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Stereo correspondence is inherently an ill-posed problem, which is addressed by regularization methods.
This paper introduces a novel stereo correspondence method that uses two synchronous interdependent
optimizations. The regularization of the correspondence problem is done adaptively by considering the
image segments and the intermediate disparity maps of the two optimizations. Our adaptive regulariza-
tion allows inter-segment diffusion at the beginning of the optimizations to be robust against local min-
ima. When the two optimizations start producing similar disparity maps, our regularization prevents
inter-segment diffusion to recover the depth discontinuities. Our experimental results showed that the
proposed algorithm can handle sharp discontinuities well and provides disparity maps with accuracy
comparable to the state of the art stereo methods.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Stereo correspondence is one of the fundamental problems of
computer vision. The typical result of the correspondence problem
is expressed as a disparity map, i.e. spatial shifts in the pixel posi-
tions of the corresponding points. The main difficulties of the cor-
respondence problem are the ambiguity due to the image noise,
repeated texture, and occlusions. These problems make the stereo
correspondence an ill-posed problem, which is classically ad-
dressed by a regularization method to stabilize the solution. The
main role of the regularization is to incorporate a priori informa-
tion to handle image noise and to fill-in missing and ambiguous
data.

Classically, the regularization is employed by local and global
methods. The local methods perform regularization directly on
the data space by employing some aggregation scheme (Intille
and Bobick, 1994; Kanade and Okutomi, 1994; Scharstein and
Szeliski, 1998; Yoon and Kweon, 2006). The global methods, on
the other hand, formulate the problem as an energy functional that
needs to be minimized to produce the desired solution. The regu-
larization is performed on the disparity space by introducing an ex-
plicit smoothness criteria so that reliable disparity values are
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propagated to ambiguous image regions. Dynamic programming
was tried by enforcing smoothness only along the epipolar lines
in order to obtain a globally optimal solution to the discrete form
of the energy functional (Ohta and Kanade, 1985; Gong and Yang,
2005). However, the resulting disparity maps contain well-known
streaking effects due to the inconsistency between epipolar lines.
Alternatively, a global minimum of the functional can also be ob-
tained in polynomial time via graph cuts (Roy and Cox, 1998; Ishik-
awa, 2003) by using a convex smoothness term. However, these
methods oversmooth the depth discontinuities. A discontinuity
preserving regularizer might produce a good solution but it is
known that introducing a discontinuity preserving smoothness
term makes the problem NP-complete (Kolmogorov and Zabih,
2004). Therefore, using an approximate optimization method for
the functional with non-convex smoothness terms became more
popular, such as graph cuts (Boykov et al., 2001), belief propaga-
tion (Sun et al., 2003), and genetic algorithm (Saito and Mori,
1995). However, these methods only produce integer valued dis-
parity maps due to their discrete nature. This restriction is a severe
drawback if curved or slanted surfaces are present in the scene (Li
and Zucker, 2006).

Another class of global approaches, as a counterpart, use related
partial differential equations (PDE) and variational methods in or-
der to find the minimizer of the continuous form of the energy
functional. These methods can achieve a continuous solution by
iteratively evaluating the associated Euler–Lagrange equation. An
inherent advantage of these methods is the capability of making
sub-pixel disparity estimations due to the continuous solution they
provide.
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The minimization process of these continuous methods is char-
acterized by the choice of the regularizer. Using a disparity driven
isotropic regularizer with a quadratic term makes the minimiza-
tion robust against local minima (Robert et al., 1992). However,
the depth discontinuities in the resulting disparity maps would
be oversmoothed. Although it is possible to use a non-quadratic
smoothing term, such as total variation regularizer, to inhibit the
oversmoothing of discontinuities (Slesareva et al., 2005), it cannot
handle the discontinuities adequately (Ben-Ari and Sochen, 2007).

