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Abstract

We introduce a surveillance video tractability adjustment

system that employs a dynamic operator attention model.

The tractability of the surveillance video is adjusted ac-

cording to the instantaneous attention level of the operator

(Fig.1). Our system has two novel major parts: (i) dynamic

measurement of the operator attention levels and (ii) an on-

line video tractability adjustment system that employs mea-

sured attention levels. We estimate the attention levels of

the operators by measuring the blink rates and the saccade

information of the eyes. Using well known theories from hu-

man psychology, we estimate the amount of video tractabil-

ity that the operator can easily handle. We tested the pro-

posed system on volunteer operators using both synthetic

and real surveillance data. The results are very promis-

ing and we plan to extend the system with multiple opera-

tors and multiple video streams. Supplementary material is

available at the project website.

1. Introduction

Digital surveillance systems have become an important

part of our daily lives[19]. The lowering costs of surveil-

lance systems makes them even more popular which would

produce a very large amount of visual data to be processed.

However, a fully automatic analysis of the surveillance

videos is not possible with today’s available technology

[17]. As a result, manual processing of the resulting visual

data becomes inescapable and the human labour emerges

as a dominating part of the surveillance system costs [9].

In addition, human errors have to be factored in for such

systems [34, 35]. Video summarization methods have been

used as a partial solution for lowering the costs of human

labour for surveillance systems. Linear summary systems

[20] attempt to drop video frames with less activity and they

cannot compress video without time-lapse effects which is

error prone [18]. Many of these systems produce long sum-

maries to keep clear of the visual errors. One popular and

relatively new solution for compact summarization is non-

linear video synopsis [2]. These methods can bring actions

from different time intervals to the same frame and they can

produce much shorter video summaries without losing any

action.

One major problem with the plain linear and non-linear

video summary methods is their static human attention

models. Psychological studies show that multiple object

tracking capabilities of human beings depend on the number

of objects [3, 8], their speeds [4], and spatial configurations

[28], individual operator differences [15, 35], and operator

attention levels [31, 36]. There are a few static human atten-

tion models for selecting best key-frame sequences[23, 27].

These methods discard unattractive frames according to

their human attention model. However, it is very difficult

for these systems to adjust for different operators because

the parameters for the static attention model are fixed dur-

ing the system design. In addition, static attention models

assume that humans have constant and continuous attention

levels. Holding sustained attention at high levels requires

too much energy so operator performance degrades after

several minutes. Forcing to stay at high attention levels

causes another unwanted situation called stress. An oper-

ator attention model should include operator’s initial condi-

tion and workload [31]. Operator’s attention can also be af-

fected from other stimuli in the working environment [24].

This paper defines a new concept called video tractabil-

ity which is the number of moving objects, their direc-

tions, speeds, and relative spatial positions. We argue that

the tractability of the manually viewed surveillance videos

should be adjusted according to the instantaneous attention

level of the surveillance operator (Fig.1). Our system has

two novel major parts: (i) dynamic measurement of the op-

erator attention levels and (ii) an online video tractability

adjustment system. We estimate the attention levels of the

operators by collecting position and velocities of eye-gaze

points, pupil diameter, blink rate, and saccade information

from the operator. Using well known theories from human

psychology, we estimate the amount of video tractability
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Figure 1. Two cases for video tractability adjustment: (a) An operator with high attention level can track denser videos (b) while an

operator with low attention can track sparser videos accurately.

that the operator can handle. This information is used to

synthesize a surveillance video stream that the operator can

easily handle.

There are several advantages and novel contributions of

the proposed system. First, our system puts the surveillance

operators in an active feedback loop, which solves many

problems associated with systems with static operator atten-

tion models. The human operator is the critical element in a

surveillance system and including this element in the overall

system loop is a big advantage. Our system is an example

of adaptive automation based systems which are very suc-

cessful for preventing operators from fatigue and stress [7].

