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Abstract—Computerized recognition of the home based phys-
iotherapy exercises has many benefits and it has attracted
considerable interest among the computer vision community.
However, most methods in the literature view this task as a
special case of motion recognition. In contrast, we propose to
employ the three main components of a physiotherapy exercise
(the motion patterns, the stance knowledge, and the exercise
object) as different recognition tasks and embed them separately
into the recognition system. The low level information about each
component is gathered using machine learning methods. Then, we
use a generative Bayesian network to recognize the exercise types
by combining the information from these sources at an abstract
level, which takes the advantage of domain knowledge for a more
robust system. Finally, a novel post-processing step is employed
to estimate the exercise repetitions counts. The performance
evaluation of the system is conducted with a new dataset which
contains RGB (Red, Green, and Blue) and depth videos of home-
based exercise sessions for commonly applied shoulder and knee
exercises. The proposed system works without any body-part
segmentation, bodypart tracking, joint detection, and temporal
segmentation methods. In the end, favorable exercise recognition
rates and encouraging results on the estimation of repetition
counts are obtained.

Index Terms—Home-based Physiotherapy, Exercise Recogni-
tion, Estimation of Repetition Count, Bayesian Network.

I. INTRODUCTION

PHYSICAL therapy (or physiotherapy) is a medical sci-
ence that concerns with the diagnosis and treatment

of patients who have injuries or other problems that limit
their capabilities to perform functional activities [1]. These
treatments usually include performing physiotherapy exercises
regularly in a controlled manner [2].

Physical therapists provide care to patients by adjusting
therapy parameters and supervising the therapy sessions. They
perform this task by a combination of verbal instruction,
demonstration, and physical guidance during and/or before
the execution of the physiotherapy exercise in a session [3].
With the physical guidance, patients can repeat the desired
exercise by improving their ability to detect and correct errors
[4]. Manual feedbacks obtained at the error detection and
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correction phase, which are important steps in motor learning
[5], improve the success of the rehabilitation process.

Inherent costs, travel required to receive in-clinic treatment,
therapy accessibility and availability are the main obstacles
that limit one-to-one sessions between the therapists and
the patients [6]. Due to these problems, patients are asked
to perform some parts of their therapy sessions at home.
To gain information about these sessions and improve the
treatment process, home-based physical therapy sessions must
be analyzed.

Machine learning based motion recognition research has
recently made important progress towards building low cost,
usable, stable and accurate action recognition systems from
video data for controlled environments [7], [8]. The idea of
employing such methods for the recognition of the home
based physiotherapy exercises has attracted interest among the
computer vision community [9], [10], [11]. However, consid-
ering the recognition of the physiotherapy exercise problem
as an instance of only motion recognition misses some crucial
domain knowledge. A physiotherapy exercise has three main
components [12]: the motion patterns of the exercise, the
stance position of the exercise, and the exercise object. The
motion patterns focus on the exercise’s speed, acceleration in
the motion and the displacement of patients in the sessions.
The stance knowledge is needed to analyze the posture in-
formation of the patients in the sessions (start position, end
position). The object existence in the exercise increases the
confidence of patients and accelerates the treatment process.
We argue that any automated exercise recognition system
should explicitly use this fundamental domain knowledge for
a robust real world system.

This paper extents our previous work [1] for the home mon-
itoring of physiotherapy exercises using a Red-Green-Blue-
Depth (RGBD) camera with further analysis and experiments.
Our system combines the information from the three phys-
iotherapy components to capture domain related information
for the exercise type recognition. For the validation of our
work, we create an RGBD dataset of Home-based Physical
Therapy Exercises (HPTE) to demonstrate shoulder and knee
exercises by consulting physiotherapists. We also propose a
novel approach to estimate the repetition count of an exercise
in a given session.