There are several other regularization methods for the handling
of the discontinuities. Shah (1993) uses nonlinear diffusion to ex-
tract stereo matches and occluded regions simultaneously in con-
junction with a gradient descent minimization. Similarly, Robert
and Deriche (1996) use anisotropic disparity driven regularization
in order to prevent smoothing of the disparity map at the esti-
mated discontinuities. Therefore, it tends preserve the discontinu-
ities present at the initialization. Alternatively, image driven
regularizers were used to align depth discontinuities along edges
and inhibit smoothing across edges (Alvarez et al., 2002; Kim
et al., 2004). Min et al. (2006) employed the image segments to
perform anisotropic smoothing at the segment boundaries depend-
ing on the magnitude of image gradients. The problem with image
driven regularizers is that they have to work with over-segmented
images when the images are highly textured. In addition, the
boundary leakage problem becomes an issue when there are gaps
at the object boundaries.

Nevertheless, these discontinuity preserving approaches re-
quire sufficiently reliable initialization in order to converge to
the desired solution. In most cases, the initialization errors cannot
be recovered, especially for noisy and occluded regions.

In this paper, we introduce a novel initialization insensitive reg-
ularization method that preserves the depth discontinuities. Our
framework employs two separate but dependent energy function-
als (Akgul and Kambhamettu, 1999; Aydin and Akgul, 2006) which
are intended to be minimized synchronously until converging to
the same solution. Because of the interaction between the optimi-
zations, the overall result of our system is always better than the
results achievable by a single optimization. Reliable convergence
is ensured by starting each optimization with different initial
conditions.

In order to handle depth discontinuities robustly, we employ
image segments to align the depth discontinuities with the seg-
ment boundaries. Unlike the previous image based smoothing
techniques, the proposed method adjusts the smoothing by utiliz-
ing not only the segment information but also the positional differ-
ences between the synchronous optimizations. These two means of
adjusting the smoothing make it possible to use isotropic and
anisotropic smoothing adaptively. As a result, we produce more ro-
bust depth discontinuity positions. Note that our employment of
synchronous optimizations is very different from that of Aydin
and Akgul (2006), which does not use the optimizations for the
regularization and completely ignores the depth discontinuities.

Selecting an appropriate stopping criteria is crucial for many
diffusion techniques in order to avoid oversmoothing and insuffi-
cient regularization (Scharstein and Szeliski, 1998). Since our dis-
continuity preserving regularization method relies on the
positional difference between the solutions of each optimization,
the diffusion between the segments are prevented when both opti-
mizations find the same disparity map, hence smoothing of the dis-
continuities is inhibited even at superfluous iterations. This
inherent stopping criteria of our framework is an important advan-
tage over the similar systems against problems like sensitivity to
extra iterations.

The rest of this paper is organized as follows. Section 2 reviews
the synchronous energy functional. Section 3 describes the pro-
posed regularization that preserves the depth discontinuities. Sec-
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tion 4 describes the system validation and experiments. Finally, we
provide concluding remarks in Section 5.

2. Overview of the approach

2.1. Energy-based global stereo formulation

Traditional global stereo energy formulation is written as the
sum of the data term and a regularization term. Consequently,
the stereo correspondence problem is formulated as the minimiza-
tion of the following energy functional,

EðDÞ ¼
Z

a/ðDÞ þ bwðjrDjÞdp; ð1Þ

where D is the disparity map which assigns disparity values to each
pixel p in the reference image. a and b are weighting coefficients for
adjusting the relative weights of each term.

The data term / computes the image similarity measure by
means of commonly used similarity metrics, such as the sum of
squared differences (SSD), the sum of absolute differences (SAD),
and the normalized cross correlation (NCC). The smoothness or reg-
ularization term w is introduced to impose a priori information
(smoothness) on the desired disparity map by penalizing disparity
gradients (rD).

2.2. Synchronous energy formulation

Based on the classical stereo energy functional, the synchronous
optimizations are formulated as the minimization of two energy
functionals by introducing a new tension term u as in the follow-
ing equations.

EðD1Þ ¼
Z

a/ðD1Þ þ bwðjrD1j2Þ þ kuððD1 � D2Þ2Þdp; ð2Þ

EðD2Þ ¼
Z

a/ðD2Þ þ bwðjrD2j2Þ þ kuððD2 � D1Þ2Þdp; ð3Þ

where D1 and D2 are the disparity maps obtained from each
optimization.