These types of systems use human resources at maximum

limits while preserving system’s reliability[25]. Second,

we introduce a more general concept of video tractability

adjustment instead of video summarization. We argue that

if the original surveillance video contains too many mov-

ing objects and actions, it should be re-synthesized so that

the operator can monitor the video without getting over-

loaded in order not to miss any moving objects. The re-

sulting video might get longer than the original video with

tractability adjustment (Fig.1-b) . If the input video is too

sparse in terms of moving objects and their spatial config-

urations, the re-synthesized video will be shorter (Fig.1-a).

In contrast, the classical video summarization methods al-

ways try to produce shorter videos regardless of the opera-

tor workloads, which will cause human errors and stress.

Third, we introduce a novel non-linear video tractability

adjustment method that can work on the fly. To achieve

high frame rates without sacrificing system performance,

we use a meta-heuristic called iterated local search. Given

the desired video tractability level, our system can bring ob-

jects from different video frames into the same output video

frame or it can separate objects from the same frame into

different frames without dropping any input surveillance

video frames.

In a similar study, [33] tracks eye-gaze movements of

operators and determines monitored or overlooked parts of

a screen. It produces non-linear summaries of monitored/

overlooked parts of input video stream. The system does

not extract any knowledge about operator’s mental situa-

tion, workload, stress, and fatigue. [6] uses operator eye

gaze positions to decide which camera view is most im-

portant among many cameras. There also exists a paral-

lel variation of [33] that works on high resolution surveil-

lance videos [32] but none of them attempt to adjust video

tractability.

We performed several experiments on volunteers using

real and synthetic videos. A synthetic video based multi-

ple object tracking experiment is done on several different

groups. These experiments show us how human attention

metrics vary with time and workload. We also measure task

success rates on different workloads.

The rest of the paper organized as follows: We describe

psychological background and our action model in Section

2. We explain our video tractability adjustment framework

in Section 3. In Section 4 we give both visual results of

our tractability adjustment system and quantitative results

of psychological experiments.

2. Human Psychology on Multiple Object

Tracking

Many manual surveillance monitoring tasks are based on

tracking multiple independent objects which forces us to

understand the human psychology of object tracking. Luck-

ily, there is a large amount of psychology literature on the

subject[29, 12, 22].

Psychology is interested with multiple object tracking in

terms of attention, tracking limits and strategies, vigilance,

and workload. Humans do not perform perfectly on these

tasks because their visual and the mental capabilities are

limited. In many studies it is shown that a human can track

only a small number of independently moving objects at

the same time[26, 14] (Fig.2(a)). Some studies argue that

divided attention is used for multiple object tracking and ac-

cording to these studies humans can track 4 to 6 dependent

objects [8, 4]. On the other hand, humans can only track
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Figure 2. (a) Humans have an optimal performance zone where

they are both reliable and effective. (b) Humans can track more

objects if the objects are slow.

one object with sustained visual attention. Multiple moving

objects with similar trajectories form a group called virtual

object. Humans can track a larger number of objects if they

are all in virtual objects [28] by looking at the centre of the

virtual objects[11]. There are also constraints other than the

number of objects. It is shown that a larger number of ob-

jects can be tracked if they are slow (Fig.2(b)). Eyes make

smooth pursuit for tracking slow objects and accuracy is in-

creased [4]. For high speed and spatially distributed objects,

saccadic eye movements are required, which demand more

mental resources [16]. Tracking is also hard for indepen-

dently moving objects that collide and occlude each other

[13].

Attention levels and periods are subjective and depend

on expertise [3], emotional situation [15], and perception of

workload [35]. An expert user generally can track a larger

number of objects than a novice user. Experts can also keep

their attention high for longer periods of time. If an operator

is underloaded he or she gets bored [31]. On the other hand,

attention levels of overloaded operators will drop in a short

time [36].

Our operator attention level measurement method uses

the above human psychology theories. We estimate the op-

erator attention levels by monitoring the operator eye-gaze

metrics. The output videos are re-synthesized such that

the operators are always kept at optimal performance zone

(Fig.2(a)).

