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Abstract

Graph cut minimization formulates the image segmentation as a linear

combination of problem constraints. The salient constraints of the computer

vision problems are data and smoothness which are combined through a reg-

ularization parameter. The main task of the regularization parameter is to

determine the weight of the smoothness constraint on the graph energy. How-

ever, the difference in functional forms of the constraints forces the regulariza-

tion weight to balance the inharmonious relationship between the constraints.

This paper proposes a new idea: bringing the data and smoothness terms on

the common base decreases the difference between the constraint functions.

Therefore the regularization weight regularizes the relationship between the

constraints more effectively. Bringing the constraints on the common base is

carried through the statistical significance measurement. We measure the sta-

tistical significance of each term by evaluating the terms according to the other

graph terms. Evaluating each term on its own distribution and expressing the

cost by the same measurement unit decrease the scale and distribution differ-

ences between the constraints and bring the constraint terms on similar base.

Therefore, the tradeoff between the terms would be properly regularized. Nat-

urally, the minimization algorithm produces better segmentation results. We

demonstrated the effectiveness of the proposed approach on medical images.

Experimental results revealed that the proposed idea regularizes the energy

terms more effectively and improves the segmentation results significantly.

Keywords: Medical Image Segmentation; Statistical Significance; Graph

Cut Minimization; Markov Random Fields; Regularization.
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1 Introduction

Medical image segmentation is the process of labeling pixels or voxels in a medical

image data set with a class label. One of the purposes of segmentation of medical

data is obtaining the anatomical structure of organs such as kidney, liver or their

parts of interest such as tumorous sections. The segmentation knowledge assists

medical experts in recognizing abnormalities, making diagnosis for the body parts

of interest. It is also useful to guide the surgeon. By all means, a precise segmen-

tation is important for both diagnosis and surgery in terms of reliability. There are

many different medical image segmentation techniques such as active contours [1],

level sets [2], and model based approaches [3]. Markov Random Field (MRF) based

segmentation methods are one of the most successful techniques for the medical

applications [4, 5, 6]. MRF formulates the segmentation problem constraints as

potential functions. The linear sum of the potential functions through a regular-

ization parameter forms the energy formulation. The energy formulation can be

minimized by the minimization algorithms such as graph cuts, belief propagation,

etc. Researchers still work on developing MRF based algorithms for the medical

image segmentation [7, 8].

The graph cut approach is one of the successful MRF applications for the vision

problems. The approach forms a graph structure with an objective energy function,

and then minimizes the function to solve the problem. The graph structure is consti-

tuted as nodes and edges. Each edge is assigned a cost according to the relationship

between the connected nodes. All the costs on the graph are joined linearly through

a regularization parameter to form the objective energy function. The costs of the

edges on the graph are determined through potential functions. However, in the

same energy formulation, the potential function of each constraint can have differ-

ent functional forms. The difference in functional forms between the constraints

may cause scale and distribution differences between the energy terms. The regular-

ization parameter attempts to tune the difference between the potential functions,
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however its main function should be determining the weight of the smoothness con-

straint. We claim that, if the scale and distribution difference between the potential

functions are decreased, balancing the trade-off between the energy terms would

be more effective, which results in a better restricted solution space and produces

a more meaningful solution. In this paper, we introduce a new empirical method

based on statistical significance theory. The method measures the statistical signif-

icance of each potential function. Since different functional forms are expressed on

the common measurement type, the scale and distribution differences between the

data and smoothness terms are decreased. As a result, the regularization weight

properly balances the relationship of the harmonic energy terms.

We test the effectiveness of the proposed approach on the medical image segmen-

tation problem which is usually harder than the general segmentation, because many

organs are in contact with each other and tissues have similar intensity variations.

The interactive approach partially overcomes the hardness of medical image seg-

mentation by initially marking some pixels as object and background. The marked

pixels help the minimization algorithm by providing hints about the intention of

the user. Joly and Boykov [5] proposed a successful graph cut application of the

interactive graph cut. In that application, the potential function of data constraint

is based on the marked pixels histogram, whereas, the potential function of the

smoothness constraint is the intensity difference between the neighboring pixels.

