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Abstract This paper presents a novel technique for the
extraction of the left ventricle borders from echocardiograms
with prior information. Although the literature includes many
successful prior based methods, priors that include both
image and non-image related features are rare for the con-
tour extraction. We classify these features as local and global
priors where the local priors refer to the locally definable
features of the target borders and global priors refer to the
geometric shape properties. The local priors, which include
image, motion, and local shape information, are learned with
AdaBoost. The scores produced by AdaBoost for the target
images are combined with the global shape prior under a
level set framework. The main contributions of this paper
are to learn different types of local features efficiently with
machine learning and to combine these features with the geo-
metric shape information for the contour extraction task. The
system is validated on the real echocardiograms and synthetic
images. The results indicate that using local and global priors
together produces better extraction results and the contours
extracted by the proposed system are in accord with the expert
delineated borders.
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1 Introduction

Extraction of the inner and outer cardiac borders (endo-
cardium and epicardium) from echocardiographic images
produces crucial information about the cardiac functions and
cardiac morphology like the size and thickness of the cardiac
wall, the volume of chambers, the ejection fraction (blood
pumping capacity), etc. In the current clinical practice, the
cardiac borders are generally delineated manually by sono-
graphers [15]. However, the manual delineation process is
user-dependent, time consuming, ineffective, and results in
variations between experts (Fig. 1). As a result, automation
of the cardiac wall extraction is considered important for
increasing the accuracy of measurements and speeding up
the cardiac assessment.

Conventional contour extraction techniques (such as
[14,18,20]) cannot be directly employed for the automatic
extraction of the cardiac borders because of ultrasound
modality related problems. The literature partially addresses
these problems by employing different regularization strate-
gies through the incorporation of domain related informa-
tion into the extraction process in the form of shape priors
[5,7,26,31]. The overall results improve significantly for the
borders with poor image information. However, the shape
prior is sometimes not adequate to recover a shape with
very low image gradient magnitude. Chen et al. [6] sug-
gest using intensity profiles of object contours besides the
shape prior by training an intensity model from a set of
images. A similar intensity and curvature profile informa-
tion is used by Leventon et al. [17]. Bresson et al. [3] pro-
pose a variational model that uses a shape model learned with
Principle Component Analysis, image gradient, and region
information in its energy functional. Although using such
priors are very useful for the extraction of object bound-
aries, it is difficult to use other image and non-image based
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(a)

(b)

Fig. 1 a Four sample echocardiographic images of the left-ventricular short-axis transthoracic views. Note that the left and right parts of the
borders have minimal image gradient information due to signal dropout problem. b The same images delineated by four different experts

features (e.g. motion and distance to a reference point)
together as the prior information with the contour extraction
methods.

The machine learning methods learn different types of fea-
tures for detecting the target structures. AdaBoost [12] is one
of the popular machine learning methods used heavily by the
medical imaging community for the detection of anatomical
structures. Carneiro et al. [4] detect the fetal anatomies and
Feng et al. [11] detect fetal faces from ultrasound images
through a probabilistic boosting tree. Georgescu et al. [13]
use AdaBoost for extracting the endocardial borders of the
left ventricle with structure detection. AdaBoost is also used
for locating the vessel boundaries [27] and tracking the car-
diac borders [28].

In this paper, we present a novel approach for the auto-
matic extraction of the cardiac borders with AdaBoost and
active contours. We first detect the candidate cardiac bor-
ders by learning local information with AdaBoost and then
extract the final borders by incorporating global shape infor-
mation. We classify the incorporated knowledge as local and
global priors because they include different types of informa-
tion about the target structure. The global prior refers to the
classical shape prior [5,7] that incorporates the geometric
shape requirements into the extraction process. Local pri-
ors include locally definable features of the target borders

such as image information, time related properties, local
geometric shape, distance from a shape reference point,
etc. Since there are different types of local features, it is
hard to learn and combine them with classical regulariza-
tion techniques. In this study, different local features are
all trained and learned via AdaBoost easily without using
any regularization techniques. In the testing phase, score
images that include the local information are produced. We
employed the global prior incorporation method of [25] in
bringing the local and global priors together. Oktay and
Akgul [25] incorporates the global prior by re-initializing
the best matching expert contour on the score image at regu-
lar intervals. Preliminary work on this study was presented in
[23,24]. We extend [23,24] by utilizing the motion informa-
tion more efficiently and by providing a more complete sys-
tem validation.

