter needs the all-focused image, the depth map of the image, the focus depth setting, and
the aperture size. We produced around 30 images with different focus settings for two data sets
(Venus and Cones).
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Fig. 5. Performance of different focus measures around two occlusion regions marked in
Fig. 4(a). Three different existing focus measures and proposed focus measure (AFM) are
used. (a) is the graph for the red window and (b) is the graph for the yellow window. The
dashed lines show the manually detected true depth values. Depending on the texture in the
occluded and occluding region, existing focus measures produce ambiguous or incorrect
responses.

We chose images of scenes with significant depth discontinuities in order to show the per-
formance of our method and DFF methods with different focus measures around these regions.
Note that the surface continuity assumption is severely violated in these images, therefore the
classical DFF methods produce erroneous results as expected. Figure 6 shows the all-focused
image, true depth image, the result of the proposed method, and the result of the DFF methods
with different focus measures for the Venus data set. Figure 7 shows the same images for the
Cones data set. As seen in the resulting depth images in Fig. 6 and Fig. 7, at depth discontinu-
ities, our method performs much better than other DFF methods.

We calculated the RMS errors of the estimated depth values with the ground truth. Table 4
and Table 4 show these results with various support window sizes for the DFF sets in Fig. 6
and Fig. 7 respectively. We observe that our results are as good as the best DFF methods for
small window sizes. However, our error rates decrease much faster than other methods as the
window sizes increase. Smaller window sizes result in inaccuracies for all methods due to the
edge bleeding and insufficient texture. However, other DFF methods cannot take the advantage
of larger window sizes because larger window sizes magnify the effect of depth discontinuities
for other methods and hence error rates increase with the increasing window size after some
point. Particularly, the performance of our method near depth discontinuities is much better than
other DFF methods because our method can preserve arbitrarily shaped depth discontinuities
very well due to its adaptive nature.

Our final experiment is on two DFF sets of a challenging real scene that includes sharp depth
discontinuities and occlusions. Test images were captured in the lab by using a real-aperture
camera. 30 images of the same scene were obtained at different focus settings. All-focused
image of the scenes were captured with smallest aperture size of the lens. The true depth maps
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6. Synthetically refocused images (a-c) generated with Iris filter from the all-focused
image (d) with true depth map (e). Estimated depth map of the scene using our method
(f) and traditional DFF with SML (g), LPC (h), and VAR (i) focus measures. The closer
objects are represented by darker regions in the depth images.

Table 1. RMS errors of depth values with various window sizes on synthetically refocused
real images of Fig. 6.

Window Sizes
Method Name 25x25 21x21 15x15 11x11 9x9
SML 14 12 12 13 14
LPC 14 13 13 13 15
VAR 59 56 55 55 56
AFM 5 6 7 13 15

for real images are unknown. Figure 8 and Fig. 9 shows the all-focused image of the scene
and depth maps obtained by other DFF methods and our method. Visual inspection of the
estimated depth maps shows that our method handles the sharp depth discontinuities and the
fine structures very well. The traditional DFF methods smear up the depth map around the fine
structures. Although DFF method which also uses adaptive windows with ML [16] performs
well around these regions, it produces incorrect results around occlusion regions as traditional
DFF methods do.

Results of our method and DFF with traditional focus measures using various window sizes
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Fig. 7. Synthetically refocused images (a-c), all-focused image (d), and true depth image
(e). Estimated depth image of the scene of our method (f) and traditional DFF with SML
(g), LPC (h), and VAR (i) focus measures.

Table 2. RMS errors of depth values with various window sizes on synthetically refocused
real images of Fig. 7.

Window Sizes
Method Name 25x25 21x21 15x15 11x11 9x9
SML 12 11 10 9 9
LPC 12 11 10 9 9
VAR 21 20 19 19 22
AFM 6 6 6 7 8

show that our method successfully recovers depth discontinuities. Larger window sizes produce
better result with our method whereas the DFF methods produce erroneous results with the
larger window sizes. In addition, our method is able to recover depth of scene points around
occlusion regions robustly, which is not possible with intensity variations based focus measures.

5. Conclusions

We introduced a new adaptive focus measurement method for the depth estimation of a scene
for depth from focus. Unlike the classical focus measures, our method employs all-focused im-
age of the scene to address the focus measure ambiguity problem which occurs in the presence
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Fig. 8. All-focused image of real scene (a), sample images in DFF set (b-d) and its depth
image of our method (e). Estimated depth image of the scene by DFF using adaptive win-
dows with ML focus measure (f) and traditional DFF with SML (g), LPC (h), and VAR (i)
focus measures.

of occlusion. Computed focus measures are aggregated in adaptively shaped and weighted sup-
port windows to addresses the problems of the depth discontinuities which is difficult to handle
for traditional depth from focus techniques. Adaptivity of a window is achieved by assigning
different weights to the pixels of the window. The weights of the support windows are adjusted
according to similarity and proximity criteria by utilizing the all-focused image of the scene.

Results of the experiments show that the performance of the method around the depth dis-
continuities and occlusion regions is much better than the existing DFF methods because the
proposed method can preserve arbitrarily shaped depth discontinuities without any problems
due to adaptive windows. In addition, larger support window sizes make the depth estimation
process even more robust without introducing any side effects as in traditional DFF methods.

Dependence of the method on the intensity values of the all-focused image does not pose any
problems even for high texture surfaces because the focus measure operators perform robustly
for these kinds of regions without any large window support. Consequently, for these regions
our method performs at least as good as the traditional DFF methods. If the all-focused image
region includes depth discontinuities without any intensity change, then our method will use
an incorrect support window. However, since the same window will be used by non-adaptive
methods, our method will never perform worse than traditional non-adaptive methods.

The proposed method can be interpreted as the depth map estimation of an all-focused image.
Depth values for the same image can be estimated using some other technique, such as stereo
or depth from shading. The all-focused image may function as an implicit registration medium
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Fig. 9. All-focused image of another real scene (a), sample images in DFF set (b-d). Es-
timated depth image of the scene by our method (e), DFF using adaptive windows with
ML focus measure and traditional DFF method with SML (g), LPC (h), and VAR (i) focus
measures.

between the depth estimation methods. As a result, a robust fusion of depth values from focus
and other depth estimation or shape from X methods becomes feasible.

One disadvantage of our method is the relatively higher computational requirements due to
weight calculations. However this problem can be addressed by employing data structures like
the bilateral grid [32]. In addition, the all-focused image requirement of our method increases
the overall image acquisition time. However, increase in the time is not significant, because
most of the time is used for changing focus settings and capturing images for DFF set. Another
issue with the proposed method is the practical problems with all-focused image, which cannot
be obtained equally sharp for the whole scene. Although we successfully address this problem
by making a SML based small local search, other methods that would increase the sharpness of
the all-focused image can be employed [33, 34].
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