At the center of our system, we employ a Bayesian network
that consists of hidden nodes for the exercise type, motion pat-
terns, stance position, and exercise object (Fig. 2). The observ-
able nodes of the Bayesian network are for the observed image
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TABLE I
DETAILS OF THE EXERCISE TYPES IN HPTE DATASET

a) Stick Exercise b) Diagonal-Stick Exercise (dia-stick) c) Lie Back Exercise
Object: stick, Stance: standing Object: stick, Stance: standing Object: N/A, Stance: lying down
The patient stands and holds an object with his
hands. While he keeps his elbows in upright po-
sition, he raises the object slowly above his head
and lowers the object.

The patient stands and holds an object with his
hands. Then he holds the object for several seconds
as in the above figure and returns to the beginning
position.

While the patient lies on her back, she raises her
leg without twisting her knee. She holds her leg in
stretched position for a while. Then she pulls her
leg to the beginning position. Exercise continues
with the other leg.

d) Towel Exercise e) Straight Pendulum Exercise (str-pen) f) Circular Pendulum Exercise (cir-pen)
Object: towel, Stance: standing Object: chair, Stance: bending Object: chair, Stance: bending
The patient holds the object above his shoulder with
one hand and holds the object on his back with the
other hand. Then he stretches his arm by pulling
the object with lower hand and leaves stretching.

The patient stands and holds the object with one
hand. Next she bends forward slightly. Then she
dangles her arm forward. Finally the patient starts
swinging her arm forward and backward for 30
seconds.

The same exercise as straight pendulum only the
swinging is in a circular manner.

g) Chair Exercise h) Heel Exercise i) Depth image of g).
Object: chair, Stance: sitting Object: chair, Stance: sitting
While the patient sits on the object, he stretches
out one of his leg to forward. He holds his leg in
stretched position for a while. Then he pulls his leg
to the beginning position. Exercise continues with
the other leg.

The patient sits on the object. He moves his foot
to the back of the object with raising his heel to
the up. He holds his foot in position for a while.
Exercise continues with the repetition of the same
action with the other foot.
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features that are calculated for each component separately
by running different feature extractors. The Bayesian network
enables us to make inferences about the motion, stance, and
object components separately while the interactions between
these components are handled automatically by the conditional
dependency resolution mechanism of the network.

The rest of this paper is organized as follows. Firstly, a
survey of relevant literature is presented in Section II. Section
III describes the Home-Based Physical Therapy Exercises
(HPTE) dataset and a brief definition of the system with the
dataflow diagram is sketched in Section IV. The recognition
layer of the system that contains the generative Bayesian
network is discussed in Section V. Feature extraction based
on motion, stance, and object information is represented in
Section VI. The estimation of repetition count is defined in
Section VII. Finally, Section VIII demonstrates the experimen-
tal results of the system and conclusions are drawn in Section
IX.

II. RELATED WORK

The available systems which are designed to recognize
physical therapy exercises can be categorized as sensor-based
and camera based. Although sensor-based systems require
specific adjustments and use expensive specialized hardware,
they are successful at detecting and tracking joint points. The
camera based systems employ common electronic devices such
as Microsoft Kinect. They are not as accurate as the sensor-
based systems, but they are very practical and inexpensive.

Zhou and Hu [9] surveyed the detection and tracking
systems in human motion tracking for the rehabilitation. They
reported that this is an active research topic since the 1980s
and the existing systems have various problems such as need
of engineers and physiotherapists to perform calibration and
sampling, hardware cost, and functional problems. The cali-
bration process must be made individually for each patient and
adjusted during the recovery time, which is a resource (time,
money, etc.) consuming process. In addition such a calibration
is not feasible at home environments. Soutscheck et al. [13]
presented a system to support and supervise fitness and reha-
bilitation exercises by observing angular measurements of the
knee joints. Their system uses specialized sensors to track 2D
and 3D knee positions. Fitzgerald et al. [14] developed a sys-
tem which includes a computer game to instruct and analyze
an athlete’s rehabilitation exercise series. Their system uses
ten inertial motion tracking sensors in a wearable body suit
and a portable computer which communicates with this suit by
a Bluetooth connection. Kesner et al. [15] designed a wearable
upper body orthotics system for home-based rehabilitation
which also contains a limb position sensing system. They dealt
with shoulder joint rehabilitation and focused on adjustability,
wearability and adaptability of this orthotics system. Roy et
al. [16] developed a remote monitoring system for physical
activities by using body-worn sensors with a neural network
and fuzzy logic processing technique. Courtney and de Paor
[17] presented a markerless system for analyzing human gait
with a single camera. Jung et al. [18] introduced a tracking
system for upper body movement in 3D space by using wear-
able inertial sensors. Guralic et al. [19] classified some limb