The proposed method is tested on short axis view echocar-
diograms of end-systole and end-diastole phases to extract
endocardium and epicardium. It is hard to evaluate the accu-
racy of the system and effectiveness of the filters with real
echocardiograms due to the lack of proper ground truth.
Therefore, experiments on the synthetic images are also per-
formed to compare our method with the methods of the liter-
ature and to show the robustness of our method under various
controlled noise levels.
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The rest of this paper is organized as follows. The local
priors and the AdaBoost scoring process are described in
Sect. 2. Section 3 includes the method for the incorporation
of the global prior. The experiments are presented in Sect. 4.
Finally, we provide concluding remarks in Sect. 5.

2 Local priors

Incorporation of local priors is necessary when the target
object has different characteristics at different spatiotemporal
image locations. We extract these local, spatial, and motion
features after converting the echocardiographic images into
polar coordinates (Fig. 2). After training the extracted fea-
tures with AdaBoost, each pixel of the target image is given
two scores to be used with global priors. The architecture of
AdaBoost scoring system is shown in Fig. 3.

(a) (b)

Fig. 2 a An echocardiographic image where the epicardium is in red
color and the endocardium is in green color. b The same image con-
verted to polar coordinates in (θ, r ) space and divided into angle ranges
from θ1 to θn (color figure online)

2.1 Extracting local features

We convert the echocardiographic images into polar coordi-
nates [16] using the linear interpolation technique. The left
ventricle center is chosen as the center of the polar coor-
dinates. Although the left ventricle center can be estimated
automatically as in [30], we use the centers of expert con-
tours during the AdaBoost training and manually extract the
centers during the testing. In the echocardiographic images,
the left ventricle is usually in the middle of the image and
the midpoint of the image is near to the polar center. So, in
our system the polar center does not affect the system perfor-
mance very much. However, for the images in which target
organ is not in the center of the image, the performance is
dependent on the polar center.

The employment of polar coordinates (Fig. 2) has advan-
tages for the local feature extraction. First, the translational
differences between different images are minimized because
the left ventricle centers of all images are registered to the
origin in the polar coordinates. As a result, the distance from
the heart wall to the polar origin becomes a valuable fea-
ture that can be used as a local prior. Second, the heart wall
orientations are similar (all almost horizontal) in the polar
coordinates. This allows us to use a smaller number of filter
orientations to capture the contour orientations.

In the echocardiograms, the upper and lower parts of the
cardiac wall have higher image gradient magnitudes than the
side walls because of the signal dropout. In order to address
this modality related problem, we divide the polar images into
a number of overlapping angle ranges θi where i = 1 . . . n
and n is the number of ranges (Fig. 2b). The features in each
θi range are extracted and trained separately so that different

Fig. 3 The local feature
extraction and scoring process
with AdaBoost

Echocardiograms
with expert contours

Transform
echocardiograms into
polar coordinates and
divide into θ ranges

Extract local image
features in each

range with 2D and
3D filters

Train with
Adaboost

Convert to Polar
coordinates

Training

Pixel Scoring

Target
image

Non-image
features

Iepi

IendoAssign scores
with

Adaboost

123



A. B. Oktay, Y. S. Akgul

characteristics of the cardiac borders including the signal
dropout rates at specific positions can be handled appropri-
ately.

The incorporation of temporal information is crucial for
detecting the cardiac borders [1,21]. The sonographers uti-
lize the temporal information in the manual extraction of the
cardiac borders by viewing the echocardiograms as movies
[15]. We incorporate the temporal information using local
features in the form of 3D Haar-like filters [19], hence our
system avoids any explicit spatiotemporal deformable mod-
els which are complicated and expensive to minimize. This
solution allows us to conveniently use our local prior enforce-
ment method in imposing spatiotemporal constraints.