3. Video Tractability Adjustment System

A surveillance video tractability adjustment system mod-

ifies the speeds, the directions, and the spatio-temporal con-

figurations of moving targets according to the operator at-

tention level and the system places the modified targets into

the best tractable places. We define the video tractability

adjustment problem as a kind of facility location problem

which is finding the optimum locations of given objects in

a definite search space[21]. We view each action a in the

input video buffer Vin as a facility and extract the set of

all candidate locations L for a given size of output video

Vout. When the input video buffer Vin is ready, a set of

actions is obtained by running a blob based object tracking

and segmentation algorithm on the buffered video. These

segmented actions are appended to a queue of waiting ac-

tions Q. According to the attention criteria, a subset of ac-

tions A is obtained randomly from the Q. Video tractability

adjustment system then assigns a location label l from L to

each action a in the action set A. A configuration C rep-

resents the labelling assignments of all actions in A. The

video tractability adjustment problem is to find an optimal

configuration C∗ which has minimum total energy ET . We

solve an approximation of this problem using the iterated

local search approach [30].

3.1. Problem Definition

Facility location is an NP-Hard problem. In 3D x-y-t
volume of a given output video Vout, there are too many

pixel locations where a modified action a can be placed.

Therefore, limiting the search space is essential for a fast

surveillance video tractability system. We prefer to work in

2D domain which represents the x-t trajectories of moving

targets. The 2D trajectory images are used in surveillance

video systems for efficiency [33]. Our tractability adjust-

ment system first extracts motion trajectories of moving ob-

jects from the surveillance videos in x − y − t space (3D

space time volume). For each frame and each action in the

input video Vin, bounding boxes of the actions and their

centroids are computed. The y components of the centroids

are then dropped to move to the x-t space (2D space-time).

In the video reconstruction phase, the bounding boxes in

the x-y domain is used for the given object and time. (See

supplementary material-1 for dimension reduction.)
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Figure 3. Line Segment Model. (a) First iteration of Douglas-

Peucker line approximation algorithm. Dashed line represent the

maximum distance between the trajectory curve and the fitted

line.(b,c) Second and third iterations of the algorithm. (d) 2D

space-time domain of output video Vout and possible locations.

We prefer to use a line segment based model for repre-

senting motion trajectories in the x− t projection space. A

line model ℓ represents x = ℓ.m t + ℓ.b in 2D space-time

domain where ℓ.m is the slope and ℓ.b is the phase of the

line l. Line segment model is an effective model for ma-

nipulating action properties. Speed of an action a can be

adjusted by changing the slope magnitude of its line model

or its direction can be reversed by changing the sign of the

slope. We obtain line segment models of actions from 2D

space-time trajectories. These action trajectories generally



form a higher order curve that cannot be approximated by a

single line segment model. A set of line segments a.segm
are used for each action a. The iterative curve approxi-

mation algorithm of Douglas-Peucker is used[10] to fit line

segments to these trajectories (Fig. 3). For each action a,

the proposed method checks the signs of slopes for each

line segment in a.segm to determine the direction of tar-

get’s movement. A direction change in an action trajectory

is determined if there are two consecutive line segment parts

with different signs of slopes. The line model divides action

into parts so each action is forced to have a single direction.

The video tractability adjustment system also uses the

line segment model for representing candidate locations L.

Our method extracts candidate location segments from the

2D space-time as shown in (Fig. 3(d)), which includes only

a subset of possible line segments for clarity. Each red

coloured line segment is a location label.

The line models of actions and the candidate line labels

are used in an energy formulation for finding optimum con-

figuration C∗. Total energy ET of tractability adjustment

system is a linear composition of the video tractability en-

ergy Etract, the video similarity energy Esim and the en-

ergy of operator comfort Ecomf . Total energy of a given

configuration C, set of actions A, and operator attention

level Att is

ET (A,C,Att) = α1Etract(C) (1)

+ α2Esim(A,C) + α3Ecomf (C,Att).

where a, b ∈ A and C[a] is a location label l ∈ L.

In facility location problem, a facility searches for a min-

imum cost location that maximizes its profit. For video

tractability adjustment problem, action a should be placed

on the best viewable location according to the operator at-

tention while preserving its initial action characteristics.