movements (activities) in physical therapy processes by using
the data collected with wearable wireless transceivers. Most of
the sensor-based systems provide only constrained solutions
to the problems of exercise recognition due to some inherent
constraints. These constraints include the non-portability of
the sensors [13], non-ease of use by the patients [13], high
system costs [14], being limited by only a few exercise types
[19], missing exercise objects [18], requirement of a clinical
environment [13], requirement of specialists [13], [15], and
difficulties in the system customization for each patient and
recovery stage [15].

Timmetmans et al. [20] presented a sensor-based system
to monitor the task oriented arm training of patients. This
system is composed of tracking sensors and an exercise
board. The context-specific sensor motor input is measured and
evaluated with kinematic information. Li et al. [21] designed a
multimodal physical activity recognition system for a wearable
wireless sensor network. Their system uses both ambulatory
electrocardiogram (ECG) and accelerometer signals. Duff et
al. [22] developed a mixed reality training system for stroke
rehabilitation to improve the reaching movements of patients.
This system records the movements with a 10-camera 3-D
infrared passive motion capture system and outputs audios and
visual feedbacks for the therapists. Increasing the number of
sensors and sensor types provides increments in the range of
exercise types and generates better outputs. However, these
increments also limit the sensor-based systems to run on more
controlled environments [20], make them more complex to
customize [21], and render them more expensive for home
use [20], [22].

Microsoft Kinect made a considerable impact as an RGBD
camera with a provided software library to detect human joints
for the physiotherapy exercises. Chang et al. [23] used a
Kinect-based system in a public school setting to motivate
physical rehabilitation. They worked with two young adults
with motor impairments. The system increased patients’ mo-
tivation to continue the rehabilitation tasks. Lange et al. [24]
investigated the use of low cost depth sensing technology to
project full-body interaction within virtual reality and game-
based environments. They developed a system that records
body-part positions for the rehabilitation tasks by using these
products. Nie et al. [25] developed a Kinect based system for
rehabilitation. This system tracks full body motion, records
the related information and delivers this data to the physical
therapists. Note that most Kinect based monitoring systems
rely on human joint detection library that comes with the
device. This library is very robust under different conditions
but it is not designed to be used while the subject is in
interaction with exercise objects such as chairs, sticks, and
balls. In addition, this library provides only suboptimal results
for some patient poses such as lying on the ground. As a result,
for the practical physiotherapy exercises, depending on joint
positions from this library has robustness problems. Although
we also use a Kinect sensor in our system, we use it for only
obtaining RGBD data from from the patient and we do not
rely on any joint detection information.

The exercise recognition problem can be considered in the
context of human action recognition topic which is one of
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the most challenging topics in computer vision [7], [8], [26],
[27]. Most of the above systems are based on action recog-
nition techniques for this task. However, there are differences
between physiotherapy exercises and simple human actions.
Human action recognition systems generally classify primitive
actions such as: walking, bending, hand waving, jumping, etc
[9]. Physiotherapy exercises are different from primitive ac-
tions in terms of object usage, action duration, and movement
complexity. Therefore, recognition of physiotherapy exercises,
requires more specific systems than the systems designed to
recognize basic human actions which do not tackle object
interactions.