The tension term u is for the interaction between the two min-
imizations and it is the core idea of the synchronous optimization
method. The main function of this term is to lower the difference
between the two disparity maps D1 and D2. Note that without
the tension term, minimization of the energy functionals defined
by Eqs. (2) and (3) by starting from different initial configurations
would produce a different disparity map for each equation. How-
ever, if the equations are optimized in synchronization with the
help of the tension term, they would end up finding the same dis-
parity map.

The disparity maps are computed by searching the minimizers
of the energy functionals defined in Eqs. (2) and (3). Minimization
of the functionals via the gradient descent method by introducing
an artificial evolution parameter t yields the equations,

@D1

@t
¼ c a/0ðD1Þ þ br � ðw0rD1Þ þ ku0ðD1 � D2Þð Þ; ð4Þ

@D2

@t
¼ c a/0ðD2Þ þ br � ðw0rD2Þ þ ku0ðD2 � D1Þð Þ; ð5Þ

where /0, w0 and u0 are the derivatives of the functions /, w and u,
respectively. w0 is also called diffusion or conduction coefficient
(Perona and Malik, 1990). The minimizers are found by computing
asymptotic states (t ?1) of the solutions Dt

1 and Dt
2, which are the

disparity maps produced by first and second optimizations at itera-
tion t.

The function of the diffusion term is to produce disparity maps
that assign similar values to neighboring pixels if there is no depth
discontinuity between the pixels, which is called regularization.
sing synchronous optimization with segment based regularization. Pattern
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Similarly, the function of the tension term is to make the two syn-
chronous optimizations produce similar disparity maps, which can
be considered as another form of regularization. This extra regular-
ization helps further our system address the inherent ill-posedness
of the stereo correspondence problem.

The tension term forces both optimizations to converge to the
same solution. However, continually forcing both optimizations to-
wards each other may result in convergence to an irrelevant local
minimum. In order to address this problem, the tension coefficient
u0 is constructed such that the optimization with the smaller data
term values is not affected from this term. The coefficient for the
first optimization is defined as

u0 ¼ 1� e
D/
ju

� �2

D/ P 0;
0 otherwise;

8<
: ð6Þ

where D/ ¼ /ðDt
1Þ � /ðDt

2Þ, and ju is a constant. Similarly, the same
coefficient is computed for the second optimization.

Note that the tension term is not symmetric and it depends on
the intermediate disparity maps of the optimizations. As a result, it
computes a different value for each optimization. If the optimiza-
tion has larger data term values than the other, it will be pulled
by the tension term towards the other optimization. This proce-
dure eliminates a considerable amount of local minima problems
because when one optimization is stuck due to local minima, it is
always possible to compare the position with the other optimiza-
tion As a result, the overall optimization would localize a better po-
sition than each of the optimizations can achieve by themselves.

In order to find the desired minimum, initialization steps are
very critical for the classical iterative optimization methods. Initial
positions far away from the global minimum results in converging
to a local minimum in most cases. However, in our system, initial-
ization of the optimizations does not depend on any prior assump-
tion about the global minimum and it is always done the same
way. One optimization is initialized with the minimum disparity
(dmin) values whereas the other is initialized with the maximum
disparity (dmax) values.

D0
1 ¼ dmin;

D0
2 ¼ dmax: ð7Þ
Fig. 1. Sample intermediate disparity maps of synchronous optimizations for the stereo
(b–e) Disparity maps Dt

1 and Dt
2 evolve to find the final disparity map. (f) Discontinuitie
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A sample optimization can be seen in Fig. 1. As the figure shows,
one optimization starts from the minimum disparity values and
the second optimization starts from the maximum disparity values
(Fig. 1a). During the system iterations, disparity values of the opti-
mizations get close to each other (Fig. 1b–e). The optimizations
continue until both of them find the same disparity map (Fig. 1f)
and the depth discontinuities are also recovered. The final disparity
map of the tennis ball is shown in Fig. 2. As seen in Fig. 2c, the
depth discontinuities are also recovered robustly by means of
our novel regularizer. Fig. 2d shows the final disparity map ob-
tained by Aydin and Akgul (2006), which does not preserve
discontinuities.

The next section describes our novel regularizer that employs
the image segment information along with the intermediate dis-
parity maps of optimizations.