The similarity term Esim in the total energy ET tries to

keep the configuration C as similar as possible to the ac-

tion’s original speed, direction, and chronological order. On

the other hand, the tractability energy Etrack forces actions

in A to the new location labels for better tractability. The

tractability term only deals with configuration properties of

a given video and it is free from the operator’s attention

level. In facility location problem, facilities can also require

outputs of other facilities, so compact establishment of re-

lated facilities is crucial for minimizing run-time costs. The

tractability term also evaluates the interactions between the

location labels in the configuration C. The total energy ET

includes Ecomf which regularizes the tractability of each

frame according to the attention level.

3.2. Energy Functions

The total energy ET of the tractability adjustment sys-

tem has three main parts: Etract, Esim, and Econf . These

terms are formulated as a weighted sum of several sub en-

ergy terms and in this section we describe them in detail.

We define a linear model for evaluating the tractability

level. The model is both based on psychological theories

and empirical results of our experiments. The tractability

energy Etract is defined in terms of speed, direction, colli-

sions and object density. Tractability level Etract of a given

configuration C is

Etract(C) = β1Eden(C) + β2Evel(C)

+ β3Edir(C) + β4Ecol(C). (2)

Number of moving targets in a video frame is an im-

portant tractability factor. Tracking accuracy of human op-

erators decreases on crowded scenes, so a tractable video

should consist of fewer number of objects per frame. The

video density term Eden is estimated from the configuration

C as an average number of moving targets per frame.

The tractability adjustment system evaluates the veloc-

ities of moving targets and forces actions to move slowly.

The velocity term Evel is the average speed of moving tar-

gets (Eq. 3).

Evel(C) =
∑

i

abs(C[i].m)/sizeof(C) , ∀C[i] ∈ C

(3)

where C[i] is a label l ∈ L.

Psychological studies on multiple object tracking show

that humans can track more objects if the objects move in

similar directions. The term Edir evaluates the direction

differences of moving objects in a frame. We compute it

as the number of frames which include at least two moving

targets with different directions. The direction of a moving

object can simply be determined by checking the sign of its

line model’s slope m.

Multiple object tracking capabilities of human operators

decrease when objects collide. To prevent collisions, we

apply a penalty to intersecting line models.

Ecol(k, l) = M [k][l] (4)

where k and l are two distinct labels in L. We pre-compute

the intersections of all line pairs in L for efficiency and hold

them in a collision matrix M . (Please, see supplementary-3

for the effects of the energy terms.)

The proposed system measures the attention level of the

operator by using two different eye metrics. Our psycholog-

ical experiments show that operators success rate decreases

when their blink rates or saccade frequencies increase. At-

tention level Att is increased if operator gaze metrics are

regular and decreases when he or she is overloaded or tired

(Eq.5).



Att = Att+

{

−1 if (saccade ≥ T1 or blink ≥ T2),

1 otherwise.

(5)

We form an array H with the size of the video. The ele-

ments of H correspond to the frames of Vout and their val-

ues represent the number of actions on those frames. Each

location label l in configuration C increases the array ele-

ments corresponding to its time interval.

Ecomf (C,Att) =
∑

f=0

|(H[f ]−Att)| (6)

The video tractability adjustment system uses the simi-

larity energy term Esim to preserve the original action char-

acteristics. The similarity energy term consists of three

terms.

Esim(A,C) = γ1
∑

a

EdirSim(A[a], C[a])

+ γ2
∑

a

EvelSim(A[a], C[a])

+ γ3
∑

a

EchronoSim(A[a], C[a]). (7)

Direction of an action can be manipulated to form a vir-

tual group of objects but this manipulation can produce un-

usual results like a human walking backwards. A cost is

applied for preserving original moving direction. A change

on direction is detected by using Eq. 8.

Edir(a, l) =

{

1 if a.segm[0].m l.m ≤ 0,

0 otherwise,
(8)

where a.segm[0].m is the slope of the first line segment of

a and l.m is the slope of candidate location label l.

The tractability system adjusts the speeds of actions for

compact video outputs with less collisions or for accurate

tracking. Accelerating the actions makes a more compact

video possible for an operator with high attention level. A

more tractable output can also be obtained by slowing down

objects for an operator with low attention level. This term

tries to limit to change in the velocity so a fast target is ac-

celerated before a slow one or a slow object will be chosen

for deceleration.