III. DATASET

We provide a dataset with 8 classes of exercises in 6 sessions
with 5 volunteers, namely Home-based Physical Therapy Exer-
cises (HPTE) dataset. This dataset contains a total of 240 color
and corresponding depth videos to demonstrate shoulder and
knee exercise sessions, which are the most common exercise
types [12]. These videos are captured by a Microsoft Kinect
sensor. The duration of each session varies between 15 seconds
up to 30 seconds. Table I shows sample frames for each
exercise type with the motion, object, and stance information.

For each HPTE session, we assume that only one patient
performs one type of exercise with more than two repeats, in
front of the Microsoft Kinect sensor. Each actor performed the
given exercises completely. Subpar exercises are not allowed.
We also assume that only the related exercise object is present
on the scene.

Microsoft Kinect sensor provides color and depth videos
with 640x480 pixels at 30 fps. We store color and depth videos
as 256 gray level images in 320x240 pixels resolution by using
The Kinect for Windows SDK version 1.5 [28]. The depth
sensor sometimes could not measure 12 bits per-pixel depth
information due to surface reflection, shadow, etc. To solve
this problem we follow the same procedure as outlined in [10].
This procedure starts with the nearest neighbor interpolation to
fill non-measured points and continues with Median filtering
(4x4 sized) to smooth the depth frame. The HPTE dataset is
available upon request.

IV. THE SYSTEM OVERVIEW

The main modules and the flow of the data between the
modules of our system are shown in Fig. 1. Briefly, our system
gets color and depth videos of physiotherapy sessions and finds
the exercise type and then outputs the repetition count of these
exercises.

The feature extraction module extracts motion patterns,
stance knowledge, and object usage information as low-level
features. The exercise recognition module employs a genera-
tive Bayesian network to recognize the exercise types in the
sessions. This module uses machine learning based classifiers
to collect evidences about the global motion, stance, and
object availability information. The last module, estimation
of the repetition count, gets exercise label, motion and stance
representation as input and outputs the repetition count for the
given exercise session. The details about each system module

Fig. 1. The dataflow diagram of the proposed system.

Fig. 2. The graphical model of the generative Bayesian network. In this model,
rectangles indicate hidden nodes and circles indicate observable nodes.

are given in the following sections starting with exercise
recognition module.

V. EXERCISE RECOGNITION

We define an 8-element exercise type set E={stick-exercise,
towel-exercise, chair-exercise, diagonal-stick-exercise, lie-
back-exercise, straight-pendulum-exercise, circular-pendulum-
exercise, heel-exercise} that contains all exercise types (Table
I). The main function of the exercise recognition module is to
estimate the exercise type e ∈ E for the given video session.

We design separate machine learning classifiers for each
component of the physiotherapy exercises. Each classifier cap-
tures specialized domain related information without getting
affected from the complexity of the main task. In order to
handle the dependency relations between these components
and to estimate the final exercise type, we employ a gen-
erative Bayesian network as the graphical model in Fig. 2.
In this graphical model; exercise type E, object information
O, motion information M , and stance information S are the
hidden nodes; the object evidences oe, motion evidences me,
and stance evidences se are the observable nodes.

Given the evidences from the video data, the exercise label
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assignment process L(v) is defined as

L(v) = argmax
e∈E

∑
S,M,O

P (e, S,M,O,me, se, oe), (1)

where v is the given video and P (e, S,M,O,me, se, oe) is the
joint probability distribution table. P (e, S,M,O,me, se, oe)
is defined by using the conditional dependencies within the
graphical model as

P (e)
∏
P (S|e)P (M |e)P (O|e)
P (se|S)P (me|M)P (oe|O).