3. Synchronous optimization with segment based
regularization

The classical regularization is used to solve an ill-posed problem
to reconstruct a well-posed form by adding a stabilizing term to
the initial formulation. The stabilizing term incorporates a priori
information into the formulation in the form of a constraint, such
as smoothness constraint, that will be imposed on the solution.

The most common and well-known type of regularization is Tik-
honov regularization which quadratically penalizes the gradient of
the solution and inherently implies a globally smooth solution
(Tikhonov and Arsenin, 1977). Since this approach ignores the dis-
continuities, its direct application for the stereo correspondence
problem leads to the blurring of the disparity map across the depth
discontinuities. Hence, only an approximate coarse structure of the
actual surface can be recovered. A proper regularizer should take
the discontinuities into consideration in order to recover disparity
maps accurately.

One important design issue for a discontinuity preserving regu-
larizer is the selection of a discontinuity marker function. The dis-
continuity marker function decides the presence and the location
of the discontinuities so that smoothing of them can be prevented.
If the locations of the discontinuities were known in advance, they
could have been easily incorporated into the regularization. How-
ever, this information is not available, and it is actually an essential
pair shown in Fig. 2. (a) Initialization step of the optimizations are always the same.
s are recovered accurately at the end of the optimizations.
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Fig. 2. (a) Left and (b) right images of tennis ball stereo pairs. (c) Computed disparity map using our method and (d) synchronous processes (Aydin and Akgul, 2006).
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part of the solution that we seek. Therefore, it should be estimated
or inferred from a reasonable source.

Disparity-driven (or solution-driven) regularizers infer the loca-
tions of the discontinuities from the intermediate solutions by
assuming that a discontinuity in the data term implies a depth dis-
continuity (Robert and Deriche, 1996). However, it is very hard to
determine whether the emergent discontinuities are caused by the
depth discontinuities or ambiguity in data term due to occlusion,
repeated pattern, noise, etc.

Image driven regularizers, on the other hand, utilize the inten-
sity discontinuities in the images to estimate locations of depth
discontinuities (Alvarez et al., 2002; Kim et al., 2004). Therefore,
they generally offer better performance than the disparity driven
regularizers near the image edges. These regularizers work under
the assumption that depth discontinuities coincide with some
intensity discontinuities in the image. Thus, they allow isotropic
smoothing in homogeneous regions and prevent smoothing in
inhomogeneous regions by simply adjusting the degree of smooth-
ing according to the magnitude of image gradients.

However, using image gradient magnitude information to
determine the homogenous region boundaries does not produce
consistent results because region boundaries cannot be estimated
reliably using the image gradient magnitude values which are
too local. Using this local information to adjust the degree of
smoothing results in the boundary leakage problem, which is the
leakage of diffusion across the region boundaries (see Fig. 3b and
c). In addition, on some noisy image regions, diffusion anticipated
between the elements of the homogeneous regions is prevented.
Finally, this approach might apply different degrees of smoothing
for the regions with the same depth discontinuity values because
the magnitudes of discontinuities are not directly correlated with
the magnitudes of the image gradients.

Instead of basing the depth discontinuity decisions on local im-
age gradient magnitudes, we use image segment boundaries as the
indicators of depth discontinuities. There are sophisticated image
segmentation methods that utilize information about the intra-
segment homogeneity and inter-segment inhomogeneity. There-
fore, more global information would be incorporated into the esti-
Fig. 3. An example illustrates the boundary leakage problem. (a) Clipped part of the Saw
obtained with an image driven regularizer (Kim et al., 2004). Note that oversmoothing
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mation of the depth discontinuity positions if we employ segment
information from such methods. The relatively global nature of the
depth discontinuity decisions makes the overall system robust
against the problems of image driven regularization methods.