Chronological orders of actions change in the video

tractability adjustment system but the system tries to pre-

serve their order while synthesizing output videos. This is

done by assigning a waiting time priority to the actions in

the waiting queue Q

3.3. Optimization

Video tractability adjustment for a given attention level is

a complex optimization problem. A minimum energy con-

figuration C∗ should be computed efficiently.

C∗ = argmin
C

ET (A,C,Att) (9)

We use iterated local search (ILS) for finding minimum

energy configuration. ILS is a simple yet powerful meta-

heuristic and it is fast enough for video tractability adjust-

ment. It has three important parts:

1-Initialization: The initial configuration can be a ran-

dom location label l assignment to each action a in A. We

use the output of the greedy method that only optimizes

similarity energy Esim as the initial configuration.

2-Local Search: In the local search phase, each action

a is selected in order as an active action. Activation order

of actions is determined randomly once in the beginning of

each local search phase. Active action a in configuration C
searches for a better location l while other actions preserve

their locations.

3-Modification: In the modification step, a number of

actions in configuration C is selected randomly. These se-

lected elements of configuration C change their location la-

bels l randomly. This step can increase the energy level of

configuration C and can be considered as a diversification

step.

In our video tractability adjustment system, local search

and modification steps are iterated for several times. We

randomly group actions in set of all actions A in such a way

that all groups have Att number of actions.

The final synthesized output video is formed from the 2D

projection space that produces C∗.

4. Experiments

We have a number of volunteers whose eye-gaze metrics

are recorded by using the head-mounted eye-gaze tracker of

Arrington Research [5]. Our first experiment is a psycho-

logical experiment for extracting the relationship between

eye-gaze metrics and human attention level. A multiple ob-

ject tracking based task is prepared. The task also measures

the short-term memory capabilities of volunteers which is

directly related with the attention level. Human-like mov-

ing targets have three different labels on their chests and

they move on a plain background (Fig. 5(a)). Each object

has different speeds and they can change their directions or

they can stop for a while. They also produce alerts by hid-

ing their labels for a while as shown in Fig. 5(b) . Operators

should catch these random alerts on time. Operator should

also remember the true label of the object and press its label

key on the keyboard, which is called catch. If the opera-

tor saw the alert but does not remember its label, he or she
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Figure 4. Visual results of the proposed method. (a, c) Trajectories of actions in the input video and their optimized trajectories for

configuration C
∗ (b) Sample frames for the trajectories of (a). There are generally two moving objects in each frames. (d) Some sample

frames from the tractability adjustment system’s output for the trajectories shown in (c). This video output is optimized for three objects

per frame.

presses a special key, which is called monitored. If the oper-

ator does not press a key, the alert ends in two seconds and

we mark this alert as missed. The goal of the operator is to

minimize the number of missed alerts.

(a) (b) (c) 

Figure 5. Task Interface. (a) An underloaded video with a single

object. (b) Alerts are given by hiding objects label. (c) A sample

frame from an overloaded period of expected workload case with

lots of moving targets. See supplementary-2 for sample frames of

our synthetic test scenarios.)

In the experiment, there are three different levels of

workloads determined by the number of moving targets. For

underloaded case (Fig. 5(a)), test videos consist of 12000

frames which is the repetition of the first 3000 frames four

times. In expected-load case (Fig. 5(c)), 3000 frames of un-

derloaded case and 3000 frames of overloaded case is used

twice. In adaptive workload, we start with a small num-

ber of target objects and adjust the number by one every 30

seconds according to the operator’s attention level. Average

results are given in Table 1.

The table 1 shows that underloaded volunteers have bet-

ter scores than the others. Their catch per alert rate is over

85% which is over 30% better than the best performance

of the expected-loaded operators. Expected-loaded opera-

tors did nearly 90 percent of the misses when they are over-

loaded. From table 1, we concluded that although being

underloaded is good for mistakes done, the total work done

by underload operator is minimal compared to the others

(Fig. 6). The operators track nearly five times more moving

target than the underloaded operators.