Note that the data and smoothness constraints have different functional forms. The

different functional forms of the data and the smoothness terms of the interactive

graph cut method make it a very good candidate for our method of decreasing the

differences between functional forms. In addition, any improvement of the popular

interactive graph cuts by our method would indicate the applicability of the pro-

posed idea. Note however that the proposed method is not limited to the interactive

graph cuts. It can be applied for any MRF based optimization systems that include

functional forms with different scales and distributions.
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The rest of the paper is organized as follows: In Section 2, we give a brief

background about the markov random fields, regularization weight, graph cut mini-

mization, and statistical significance theory. We introduce the method on the back-

ground/foreground graph cut segmentation in Section 3. Section 4 includes the

experimental results on medical images and Section 5 provides concluding remarks.

2 Necessary Background

2.1 Ill posed problems and Prior Constraints

Computational vision includes a set of problems which attempt to find physical prop-

erties of the 3D world from 2D images. However, 2D images contain limited informa-

tion about the 3D world. This information loss makes the vision problems ill-posed

which do not satisfy one or more of the following well-posed requirements: existence,

uniqueness, and stability of the solution [9]. Using only the data knowledge is not

adequate to solve the ill-posed problems. There should be prior assumptions to de-

crease the complexity of the solution space. The most popular prior assumption in

computational vision is the smoothness constraint which assumes that the physical

properties of the neighborhood pixels generally do not change abruptly [10, 11, 12].

The regularization theory incorporates the smoothness constraint to the data con-

straint in order to find a stable desired solution.

2.1.1 Markov Random Fields

Most computer vision problems can easily be defined and solved in a discrete frame-

work. However the classical regularization approach [11, 21] cannot be defined over

discrete variables. The counterpart to the regularization is the MRF modeling in

discrete framework. One of the discrete problems in computer vision is image label-

ing which is assigning a set of labels to image pixels or features. Image segmentation

can be posed as a labeling procedure. Let d = {di}i∈S be the observed data from
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an input image. S is the set of sites i and represents an image pixel or feature.

The corresponding labels at the image sites can be given by f = {fi}i∈S. Labeling

procedure assigns the label fi to the site i for the observed data di.

In MRF framework, the labeling problem is formulated using bayesian statistics

as in Eq.1. Maximum a posteriori (MAP) is the most common solution for MRF.

In MAP criteria, the true labeling configuration f ∗ is estimated by

f ∗ = arg max
f

P (f |d) = arg max
f

p(d|f)P (f). (1)

Maximum a posteriori (MAP) solution of the problem says that the more prob-

able configuration f ∗ minimizes the posterior energy.

f ∗ = arg min
f

E(f, d) = arg min
f

(Ed(f, d) + Es(f)), (2)

where Ed(f, d) is the data energy and denotes the data constraints of the segmen-

tation problem; Es(f) is the prior energy and denotes the smoothness constraint.

Formulated posterior energy can be minimized in different ways such as iterated

conditional modes [13], stochastic gradient descent [14, 15], and simulated anneal-

ing [16, 17]. We used the graph cut approach [4, 18] (section 2.3) as MRF solver to

introduce the proposed idea.

According to the Hammersley-Clifford Theorem [19], posterior energy can be

written as a sum of unary and pairwise potentials.

E(f, d) = Ed(f, d) + λEs(f) =
∑
i∈S

U(fi, di) + λ
∑
i∈S

∑
j∈Ni

V (fi, fj), (3)

where U is unary potential and measures the similarity between data di and label

fi; V is pairwise potential between adjacent sites and encourages the neighboring

sites fi, fj to have similar labels; Ni denotes the neighbors of site i; λ is the regu-

larization weight which balances the trade-off between data and smoothness energy
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terms. The unary potential function constitutes the data constraint of the energy

formulations, similarly, pairwise potential function constitutes the smoothness con-

straint. Different potential functions U and V were employed by researchers such as

absolute differences, squared differences, truncated absolute differences [20], proba-

bility histograms [5], and many other robust techniques. Different functional forms

can be used for each potential function in the same energy function.