In segment based regularizes, the diffusion between the pixels
of the same segment is always allowed because it is assumed that
there are no depth discontinuities inside the segments. The diffu-
sion between the neighboring segments, however, should be han-
dled very carefully. The complete prevention of the diffusion
between the segments would result in a system with very serious
local minima problems because each segment has to behave inde-
pendently. The other extreme of allowing full diffusion between
the segments would not allow any depth discontinuity localiza-
tions. As a result, there has to be an efficient method for deciding
the amount of diffusion between segments. We take advantage
of our system of synchronous optimizations to effectively address
this problem by utilizing the difference between the intermediate
disparity maps of optimizations. The difference Dd between the
intermediate disparity maps of the optimizations at iteration t is
calculated by

Ddðx; y; tÞ ¼ Dt
1ðx; yÞ � Dt

2ðx; yÞ: ð8Þ

One of the synchronous optimizations is started from minimum
disparity values and the other is started from maximum disparity
values. Initially Dd has the maximum possible value. At this time,
the regularization should be isotropic to avoid getting stuck to lo-
cal minima. In other words, unconstrained smoothing is allowed
between the neighboring segments. During the minimizations,
the disparity maps of each optimization get close to each other
and Dd becomes smaller. In order to prevent smoothing of discon-
tinuities, the regularization should behave anisotropically as the
optimizations approach the desired solution. Eventually, Dd be-
comes zero and no diffusion between the segments are allowed
for a full recovery of discontinuities.

We include Dd in the diffusion function w0 in Eqs. (4) and (5) to
adaptively adjust the degree of smoothing based on both segment
boundaries and difference between the intermediate disparity
maps. The diffusion function w0 is defined as,
tooth image, (b) gradient magnitudes of the image, and (c) resulting disparity map
occurs at object boundaries.
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w0 ¼ gðrIsðx; yÞ;Ddðx; yÞÞ: ð9Þ

The function g is known as the discontinuity marker function and it
is defined as,

gðrIs;DdÞ ¼ 1�rIs e�ðDd=jwÞ2 ; ð10Þ

where Is is the segmented image and jw is the system parameter
that controls the adaptivity of the regularizer. The gradient of the
segmented image is defined as,

rIsðx; yÞ ¼
1; if ðx; yÞ is at the segment boundary;
0; otherwise:

�
ð11Þ

If Dd is large, the diffusion function evaluates to one. It means
that smoothing is isotropic which is the case in Tikhonov regulariz-
er. Consequently, the minimization is not affected by local minima.
When the optimizations get close the each other, the smoothing
gradually becomes anisotropic as in the image driven regularizers.
Eventually, the optimizations find the same disparity maps
(Dd = 0) due to the tension term and the diffusion function evalu-
ates to zero at segment boundaries. At this time, the regularizer
exhibits pure anisotropic behavior. This is what is expected from
a discontinuity preserving regularizer: smoothing is enforced only
in homogenous regions. An additional advantage of this approach
is that no oversmoothing artifacts can be introduced into the sys-
tem even if superfluous iterations are executed after optimum
solution is achieved. The alternative regularizers, such as image
driven or disparity driven regularizers, there is always the risk of
oversmoothing of discontinuities because there is always diffusion
between the neighboring elements.
4. Experimental results

The proposed method is tested on Middlebury (Scharstein and
Szeliski, 2003) data sets where the ground truth information is
available for benchmarking. The image segments used in the diffu-
sion function are obtained from the left image of the stereo pairs by
applying the mean shift segmentation algorithm (Comaniciu and
Meer, 2002).

We use normalized cross correlation method as the similarity
measure due to its robustness against any brightness differences.
In order to increase the performance further and decrease the con-
vergence time of our method, data space should be pre-smoothed.
Employing higher window sizes in the evaluation of correlation
values basically satisfies this condition. However, increasing the
correlation window sizes results in shifts at the location of discon-
tinuities (Scharstein and Szeliski, 2002). The discontinuities must
be preserved in the data space in order to recover them accurately.
Therefore, we pre-smooth data space with a bilateral filter (Tomasi
and Manduchi, 1998) whose kernels are derived from the left im-
age of stereo pairs. This smoothing strategy is similar to the meth-
od of Yoon and Kweon (2006), in which they employ the product of
Table 1
The disparity error percentages (disparity error threshold of 1 pixel) using the Middlebury s
available in the original publication.