(2)

P (e) is 0.125 because there are eight different equally likely
exercises in HPTE dataset. P (S|e), P (M |e), and P (O|e)
terms are calculated by using the relationships listed in Ta-
ble I. For example, if the exercise e is chair-exercise then
P (S = standing|e = chair) is equal to 0 while P (S =
sitting|e = chair) is equal 1 and if the exercise e is heel-
exercise then P (O = towel|e = heel) is equal to 0 while
P (O = chair|e = heel) is equal to 1.
P (se|S),P (me|M), and P (oe|O) can be written as

P (se|S) = P (S|se)P (se)
P (S)

,

P (me|M) =
P (M |me)P (me)

P (M)
, and

P (oe|O) =
P (O|oe)P (oe)

P (O)
.

(3)

The probabilities of P (se), P (me), P (oe), P (S), P (M),
and P (O) in the above equation are the same for a given
exercise video v and hence they do not have to be estimated.
However, to find the exercise label L(v), we need to calculate
P (S|se), P (M |me), and P (O|oe).

Most of the classical exercise recognition systems [9], calcu-
late only P (M |me) to find the exercise type e. Our system, on
the other hand, combines the motion information (P (M |me))
with the information from exercise object (P (O|oe)) and
patient stance (P (S|se)), which should produce more robust
exercise recognition rates. In addition, bringing these types of
information under a well known Bayesian Network framework
makes our system theoretically sound.

In order to calculate the values of P (S|se), P (M |me),
and P (O|oe), we employ supervised machine learning based
classifiers. These classifiers obtain features from the video or
image data and train them with the given labels. During the
testing time, the same features are calculated and an appropri-
ate label is assigned for the given test data. These classifiers
are very successful if the number of features extracted from the
video or image data is too high for a manual feature selection.
For our application, we extract thousands of features from each
frame of the video data, so a machine learning based label
assignment is appropriate.

We train Support Vector Machine (SVM) classifiers for
the label assignment problems of P (S|se) and P (M |me).
These classifiers take the features me and se, and they assign
labels M and S for the given video. However, classical SVM
classifiers do not produce a probability value for the assigned
label which is needed to estimate the values of P (S|se) and

P (M |me). In order to calculate these probabilities, we employ
a Gibbs distribution based approach. The probability of M for
the given motion evidence me is calculated as

P (M |me) = 1

Z
exp(−Q(me)) (4)

and the probability of S for a given stance evidence se is
calculated as

P (S|se) = 1

Z
exp(−Q(se)) (5)

where Z is the normalizing constant, and the potential func-
tions Q(me) and Q(se) are the evidence predictions assigned
by the SVM classifiers.

Our exercise-object classifier also uses machine learning
techniques with a slightly different video sampling approach.
We employ an object detection method from the literature that
decides on the object availability OA(o, f) by searching an
object o in a given frame f and outputs as 1 or 0 (found
or not found). We follow the uniform sampling approach to
specify the object usage information for the whole video v by
taking one frame out of 20 frames. Finally the probability of
O for a given object evidence oe is calculated as

P (O|oe) =
∑n
i=1OA(oe, fi)

n
, (6)

where f are the selected frames of v and n is the total number
of selected frames.

VI. FEATURE EXTRACTION

The feature extraction module provides low-level informa-
tion to the other modules. Although we provide a set of novel
features for the exercise recognition task, this task can be com-
pleted with other types of feature extractors without affecting
the main operations of other system modules. The following
subsections describe the extracted features for motion, stance,
and exercise object information.

A. Motion-Based Features

Motion information in an exercise session is represented by
motion patterns. Each exercise session consists of repetitions
of a type of exercise. Each exercise type has different motion
patterns as shown in Table I. We propose a novel approach
for obtaining the motion patterns in a session by enhancing
Haar-like features.

Haar-like features are popularly used in pattern recognition.
These features were first proposed by Papageorgiou et al. [11]
as the difference between the intensity sums of all pixels
in rectangular boxes. Ciu et al. [29] used the 3D Haar-like
features to detect pedestrians. These features are extracted in
a space-time volume as cubic filters. They also extended the
idea of integral images to integral volumes for computational
efficiency.