We had several interesting observation about the gaze

metrics and task scores. We observed that the operators

who blink more have less score, which is an indication of

boredness. We also observed that operator saccade rates

start increasing when there are more target objects, which



���

���

���

����

����

����

����

�����

�����

����	AB�� �CD�EF���AB�� ���DF����AB��

��D���B���B	�AB���

�

�B	��A������B	�AB�� �B��FB	�������FE ��FE !	B�" ����

#���	AB��

$CD�EF��

%��DF���

�

����

���

����

���

����

��	

��	�

���

� ��� � ��� � ��� 	 	�� �

!B	�AB����%��	�"�������	�B���EF�B���D�	��	����

�
��
�
�
�
�D
�
	�
&
'
'
'
��
E
F�
B
�
�

��F�F�E� ��F�F�E� �������E�

Figure 6. Graphical representation of Table 1. (a) Relation be-

tween workload and operator success is shown. Operators under

adaptive workload do the best miss rates and they are nearly five

times more efficient that the underloaded operators. (b) Bar rep-

resentation of task performances for three workload types. Higher

rates are better for the first three bars and the lowers are better for

the last two. Workload of the adaptive operators are similar to the

operators under expected-load but the success of operators under

the adaptive load is nearly as good as the underloaded operators.

is an indication of overloading. Therefore, we use the time

derivative of the saccade rates as a measure of overload-

ing. If the derivative of saccade rates increases over 10%

from the previous interval, we decrease the number of ob-

jects. We also decrease the number of objects if the blink

rate increases over 5%, otherwise the attention level of the

operator is increased.

When the results of adaptive-load experiment are com-

pared with the results of the non-adaptive experiments, we

see that adaptive-loaded operators clearly have better per-

formance in terms of monitored, missed, and wrong alerts

compared to expected-loaded case. The numbers for the

proposed method and the underloaded cases are very simi-

lar. However, the underloaded operators perform at a much

lower production rate as indicated by the average number

of objects per frame. Therefore, we can claim that the pro-

posed system is both more reliable and more efficient than

the other methods. (Please, see supplementary-3 for the re-

sults of the tractability adjustment system on real surveil-

lance data.)

We tested our video tractability adjustment system on

real surveillance data from PETS dataset [1]. In order to

test the tractability adjustment system with this dataset we

simulate the operator attention level. The results of a sparse

and a dense output video examples are shown in Fig. 4. We

also show the 2D space-time action trajectories with their

initial line models. The optimized action location spaces

Table 1. Quantitative Results of Psychological Experiment.

Underload Expected-Load Adaptive-Load

#participants 3 3 5

Avg. #Actions per frame 0.76 3.01 3.34

Avg. #Alerts 40 74 87

Catch (%) 86.7 56.8 83.9

Wrong Alerts (%) 4.17 11.2 4.75

Missed Alerts (%) 1.67 18.4 2.30

Monitored + Catch Alerts (%) 98.3 81.6 97.7

Misses per 1000 actions 0.07 0.37 0.04

are also shown. Our tractability adjustment running times

are asymptotically O(a.l), which takes 5 ms per frame on a

standard Pentium 4 PC. Please see the supplementary mate-

rial for the sample outputs of our system.

5. Conclusions

We introduced a surveillance monitoring method that

places human operators into an active feedback loop within

the video synthesis system. The system measures the at-

tention levels of human operators and adjusts the video

tractability to match the operator attention levels. The re-

sults of experiments show that proposed method increases

the efficiency of operators while preserving the reliability

of the system. The proposed system could be used for bal-

ancing the workloads among different operators, evaluat-

ing the operator performance, measuring the quality of the

monitoring operation, and determining the shift periods of

operators.

The proposed system defines the video tractability ad-

justment task as a facility location problem, which manip-

ulates actions for better tractability and it produces more

viewable surveillance video outputs than the classical video

summarization methods. The proposed method can also be

used for video summarization and it can produce more com-

pact summaries by manipulating speed and direction of ob-

jects.

We plan to extend our video tractability adjustment sys-

tem to work with multiple operators and multiple video

streams. We also plan to perform object tracking using

static and dynamic features extracted from experiments on

operator object tracking behaviour.
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