Algorithm Tsukaba Venus

Nonocc All Disc Nonocc All

Woodford et al. (2008) 2.91 3.56 0.24 0.24 0.49
Yang et al. (2007) 1.24 1.76 5.98 0.12 0.46
Yoon and Kweon (2006) 1.38 1.85 6.90 0.71 1.19
Ben-Ari and Sochen (2010) 3.97 5.23 14.9 0.28 0.76
Pock et al. (2008) 3.61 5.72 18.0 1.16 2.50
Pock et al. (2007) – – – – 1.10
Our method 2.51 2.71 7.13 0.32 0.40
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two bilateral filters which are derived from the left and the right
stereo images.

Experiments are performed on Venus, Teddy, Tsukaba, and
Cones data sets that contain sharp depth discontinuities. The sys-
tem parameters kept fixed during the experiments (a = 0.1,
b = 0.1, k = 0.15, c = 0.1, and ju = 0.01.). The parameter of diffu-
sion function is associated with the maximum disparity range
in the setup (jw = dmax � dmin) which is different for each data
set. Smoothing of data space is performed with 11 � 11 pixels
sized bilateral filter. Error rates of the proposed algorithm are
computed for non-occluded areas, near discontinuities, and for
complete images. Table 1 compares the error rates of our results
with the results of the state of the art segment based global
methods and local methods employing pre-smoothed data values.
Error rates in the table are calculated by setting the error thresh-
old values to one pixel disparity. Fig. 4 shows the left stereo
images, the segment boundaries used in our adaptive regularizer
and the resulting disparity maps of our algorithm. The visual and
numerical results show that our method can robustly recover
piecewise smooth surfaces and preserve discontinuities well.
Since our method works on continuous disparity space, we com-
pute the error rates by setting the threshold value to 0.5 pixels in
order to show the performance of our method also in sub-pixel
disparity estimation. The sub-pixel error rates of our method
and some other methods are shown in Table 2. The analysis of
these numbers indicates that, there is no clear best correspon-
dence method for all types of images. Furthermore, the methods
show different performance rates when the error threshold is
changed pixel level to sub-pixel. The experiments also show that
our proposed method produces similar error rates as the other
leading methods. It should be noted that some of these methods
employ extra information from the images such as plane fitting,
multiple image segmentation or they enhance their results using
subsequent disparity processing methods.

As the final experiment, we produced data to show the insensi-
tivity of our method against extra optimization iterations. Table 3
shows the changes in the error rates with respect to the number of
iterations. It can be easily seen that recovered discontinuities are
not smoothed and the error rates do not change even if optimiza-
tions are forced to continue for a longer period of time.

We observed that the method fails mostly near the image sec-
tions that include very small or problematic image segments that
are difficult to segment. Our method depends on the results of
the image segmentation and if the segmentation is not correct,
it does not have any ways of correcting them. If the depth dis-
continuities do not coincide with the segment boundaries, our
method might not produce the correct depth values. This prob-
lem can be addressed by employing multiple segmented images
(Woodford et al., 2008). The second source of error is near the
image sections that do not include sufficient image texture.
Although our regularization method can handle considerable
amount of textureless regions due to the employment of multiple
tereo benchmark data sets. Some results in the table are missing because they are not

Teddy Cones

Disc Nonocc All Disc Nonocc All Disc

2.76 10.9 15.4 20.6 5.42 10.8 12.5
1.74 3.45 8.38 10.0 2.93 8.73 7.91
6.13 7.88 13.3 18.6 3.97 9.79 8.26
3.78 9.34 14.3 20.0 4.14 9.91 11.4

12.4 6.10 15.7 16.8 3.88 14.4 11.5
– – 6.63 – – 3.67 –
3.45 8.08 12.3 21.2 4.08 11.5 13.7
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Fig. 4. (a) The data sets (Venus, Cones, Tsukaba, and Teddy sets) from Middlebury. (b) Boundaries of segments used in our adaptive regularization. (c) Computed disparity
maps.

Table 2
The disparity error percentages (disparity error threshold of 0.5 pixel) using the Middlebury stereo benchmark data sets. Some results in the table are missing because they are
not available in the original publication.