Three types of rectangular Haar-like filter sets D, E , and
F are used for the image feature extraction (Fig. 4). For each
filter type, the feature value is calculated by subtracting the
total intensity value of the darker area from the total intensity
value of the lighter area [29].

The 2D filter set D extracts the spatial appearance infor-
mation. The 3D spatiotemporal filter set E , which is the
stacked version of type D, is used to extract motion and
appearance information in the time dimension. Similarly, the
filters in set F are stacked versions of the type D filters, but
while stacking these filters, each filter is shifted depending on
the anticipated heart wall motion. The F filters are shifted up
(down) for the neighboring frames of the end-systole (end-
diastole). For the cardiac images in polar (θ, r ) space, the
border positions have the smallest r value in the end-systole
and the largest in the end-diastole phase. The borders of the
neighboring frames of the end-systole phase have r values
which are typically 1 to 3 pixels greater than the r value of
the end-systole. In order to register the contour motion of
the end-systole, the F filters shift up for each neighboring
frame 1, 2, or 3 pixels. Similarly for the end-diastole, the
F filters shift down for each neighboring frame 1, 2, or 3
pixels. Since we do not know the exact amount of border
motion between the frames, we try different shift amounts in
order to capture the cardiac motion. These filters describe
motion information better and capture motion patterns
effectively.

The spatiotemporal filter sets E and F are very useful in
addressing the ultrasound noise since they use the motion
information of neighboring frames. We use various versions
of the filters with different sizes (from the size of 2×2×1 to
20×20×5), gray level inverses, and rectangular shapes. The
filters are efficiently calculated by using the integral images
[10,29]. The calculation of E and F filters with integral vol-
umes are the same as [19].

In order to train the local prior model, we extract a number
of features fm where m is the feature type. The features are
calculated separately for each possible (θ -B) pair where θ

is the angle range and B ∈ {epi, endo} is the border type
(epicardium or endocardium).

Fig. 4 Three sets of filters used for feature extraction. The set D con-
tains only spatial filters whereas the sets E and F contain spatiotemporal
filters

The first feature type f (θ,B)
1 (p) is the distance of the pixel

p from the center of the left ventricle:

f (θ,B)
1 (p) = R(p), (1)

where R(p) returns the r position of pixel p in polar space.
The other feature types are all image related:

f (θ,B)
k (p) ∈ {D(p)} ∪ {E(p)} ∪ {Fi (p)}, (2)

where {D(p)} and {E(p)} are the sets of all D and E filters
applied to pixel p, respectively. F filters are different from
the sets D and E in that they have to specify shift amounts for
the neighboring frames. Since we do not know the amount
of shift in the cardiac movies, for a given F filter and pixel
p, we measure the responses of all possible shift values and
choose Fi (p) that gives the maximum value. The classical
AdaBoost assigns a weight to each feature and sums them
linearly which is used in our handling of D and E filter
sets. However in our system, not all F filters are assigned
weights. Instead, we only assign weights for a special subset
of F filters (maximum Fi (p)) which makes our approach
non-linear. This is a novel method that we use to effectively
address the unknown contour movement values of borders
between the cardiac frames.

2.2 Training and scoring process

Consider a pair (p, c) for a pixel p and class c ∈ {wall, non−
wall} as the classification label of p. We define p f as the
set of features extracted with Eqs. 1 and 2 for the pixel p.
AdaBoost uses weak simple classifiers hθ,B(p f ) and assigns
weights α inversely proportional to the accuracy of the clas-
sification. Different from the classical AdaBoost, instead of
using the discrete class value sign(H(p)), we employ H(p)

directly as the score value in our local prior estimations.
The final strong score value is built by
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(a)

(b)

Fig. 5 a The result of the pixel scoring process for the epicardium of
the echocardiogram of Fig. 2 which is built by combining the score
values of each angle range. b Same score image with 4 expert detected
contours

H θ,B(p) =
T∑

t=1

αt h
θ,B
t (p f ), (3)

where T is the total number of weak classifiers.
For training, the polar converted echocardiographic

images are divided into n = 36 θ ranges where n = 36 is
selected empirically. The expert contour positions are used
as positive examples and 10 % of the other positions in the
same angle range are used as negative examples. We train and
test only the end-systole and the end-diastole frames in the
cardiac cycle for which the expert delineations are available.
Each (θ, B) pair is trained separately because they include
different types of local knowledge, i.e., for each (θ, B) tuple
we train a separate classifier H θ,B .