2.2 Regularization Weight in Computer Vision

The minimization of the energy formulation in Eq.3 gives the most probable labeling

configuration f ∗. It is desired to minimize both data and smoothness constraints;

however there is often a trade-off between them. The regularization weight lambda

balances the relationship between the closeness of the data to the solution and its

smoothness. Choosing an optimal regularization parameter is important to con-

struct a meaningful solution. If λ is small, the minimization solution will be noisy.

On the other hand, if λ is large, the labeling configuration will not fit the observed

data. Although the main function of λ is to tune the tradeoff between the smooth-

ness and the data, it generally also serves as the main mechanism for adjusting the

scale and distribution differences between the constraints. As a result, the optimal λ

selection process becomes more complicated. The main motivation for our method

is to decrease the scale and distribution differences between the constraints so that

λ can only be used for tuning the tradeoff between the smoothness and the data.

In recent years, it is realized that regularization parameter depends on scene

structure variations and image noise statistics [22, 23]. Therefore, different image

sets need different regularization parameters for the optimal performance. Only a

few papers focused on the optimal choice of regularization weight from the observed

image. Zhang and Seitz [23] proposed a probabilistic mixture model for the regular-

ization weight determination of a stereo pair. Peng and Veksler [24], on the other

hand, work on the regularization weight for segmentation problem. The ultimate
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goal of these techniques is to estimate the optimal regularization parameter which

produces optimal solution for the problem. We also aim to get the optimal solution

but our method is not a parameter selection method. The main contribution of

the proposed method lies in increasing the tuning performance of the regularization

parameter by bringing the constraints on the common base.

2.3 Graph Cut Minimization for the Segmentation Problem

Graph cut algorithm [25] is one of the most popular energy minimization approaches

which solves the object-background labeling problem successfully [4, 26, 27]. The

algorithm begins by building a graph G = (E, V ). V consist of set of nodes that

correspond to labeling sites and two extra nodes which denote object and background

terminals. E are the edges that connect the nodes. Each graph edge is given a

nonnegative cost using potential functions. The optimal labeling configuration is

determined by finding the minimum cost cut on this graph by minimizing the graph

energy functional.

E(f, d) =
∑
i∈S

U(fi, di) + λ
∑
i∈S

∑
j∈Ni

V (fi, fj). (4)

The first sum in the energy functional is called the data term which confines the la-

beling configuration to be close to observed data. The second sum is the smoothness

term and confines the neighboring sites to have similar labels. For the segmenta-

tion problem, data costs can be modeled by potential functions including squared

differences, absolute differences or truncated absolute differences between the pixel

nodes and the terminal nodes. Smoothness cost on the other hand, can be modeled

by using local intensity gradient, laplacian zero crossing or gradient direction [20].

The interactive graph cut [5] is one of the convenient and widely used graph

cut approaches for the medical applications. The user at the beginning selects some

pixels as object and background to direct the algorithm what is intended to segment.
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The data terms of the energy are determined with the help of the marked pixels.

The potential functions for the data terms are

Uobj(fi, di) = − ln Pr(Ii|“obj”) (5)

and

Ubcg(fi, di) = − ln Pr(Ii|“bcg”), (6)

where Ii is intensity at site i; “obj” denotes the intensity distribution of the pixels

marked as object; “bcg” denotes the intensity distribution of the pixels marked

as background. Pr(Ii|“obj”) and Pr(Ii|“bcg”) are the probabilities of intensity Ii

which are the number of occurrences of intensity Ii in the object and the background

intensity distributions respectively. The potential function for the smoothness cost

is

V (fi, fj) = exp(−(Ii − Ij)
2

2σ2
).

1

dist(i, j)
, (7)

where Ii and Ij are intensities at sites i and j; dist(i, j) is the Euclidean distance

between two sites; σ is the system parameter. Note that data and smoothness

terms have different functional forms: data energy terms are determined based on

probability histograms derived from marked pixels, on the other hand, smoothness

energy terms are the intensity difference between neighboring sites. We applied the

proposed idea for the interactive graph cut approach to show the effects of decreasing

the differences in functional forms of the energy constraints.