Algorithm Tsukaba Venus Teddy Cones

Nonocc All Disc Nonocc All Disc Nonocc All Disc Nonocc All Disc

Woodford et al. (2008) 7.10 7.70 0.56 0.56 0.83 4.21 17.5 22.7 31.5 11.6 17.1 20.4
Yang et al. (2007) 8.78 9.45 14.9 0.72 1.12 5.24 10.1 16.4 21.3 8.49 14.7 16.5
Yoon and Kweon (2006) 18.1 18.8 18.6 7.77 8.40 15.83 17.6 23.9 34.0 14.0 19.7 20.6
Ben-Ari and Sochen (2010) 7.18 8.56 20.1 1.46 2.12 7.87 12.9 19.4 27.5 6.22 12.6 15.8
Pock et al. (2008) 11.1 13.3 27.2 5.99 7.40 22.3 10.5 19.9 25.8 5.99 16.5 16.7
Pock et al. (2007) – – – – 3.45 – – 11.2 – – 7.52 –
Our method 8.53 9.29 16.98 1.23 1.52 9.55 10.2 16.1 25.4 7.34 14.2 14.4
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processes, large areas of insufficient texture still causes problems.
Finally, our method does not include any explicit occlusion detec-
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tion mechanisms and occluded regions could produce high error
rates.
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Table 3
The disparity errors generated for the Venus image with respect to the number of
iterations.

Iteration Disparity error 1 pixel Disparity error 0.5 pixel

Nonocc All Disc Nonocc All Disc

1000 27.6 28.3 35.4 31.0 31.9 47.0
1400 12.4 12.9 26.0 16.6 17.2 33.2
1800 1.91 2.29 12.0 3.17 3.77 19.6
2000 0.95 1.35 9.38 1.61 2.04 10.9
2500 0.32 0.40 3.45 1.23 1.52 9.55

10,000 0.32 0.40 3.45 1.23 1.52 9.55
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5. Conclusions

Stereo correspondence problem is an inverse problem and like
most inverse problems, its mathematical formulation is ill-posed.
The most common approach for solving these types of problems
is to regularize the solution by including additional information
or making prior assumptions about the solution.

In this paper, we proposed a novel system that uses two
energy functionals which are minimized synchronously by two
dependent optimizations. The new regularizer can recover
piecewise smooth disparity maps from stereo image pairs with-
out blurring the discontinuities. It employs segmented version of
the image and the positional differences between the
optimizations. Including these additional information in regular-
ization results in an adaptive smoothing around the segment
boundaries by adjusting the degree of smoothing depending on
the intermediate values of the optimizations. Consequently, ini-
tial isotropic smoothing gradually turns into an anisotropic
smoothing.

The system addresses many problems common to approximate
optimization methods, such as sensitivity to initializations and lo-
cal minima. Therefore, the final recovered disparity surface turns
out to be more accurate than what a single optimization can
achieve.

The system also addresses the problem of selecting optimal
stopping criteria which is a very important step for the diffusion
based methods to avoid smoothing of the discontinuities. When
the optimizations find the same solution, the diffusion between
the segments is prevented. Consequently, the system does not
suffer from superfluous iterations executed after the optimum
solution is achieved.

Experiments performed with the standard Middlebury stereo
pairs show the accuracy of our method around the homogenous
and nonhomogeneous image regions. The results are found to be
comparable to the state of the art stereo methods.

The current limitations of the system include the handling of
the occluded image regions as regular image regions. Segments lo-
cated completely inside the occluded regions cannot be recovered
in most cases. Nevertheless, due to the new regularization strategy
introduced, our system can produce acceptable results on these re-
gions but an explicit occlusion mechanism would make our system
much more robust.

Another limitation of the method is higher computational
complexity due to two dependent optimizations. Our current run-
ning time is around 20 min for Venus image (434 � 383 pixels) on
a 1.66 GHz PC with 1 GB RAM. Although the convergence time of
the method can be decreased by adapting a multi-scale approach,
the adaptation is not trivial for our method. A sample implemen-
tation of multi-scale approach can be found in the work of Akgul
and Kambhamettu (1999). Another speed up path could be an
implementation on a GPU architecture because it is known that
PDE-based approaches are generally suitable for parallel
computing.
Please cite this article in press as: Aydin, T., Akgul, Y.S. Stereo depth estimation u
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