For the scoring process, each pixel of the angle range θ is
assigned two score values with H θ,epi and H θ,endo by Eq. 3.
These two scores are used to form two polar images I epi and
I endo. An example I epi image is shown in Fig. 5. These two
images are converted back to the rectangular representation
which are linearly normalized to the [0–255] range and used
by the active contour energy functional that will be defined
in Sect. 3.

3 Global priors with level set method

Although the local priors incorporate valuable information
into the contour extraction process, we still need to impose
more global constraints such as geometric shape. Such infor-
mation would guide the contours towards better positions
where there is no sufficient local data. For example, the sec-
tions of the score image in Fig. 5, which do not carry any local
information, can only be extracted with global information.

The score images I epi and I endo are formed only with
the local information from the target images. We use the
prior shape incorporation method of [25] which is based on
incorporating the shape prior during re-initialization of the

level set surface. Note that, at this step our goal is to bring
the local and global priors together rather than proposing
a new global prior incorporation method. In addition, it is
possible to use other contour extraction methods like active
shape models [9] and active appearance models [8] with the
score images.

The global prior incorporation method is based on
re-initializing the level set surface formed with the most sim-
ilar expert contour [22,25]. We prefer to use this technique
because it does not require any training and it is fast.

For the cardiac wall extraction, let c1(t) and c2(t) be two
closed curves evolving on the plane �2 with time t for extract-
ing the endocardium and epicardium, respectively.

Consider C as the set of points on c1(t) and c2(t). Let
x ∈ �2 be the position vector and φ be a signed distance
function defined as:

φ(x) =
⎧
⎨

⎩

0, if x ∈ C,

−d(x), if x is outside c1 but inside c2,

d(x), otherwise,
(4)

where d is the shortest Euclidian distance to C from point x.
I endo and I epi are the normalized rectangular images

that include the score of each pixel assigned by AdaBoost.
The surface φ evolves on image I which is defined as

I (x) =
{

1
1+Iendo(x)

, if x is closer to c1,

1
1+Iepi(x)

, if x is closer to c2.
(5)

The 3D surface φ evolves under the influence of internal
and external energy terms according to the variational level
set formulation [18]. The incorporation of global informa-
tion is achieved by stopping the surface deformations and
re-initializing the surface under the influence of the shape
prior at regular intervals. During the re-initialization, the
expert contours are warped onto the evolving contour and the
best matching contour is found. The best matching contours
for the endocardium and epicardium are found separately.
The surface that contains the global shape information is con-
structed by embedding the best matching warped expert con-
tours (endocardium and epicardium) into the zero level of the
surface with Eq. 4. The constructed surface is re-initialized
on the image I (x) and thus the global shape information is
incorporated by the re-initialization. [25] explains the details
of the global shape incorporation method.

4 Experimental results

The system is tested and validated using real echocardio-
graphic and synthetic images. Experiments on the echocar-
diograms are performed to show the effectiveness of the
method and its practical applicability. Experiments on syn-
thetic images are performed to demonstrate the robustness of
the local priors under varying controlled levels of noise.
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4.1 Echocardiographic images

The proposed method is validated on the echocardiographic
images of the left-ventricular short-axis transthoracic views.
The data set includes sequences of frames during the cardiac
cycle of 20 different people. Each cardiac cycle includes one
end-systole frame and one end-diastole frame whose endo-
cardial and epicardial borders are delineated by 4 different
experts (Fig. 1). The frames between the end-systole and
end-diastole phases exist in the dataset. However, they are
not annotated by the experts in medical practice. There are 20
end-systole and 20 end-diastole frames for 20 different sub-
jects. Each end-systole and end-diastole frame is annotated
by 4 different experts which makes a total of 160 annotations
for 40 images. Each endocardial and epicardial contour is
represented by 100 points.