2.4 Statistical Significance

Statistical significance is a probability value (p-value) which is the measurement of

randomness [28]. If the observed outcome of an experiment is statistically significant,

this means that “probably” this outcome cannot happen randomly. To measure the

statistical significance of the outcome of an experiment, probability and cumula-
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tive probability distribution functions of the experiment should be known. If the

distribution of the outcome is not a known distribution such as exponential, a non-

parametric technique can be used to form the distributions [29]. The idea behind

the nonparametric techniques is that observed outcome represents the distribution

function from which it was drawn. Therefore, we use the possible outputs of the

experiment to form the probability distributions. The area under the probability

distribution function forms the cumulative distribution function. After distribution

functions are constituted, the p-value of the observed outcome is calculated. The

location of the outcome on cumulative distribution determines its p-value. A p-value

in the tail shows that the observed outcome would rarely occur by chance. A p-value

in the middle however shows that the outcome probably occurred by chance.

Statistical significance theory has found minimal usage in computer vision. We

previously used the statistical significance to combine the similarity measures for

the stereo correspondence problem [30]. Each measure is expressed as p-values and

compared with each other. Peng and Veksler [24], on the other hand, used the sta-

tistical significance method to normalize the segmentation features and to expressed

them on the same base. We employ the statistical significance as the potential func-

tion measurement units for Eq.4, which has several advantages. First, the statistical

significance based potential functions would measure the randomness of the label

assignments of sites. If the measured statistical significance p-value is small, then

the label assignment of a site would rarely occur by chance. On the other hand, if

the the measured statistical significance p-value is large, then the label assignment

of the site probably occurred by chance. As a result, using the statistical p-values

as the potential function measurement units is more intuitive and meaningful. Sec-

ond, since each unary and pairwise potential function of MRF framework can be

expressed in statistical significance measurement units, linearly summing them, as

in Eq.4, would be more meaningful. In addition, the regularization weight lambda

would not get influenced from the scale and distribution differences of the poten-
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tial functions. The main novelty of this paper is the new perspective of tuning the

scale and distribution difference between potential functions of data and smoothness

constraints by evaluating the constraints in terms of statistical significance.

3 The Proposed Method - Graph Cut Minimiza-

tion Modified by Statistical Significance

Graph cut minimization is also a MRF based approach, and its data and smoothness

constraints have different functional forms in the same energy formula. We introduce

a new empirical method that aims to decrease the measurement difference between

the constraints by expressing them using the same measurement type based on

statistical significance.

3.1 Measuring p-values of Energy Terms

In order to measure the statistical significance of the data and smoothness con-

straints, cumulative probability distribution (cdf) of the terms should be known.

The outputs of the potential functions of the observed image form the probability

distributions of the terms. Since the distributions depend on the observed image,

the distribution structures are not known beforehand. Therefore, we follow a non-

parametric approach to form the cdf’s. Data costs of a given graph form the proba-

bility distribution of data constraint. Similarly, the smoothness costs on the graph

form the smoothness probability distribution. The data probability distribution

function can be formalized as

Pr(U(f, d)) = {Uobj(fi, di), Ubcg(fi, di) : ∀i ∈ S} (8)
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where Uobj(fi, di) and Ubcg(fi, di) denote the data terms obtained from the unary

potential function(Eq.5-6). The smoothness probability distribution function is

Pr(V (f)) = {V (fi, fj) : ∀i ∈ S, ∀j ∈ Ni} (9)

where V (fi, fj) denotes the smoothness terms obtained by the pairwise potential

function(Eq.7). The area under the probability distributions produces the cdf’s of

data and smoothness constraints.

F (U(f, d)) =

U(f,d)∑
−∞

Pr(U(f, d)). (10)

F (V (f)) =

V (f)∑
−∞

Pr(V (f)). (11)

Each term is converted to p-value using the cdf’s. The location of the terms on

cumulative distributions determines their p-values.

pU(fi, di) = F (U(f, d) < U(fi, di)) (12)

and

pV (fi, fj) = F (V (f) < V (fi, fj)). (13)

are the p-values of data and smoothness terms respectively. The modified energy

function can be formalized as

E(f, d) =
∑
i∈S

F (U(f, d) < U(fi, di)) + λ
∑
i∈S

∑
j∈Ni

F (V (f) < V (fi, fj)). (14)

The proposed method forms the cdf of the terms using all costs on the graph

such that data costs form the data cdf, smoothness costs form the smoothness cdf.

The smaller costs of the graph would be on the tail of the distributions which

is considered as statistically significant part. Therefore, smaller costs are more
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statistically significant and take smaller p-values. Note that, Eq.4 and Eq.14 have

similarity such that both equations aim to minimize the graph energy. However, the

proposed method minimize the energy through the p-values.

The p-values for the data costs are determined according to other data costs on

the graph. Similarly, the p-values for the smoothness costs are determined accord-

ing to other smoothness costs on the graph. It can be interpreted as each cost is

normalized relatively to other costs. The normalized energy terms makes the energy

formulation more harmonious so the λ regularizes the terms more effectively.

Other advantages of the introduced idea can be expressed using a concrete ex-

ample. Assume, for example, that data and smoothness terms have equal costs

assigned by equations 5, 6, and 7 for pixel i. Assume also that the data cost is less

observable, or less frequently seen, than the smoothness cost. Because the data cost

is less observable, we can say that data term is statistically more significant than the

smoothness term, albeit both terms have equal costs. In order to influence the final

result of the energy minimization towards a statistically more significant solution,

our approach assigns a lower value (Eq. 12) to the data cost than the smoothness

value (Eq. 13) for pixel i. The direct connection between the assignment of costs and

the statistical significance of the terms results in an effective dynamic regularization

weight adjustment strategy between the data and smoothness terms. Furthermore,

since the same approach assigns lower energy cost values for the statistically impor-

tant pixels (pixels with both low data and smoothness p values), these pixels might

push the final result of the energy minimization process towards a statistically sig-

nificant solution.

4 Experiments

We set up experiments on the medical image segmentation problem to validate the

proposed idea. We compared the graph cut energy minimization algorithm in Eq.4
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with the modified energy minimization in Eq.14. For a reliable comparison, we con-

struct the same graph structure for both approaches. The only difference is using

Eq.5-6-7 for the graph cut and using Eq.12-13 for the modified graph cut. The aim

of the experiment is to show that expressing the outputs of the potential functions

as p-values make the constraints more harmonious. Therefore regularization weight

regularizes the graph energy properly which produces better segmentation results.

We run the graph cut and the modified graph cut approaches repeatedly with differ-

ent regularization weights. To be able to test the whole regularization weight range,

we re-formalized the energy minimizations in Eq.4 and Eq.14 as

E(f, d) = (1− λ)
∑
i∈S

U(fi, di) + λ
∑
i∈S

∑
j∈Ni

V (fi, fj), (15)

and

E(f, d) = (1− λ)
∑
i∈S

F (U(f, d) < U(fi, di)) + λ
∑
i∈S

∑
j∈Ni

F (V (f) < V (fi, fj)), (16)

respectively. Then, we changed the λ parameter between 0 and 1 with small in-

crements. In order to quantitatively evaluate the performance of the approaches,

we compared segmentations with the ground truth data which are delineated by an

expert manually throughout the experiments.

Our first experiment is on a Liver CT image (Fig.1a). We summarized the

procedures of the graph cut and modified graph cut minimizations on Liver CT

image in Algorithm 1 and Algorithm 2.

The minimization step of the approach is repeated for different regularization

weights between 0 and 1. The labeling f for each regularization weight is compared

with the ground truth. The recovered object and background labels are regarded

as errors if they are background and object pixels respectively in the ground truth.

The minimum error labeling f gives the optimal regularization weight for the ob-

jective function (Fig.1b). We repeat the same procedure for the modified graph cut
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Algorithm 1 Graph cut minimization

Construct the graph structure :
The image pixels are defined as sites S.
The spatial neighbors (4-connected) of pixels are defined as N .
Manually mark the certain pixels as object and background.