We performed a non-overlapping subset of leave-five-out
cross validation experiment for 20 systole and 20 diastole
frames separately. In each cross validation sub-experiment,
we used 15 cardiac images (each delineated by 4 experts)
for training and the remaining 5 cardiac images for testing.
The total number of features extracted for each pixel is 1081.
We used the expert detected endocardium and epicardium
contours in the training set as the global shape prior.

We do not have a proper ground truth data available for
the validation of the system. Therefore, the delineations of 4
different experts are used for the evaluation of our extraction
results. The expert delineations are also compared with each
other to obtain the variations between the experts. The aver-
age pixel differences are calculated between expert-expert
and expert-system contours. Given two contours to be com-
pared, Cx = {x1, . . . , xn} and Cy = {y1, . . . , ym}, the Cham-
fer distance E(Cx , Cy) [2] is calculated by

E(Cx , Cy) =
∑n

i=1 Dist(xi , Cy) + ∑m
j=1 Dist(y j , Cx )

n + m
,

(6)

where Dist(z, C) is the minimum Euclidean distance between
the point z and the contour C .

We run our method on 40 echocardiograms in the dataset
(20 systole and 20 diastole images). The average of expert-
expert differences (mean ± standard deviation) are shown
in Table 1. The smallest average pixel difference between
the experts is 3.10 pixels (Expert 1 and Expert 3) and the
largest is 6.72 pixels (Expert 1 and Expert 4). Our system
results are between 3.54 and 5.10 pixels for endocardium
and epicardium.

We also run the method of Bresson et al. [3] on both
echocardiograms and score images to make comparisons
with our system. We choose this method because it is
an enhanced combination of successful prior incorporation
methods [7] and [17]. The main limitation of the method of

[3] is segmenting only one object at a time so we only extract
the epicardium with the method of [3]. The results generated
with the method of [3] are shown in Table 1. The Cham-
fer distances on the score images are between 4.68 and 6.46
for the epicardium. We also directly run the method of [3] on
the original echocardiograms to extract 40 epicardial borders
using the same experimental setup. The results of this step
are also listed in Table 1. We immediately observe that the
method of [3] performs worse on echocardiograms than on
score images because the score images include more relevant
local information. Note that, a small pixel difference between
two contours only shows the similarity between them. As a
result, a smaller pixel number should not always be inter-
preted as a better result. Instead, the numbers of Table 1 are
provided to show the statistical indistinguishability of the
contours produced by the system and experts. Three sample
images from the dataset and our extraction results are shown
in Fig. 6.

4.2 Synthetic images

The proposed contour extraction system uses both local and
global priors to extract the cardiac borders. We need to ana-
lyze the behavior of the local priors separately, for which
we view our pixel scoring process as a classification system.
We apply standard classification performance tests, e.g. ROC
curves. Note that we could not perform the same experiment
with the real images as we do not have the proper ground
truth data for them. In addition, this experiment provides a
test bed environment that allows us to evaluate the effects of
the filter sets D, E, and F .

Several sequences of synthetic images are created with
various amounts of noise of type gaussian, salt and pepper,
and speckle. The images are 100 by 100 pixels in size and
have 50 gray level contrast. The synthetic sequences include
a ring shaped object that grows and shrinks like the left ven-
tricle. The sequences with different growing and shrinking
speeds are included in the training set for a more realistic
experiment.

We used 15 different synthetic movies with different noise
levels (Table 2) for the training set. For testing, we scored
three different synthetic sequences with different noise levels
(Table 2) to evaluate the effectiveness of the scoring process.
Figure 7a shows sample frames from the test sequences.
Figure 7b shows the score images for the outer contour which
corresponds to I epi. For the score images, the brighter inten-
sities represent higher scores (likely border positions) and
darker intensities represent lower scores (likely non-border
positions). In order to obtain a standard classifier that clas-
sifies a given pixel into a border or a non-border pixel, we
applied a threshold to the score images (results of Eq. 3).
ROC curves (Fig. 8) are formed by changing this threshold
from −∞ to ∞. As expected, the least noisy image has a
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Table 1 The Chamfer distances (mean ± standard deviation) for 40 test cases of epicardium and endocardium