Define the potential functions U(f) and V (f) :
Calculate the data terms using Eq.5-6.
Calculate the smoothness terms using Eq.7.

Construct the objective energy function (Eq.15) :
Combine all data and smoothness terms through a regularization weight.

Minimize the objective energy function using graph cut minimization.
Return the assigned labels as the segmentation result. (f of Eq.15)

minimization.

Algorithm 2 Modified graph cut minimization

Construct the graph structure :
The image pixels are defined as sites S.
The spatial neighbors (4-connected) of pixels are defined as N .
Manually mark the certain pixels as object and background.
(For a reliable comparison, we used the same marked pixels in Algorithm 1.)

Define the potential functions U(f) and V (f) :
Calculate the data terms using Eq.5-6.
Calculate the smoothness terms using Eq.5-6.

Calculate the statistical significance of potential functions :
Form the probability distributions of each potential function using Eq.8-9.
Form the cumulative distribution functions using Eq.10-11.
Convert the each term to p-values using Eq.12-13.

Construct the objective energy function (Eq.16) :
Combine all p-values of terms through a regularization weight.

Minimize the objective energy function using graph cut minimization.
Return the assigned labels as the segmentation result. (f of Eq.16)

The minimization step of the modified approach is also repeated for different

regularization weights between 0 and 1. The labeling f for each weight is compared

with the ground truth. The minimum error labeling gives the optimal regularization

weight for the objective function. Some of the segmentation results of the approaches

are shown in Fig.1. In this paper, we used red for object and blue for background
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(a) (b)

(c)Alg.1,λ=0.01 (d)Alg.1,λ=0.87 (e)Alg.1,λ=0.95 (f)Alg.1,λ=0.9818

(g)Alg.2,λ=0.01 (h)Alg.2,λ=0.87 (i)Alg.2,λ=0.95 (j)Alg.2,λ=0.9818

Figure 1: (a) Liver CT image marked as object (red) and background (blue). (b)
Ground truth segmentation of Liver image. (c-f) Segmentation results obtained by
graph cut minimization for different λ weights. (g-j) Segmentation results obtained
by the modified graph cut minimization for different λ weights. Alg.1 and Alg.2
denote graph cut minimization and modified graph cut minimization respectively.
The scores of the segmentations are in Table 1.

segments. The Fig.1c-f show segmentation results for various λ parameters by graph

cut minimization using Algorithm 1. The optimal λ is 0.95 with the minimum

percentage error 4.91% (Fig.1e). The segmentation results in Fig.1g-j are obtained

by modified graph cut minimization using Algorithm 2. The optimal λ is 0.9818 with

the minimum percentage error 2.23 % (Fig.1j). All the other scores of segmentations

are listed on Table 1.

We show the percentage errors for the whole range of λ between 0 and 1 on λ-

Error graph (Fig.2a). The errors are calculated by comparing segmentations of each

λ with the ground truth segmentation. The minimum points of the curves give the

optimal regularization parameter for the approaches. Note that proposed approach

produced smaller error rates with the regularization weights. For the optimal weight,
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Graph Cut Minimization Modified Graph Cut Minimization
Figure λ Error [pixels] Error [%] Figure λ Error [pixels] Error [%]
Fig.1c 0.01 21085 9.51 Fig.1g 0.01 21018 9.48
Fig.1d 0.87 17878 8.07 Fig.1h 0.87 17662 7.94
Fig.1e 0.95 10890 4.91 Fig.1i 0.95 9785 4.42
Fig.1f 0.9818 12765 5.76 Fig.1j 0.9818 4935 2.23

Table 1: Detailed scores of Fig.1c-j. Bold scores are obtained by the optimal regu-
larization weights.

(a) (b)

Figure 2: (a) λ-Error Graph of Liver CT in Fig.1. (b) The same λ-Error Graph of
Liver CT in the range between 0.9 and 1.

it produced better segmentation than the original graph cut minimization. Suitable

regularization parameters for the observed image are located between 0.9 and 1 for

both approaches. Therefore, we redraw a detailed λ-Error graph for this range to

show the effectiveness of the modified graph cut minimization (Fig.2b).

We carried out the same experiment following the steps of Algorithm1 and Al-

gorithm2 for different medical images. Fig.3 shows another liver CT, a knee MRI

and a lung CT. The first column of the image set shows the initial marked pixels

by the user. The ground truth of images are shown on the second column. The

segmentations in the third column are obtained by graph cut minimization with op-

timal regularization weight. The segmentations in the fourth column are obtained

by modified graph cut approach with optimal regularization weight. Regularization

weights and percentage errors of optimal segmentations are shown in Table 2. λ-
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Error graphs of the experiments are shown at Fig.4. The interesting regularization

parameter ranges of images are between 0.9 and 1. Therefore, we show errors in

detailed graphs just for these ranges.

Image with Ground Truth Graph Cut Modified Graph
User Marks Segmentation Minimization Cut Minimization

Figure 3: The first column: A Liver CT, a Knee MRI and a Lung CT [31] in
vertical order. Images are marked initially with a user. The second column: Ground
truth of each image set. The third column: Optimal segmentations by graph cut
minimization. The fourth column: Optimal segmentations by modified graph cut
minimization. Segmentation scores of both approaches are listed in Table 2.

The λ-Error graphs of each image show the performance of both approaches for

all ranges of the regularization weight. The minimum points of the curves indicate

that proposed approach produces more effective segmentations with the optimal

regularization weights. Moreover, the modified approach also produces better results

for most of the regularization parameter ranges. The optimal segmentation results of

both approaches and their percentage errors verify the effectiveness of the proposed

approach.
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(a) (b)

(c) (d)

Figure 4: (a) λ-Error graph of Liver CT. (b) Detailed graph of Liver CT in range
between 0.97 and 1. (c) λ-Error graph of Knee MRI. (d) λ-Error graph of Lung CT.
Optimal regularization weight and errors for that weights are shown in Table 2.

In order to show that the proposed method is not limited for the interactive

graph cut minimization, we implemented a small experiment on basic graph cut

approach [18] which does not utilize any marked pixels from the user. Because

the basic graph cut does not have the priori segmentation knowledge, it produces

poor results for the medical image segmentation. However, proposed idea is still

applicable for the basic graph cut approach, because it suffers the same problem as

interactive graph cut minimization, which is minimizing the inharmonious energy

terms. The data energy terms of the basic graph cut minimization is the squared

difference between the pixels and their assigned labels. Similarly, the smoothness
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Graph Cut Minimization Modified Graph Cut Minimization
Figure λ Error [pixels] Error [%] λ Error [pixels] Error [%]

Liver CT 0.9751 2989 2.05 0.9921 2159 1.52
Knee MRI 0.936 5236 4.32 0.993 1613 1.33
Lung CT 0.98 2269 0.9 0.997 1731 0.69

Table 2: The detailed scores of the medical images in Fig.3.

terms are the intensity differences of neighboring pixels. We used the same liver CT

images in Figure 1 and Figure 3, and modified the energy terms using the same steps

of the Algorithm-2. (except the steps of the potential function definitions). Then

we run the basic graph cut and the modified basic graph cut algorithms repeatedly

for the whole λ range. Figure 5 shows the percentage errors of all approaches for

the optimal λ parameters. The red bar belongs to the graph structure constructed

by the potential functions in [18]. The green bar corresponds to the results after

the proposed idea is applied to the potential functions on [18]. The blue bars on the

other hand belong to the graph structures constructed by the potential functions

in [5] (interactive approach). Similarly, the magenta bar corresponds to the results

after the proposed idea is applied to the potential functions on [5]. Note that,

interactive graph cut minimization produced lower errors than the basic graph cut

minimization. As the figures show the proposed method is applicable for any MRF

based minimization system that uses inharmonious constraints.