Endocardium distances Epicardium distances

Exp 2 Exp 3 Exp 4 Our
method
on scores

Exp 2 Exp 3 Exp 4 Our
method
on scores

The
method
of on [3]
scores

The
method
of [3] on
scores

Exp 1 3.46 ± 1.08 3.10 ± 0.86 4.36 ± 1.64 3.54 ± 0.69 3.36 ± 0.89 3.29 ± 0.7 6.72 ± 2.64 4.69 ± 0.92 4.68 ± 1.57 6.66 ± 2.03

Exp 2 3.23 ± 1.06 4.23 ± 1.44 3.99 ± 1.00 3.37 ± 1.05 6.64 ± 2.86 5.02 ± 1.27 5.11 ± 1.60 7.00 ± 1.72

Exp 3 4.17 ± 1.65 4.16 ± 0.72 6.63 ± 2.80 4.52 ± 1.01 4.73 ± 1.41 6.67 ± 1.72

Exp 4 4.59 ± 1.32 5.10 ± 1.64 6.46 ± 2.11 7.01 ± 1.92

Exp is used as the abbreviation for the word expert

Fig. 6 a Three
echocardiographic images;
b epicardium and endocardium
contours extracted with our
method; c contours delineated
by four different experts;
d expert detected and system
detected contours

(a) (b) (c) (d)

Table 2 Noise levels of
synthetic sequences in Fig. 7 Noise type Training sequences (Noise range) Test seq. 1 Test seq. 2 Test seq. 3

Gaussian (σ 2) 0.005–0.25 0.04 0.17 0.2

Salt and pepper (%) 0.5–25 4 17 20

Speckle (σ 2) 0.005–0.25 0.04 0.17 0.2

higher classification rate and the noisiest image has a lower
classification rate. The analysis of the score images and ROC
curves shows that borders of the objects are detectable even
under high amounts of noise.

After evaluating the score images with ROC curves, we
run our method on the score images to produce the final
results (Fig. 7c, Table 3A). In order to see the contribution
of our global prior to the end result, we run a popular level
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 7 a Three target images corrupted with the noise levels in Table 2
and b their score images. c The extraction results of our method, d those
of the method of Li et al. [18], and e those of the method of Bresson
et al. [3] on score images. f The extraction results of the method of
Li et al. [18], g those of the method of Bresson et al. [3], and h those

of our method on target images. The red contours are the automati-
cally detected contours and the blue contours are the ground truth. The
numerical differences are presented in Table 3 (Best viewed electroni-
cally) (color figure online)
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Fig. 8 ROC curves of the synthetic images in Fig. 7a created by apply-
ing a threshold from −∞ to ∞

set method [18] using the score images in its external energy
without any global prior enforcement (Fig. 7d, Table 3B).
Since the local priors cannot extract all the contour informa-
tion from noisy images, the level set method without global
information cannot locate ring borders as good as our method.

We also run the method of Bresson et al. [3] on score
images (Fig. 7e, Table 3C). For creating the shape model,
we used 10 different ellipses with different orientations and
aspect ratios. Next, we run the level set method of [18]
without any modifications on the original synthetic images
(Fig. 7f, Table 3D). Then, we run method of Bresson et al. [3]
(Fig. 8g, Table 3E) on synthetic images. Finally, we run our

method that employs only global information on the original
target images (Fig. 7h, Table 3F).

The visual and numerical comparisons with similar exist-
ing methods indicate that our employment of both global
and local priors produce successful results. We argue that the
performance enhancement is caused by two main factors.
First, our method employs both local and global priors under
the same framework, which is an important advantage. Sec-
ond, our local priors incorporate time related and non-image
related information into the extraction process without leav-
ing the 2D deformable contour framework. This advantage
brings a considerable amount of relevant information into the
contour extraction process without complicating the overall
system.

It is interesting to note that we cannot conclude what type
of prior is more important by comparing Table 3 columns
A, B, and F. Our intuition says that local and global priors
become important depending on the available image infor-
mation at hand and hence we cannot generally say that one
of them is more reliable than the other.