We compared the modified graph cut method with the other favorite segmen-

tation methods in medical image segmentation. Since the active contours are also

based on energy minimization, we selected two main approaches of active contours

from the recent literature. One of them is the region based active contour model of

Chan and Vese [32], which uses the statistical information of image intensity within

each region. Another comparison method is the variational level set [33], which pro-

duces better results than the classical level set approach. For a fair comparison, we

set the best parameter values and initialized the contours on appropriate locations.

The segmentation results of the approaches for the Liver CT image are shown in
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Figure 5: The percentage errors of the original graph cut[18], the modified original
graph cut[18], the interactive graph cut[5], and the modified interactive graph cut
approaches.

Fig. 6. The percentage errors of these segmentations are listed in Table 3. Because

we initialize the contours very close the liver boundary, active contour algorithms

almost know where to segment. However, the interactive graph cut approach has

limited knowledge about the segmented object (only marked pixels). Therefore, ac-

tive contour models produced better segmentation results than the interactive graph

cut. On the other hand, the modified interactive segmentation (proposed method)

regularize the energy terms more effectively, therefore it produces better results than

both interactive graph cut and active contour models.

Segmentation Methods [%] Percentage Error
Interactive Graph Cut [5][6] 4.91

Region Based Active Contour [32] 3.38
Variational Level Set [33] 3.39

Modified Interactive Graph Cut (Proposed Method) 2.23

Table 3: The percentage errors of the liver CT segmentations in Fig.6

5 Conclusions

The graph cut approach formulates the objective energy function as a linear combi-

nation of potential functions of data and smoothness constraints. Since the terms can

20



(a) (b) (c)

(d) (e) (f)

Figure 6: a) Liver CT image b) Ground Truth Segmentation c) Interactive Graph
Cut [6] d) Region Based Active Contour Method [32] e) Variational Level Set
Method [33] f) Modified Interactive Graph Cut (proposed method)

have different functional forms, forming the energy formulation can be interpreted

as linear combination of inharmonious constraints. The regularization parameter

regularizes the difference between the functional forms of the terms and determines

the smoothness weights. We proposed an empirical method which increases the tun-

ing performance of the regularization parameter. The method modifies the graph

structure by measuring the statistical significance of each term and expresses them

as p-values. Expressing the terms on the graph by the same measurement unit de-

creases the scale and distribution differences between the terms. The more harmo-

nious terms are properly balanced by the regularization weight, so the minimization

algorithm produces a better solution. Experimental results showed that the modi-

fied graph cut approach improves the graph cut segmentation significantly because

of the new regularization.

Determining the regularization parameters is not a new area for the computa-

tional vision problems. The literature has different parameter estimation methods.

However, none of them is concerned in increasing the effectiveness of the regu-
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larization weight. The novelty of the proposed method is increasing the tuning

performance of the regularization weight. Another novelty of the method is using

the statistical significance as a measurement unit for the terms with different scales

and distributions. The literature generally uses the statistical significance as a de-

cision measurement for an hypothesis. However, our approach uses it to bring the

inharmonious terms on a common base.

Another noteworthy point is that the method adjusts the effect of the regular-

ization weight by adjusting the weights of each term individually. Note that, the

method produces a p-value for each term by evaluating the terms in their distribu-

tions. Because of the relative evaluation, the importance of each term is adjusted

individually in the energy minimization. In recent years, estimating the adaptive

regularization weights from the observed images have become important to obtain

optimal performance. Individual adjustment of each weight makes the proposed

method similar to these methods which try to adjust the regularization weight adap-

tively.

The proposed method improves the graph cut segmentation clearly, whereas it

requires minimal extra computational load for the significance calculation. Cdf’s are

calculated from the costs on the graph which are already calculated for the original

graph cuts. The only computational load is converting the cost values to p-values

which is a linear time operation.

The general structure of the method makes it applicable to other energy mini-

mization applications that involve regularization such as snakes, level sets or stereo

correspondence. Although we did not propose the method to estimate the optimal

regularization parameter, it can be employed in increasing the performance of the

parameter estimation techniques in the literature for finding optimal regularization

parameter.
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