The experiments above are performed for the outer con-
tour because the method of Bresson et al. [3] does not work
with concentric contours. We also show the contour extrac-
tion results of our method for double concentric contours
(Fig. 9). Figure 7g shows the pixel differences for inner and
outer contours. The visual and numerical results state that
our method successfully extracts the inner and outer con-
tours simultaneously.

We also performed another experiment in which the fea-
tures extracted with the filter sets D, E , and F are trained and
scored separately. Figure 10 shows the ROC curves indicat-
ing the performance of each filter for the images in Fig. 7a.
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Table 3 The quantitative pixel differences of extracted contours and ground truth in Fig. 7

Image A B C D E F G-double concentric contours

Our method
on score

Li et al. [18]
on score

Bresson et al.
[3] on score

Li et al. [18]
on target

Bresson et al.
[3] on target

Our method
on target

Our method
Outer contour

Our method
Inner Contour

1 0.8 1.03 0.72 2.81 0.87 0.98 0.87 0.81

2 0.95 1.74 0.84 4.22 1.66 1.23 0.89 0.88

3 0.86 1.65 0.85 4.03 1.48 1.73 0.98 0.89

(a) (b) (c)

Fig. 9 The extraction results of our method with double concentric
contours on a Test sequence 1, b Test sequence 2, and c Test sequence
3 (Best viewed electronically)

The performance of the features learned with 3D spatiotem-
poral filters E and F are higher than the performance of
the spatial filter set D for the noisy images. This experiment
shows that more accurate scoring results are produced for the
noisy images by using spatiotemporal filters that use more
than one frame.

The conventional level set method uses the image gradi-
ent magnitudes in its external energy. In contrast, our system
uses the score images in the external energy of the level set
function. In order to compare our external energy with the
conventional level set external energy, we formed a classi-
fier by applying a threshold to the image gradient magni-
tudes. The pixels with magnitudes higher than the threshold
value are considered as border pixels. An ROC curve for the
gradient magnitude based classifier is formed by changing

this threshold value from 0 to ∞. We manually tuned the
Gaussian smoothing values of the gradient calculations for
a good classification. Figure 10 compares the obtained ROC
curves with our system results. The analysis of this experi-
ment indicates that our scoring process carries considerably
more border related information into the contour extraction
process.

5 Conclusions

In this paper, we proposed a novel system for extracting the
cardiac borders from echocardiographic images by imposing
prior knowledge. In order to incorporate the prior informa-
tion into the extraction process in a more systematic manner,
we handle the local and global priors separately. The global
prior includes the constraints that are related to the whole
image and object shape. Although we used the shape as the
only global prior information in our system, it is possible to
use other types of global priors such as constraints on the
expected region area, length of the contours, and the number
of certain features like corners or holes.

The local image features and the motion information,
which are mostly extracted with the Haar-like filters, are
trained and scored with AdaBoost. Some other non-image
related local features such as wall distance to a shape ref-
erence point are also included in our system as local priors.
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Fig. 10 The ROC curves of each filter type learned individually and the curves when gradient threshold process is applied to a Image 1,
b Image 2, c Image 3 in Fig. 7 (Best viewed electronically)
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By combining these local features under a single machine
learning method, our system can capture motion, image, and
other types of local information without employing compli-
cated models.

Our method has several advantages. First, the motion
related temporal heart wall information is incorporated eas-
ily into the extraction process with 3D spatiotemporal Haar-
like filters without using an explicit 3D contour model.
This is an important advantage in echocardiography, because
some parts of the cardiac borders can be only located with
motion information. Second, the division of echocardio-
graphic images into angle ranges provides an angle specific
learning mechanism. This advantage largely addresses the
signal dropout problem of the ultrasound modality. Third,
our local prior can use any features from the images includ-
ing different filters or intensity profiles. Moreover, our local
prior can include non-image related local features such as
the geometric relationships between the neighboring bor-
der points. Finally, the separation of global and local pri-
ors results in a more systematic and modular approach that
can integrate different types of knowledge into the extraction
process.

The experiments on synthetic and real echocardiograms
indicated that the system successfully extracts the borders
and the results are not distinguishable from the expert con-
tours. Our system can be easily extended for other types of
medical image contour extraction tasks by identifying rele-
vant global and local features.
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