In our approach, we employ 3D Haar-like features to
represent the motion patterns contained in the whole video
sequence. 16 different cubic filters are designed to capture
variations within patient’s 3D spatiotemporal space. We also
include filters tuned for exercises performed at different
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speeds. Some of these filters are shown in Fig. 3. Filter sizes
are determined as 8x8 pixel and 4x4 pixel sizes in spatial
domain, 4 frame and 8 frame in temporal domain. Further
evaluations on the parameter selection are discussed in Section
VIII.

Fig. 3. Examples of cubic filters which are used in extraction of 3D Haar-Like
features.

3D Haar-like Features (3DHFs) are extracted by applying
cubic filters to the video (v) with the convolution process as

3DHFv(x, y, t, f) = v(x, y, t) ∗ CubicF ilterf , (7)

where t is the time step or the video frame number, x and y are
2D coordinates of a video frame, and f=1...16 is the type of the
filter. The outputs of 3DHFs, which are spatial, temporal, and
filter-type dependent motion patterns, are normalized to the 0-
255 interval for the calculation and storage efficiency. Short-
Term Motion Patterns (STMPs), which describe spatially
independent local motion information between consecutive
frames, are defined as histograms of 3DHFs as

STMPv(t, f) = Histogram[3DHFv(x, y, t, f)]. (8)

For a given video frame t and filter type f , (8) forms a
histogram with 256 bins, which is adequate to differentiate
between short term actions (ex. swinging of arm). However,
when there is not any locally significant motion, different
exercises can have similar STMPs. In addition, STMPs are
filter-type dependent patterns. To address these shortcomings
of STMPs, we offer a new descriptor called Concatenated
Short-Term Motion Patterns CSTMPs

CSTMPv(t) = STMPv(t, f1)||STMPv(t, f2)||...
STMPv(t, fn−1)||STMPv(t, fn)

(9)

where fi is the ith filter, n=16 is the number of filters, and ||
is the vector concatenation operation.

For a given video frame t and filter type f , (9) forms
a vector with 256x16 elements. Since there is only one
CSTMP for each video frame, there are too many of them
(for all video sessions) to be processed efficiently. In order
to find the most effective and efficient subset of CSTMPs
for a given video, we use a recent popular approach [30] to
transform CSTMPs into codewords. This process can be
accomplished by K-means clustering, mean-shift clustering, or
any similar techniques. However, recent studies on tree based
codes offer more efficient and quicker solutions [30], [31],
[32].

Random Forests (RF) were introduced by Breiman [33] as a
collection of decision trees. During the training stages, nodes
in the trees are split by using a random subset of input data.
Then each random tree in the forest grows and predicts the
input test data’s class label. Finally, these votes are aggregated
to find the final label.

Fig. 4. Demonstration of extraction of codewords for motion information.
Random Forest with a number of trees, which is trained with CSTMPs
used to obtain codewords for a given input vector. The selected paths for
each tree are shown as a red curve.

We employ Random Forests and adopt the methodology
in [30] to generate the codewords for CSTMPs. In this
methodology, each decision tree in the forest generates a
binary code for a given feature vector. The length of the binary
code is equal to the leaf count of that tree. The value of the
binary code is obtained by a simple process. First, each node
in the tree is indexed by moving from top-left to down-right
starting with the root node. The leaves which are ordered by
indices, form the code. The leaf in which the feature vector
falls into takes a value of one and the other leaves take value of
zero. As the RF contains more than one decision tree, binary
codes obtained from each tree concatenated into the final
codeword (see Fig. 4 for example). In the end, we calculate a
codeword for each frame of the video, which is shown as

CWv(t) = Codeword(CSTMPv(t)). (10)

The size of each vector CW depends on the depth of each
tree and the number of trees of the Random Forest. After
obtaining codewords (CWs) for each CSTMP in a video
sequence, we need a descriptor to obtain the general motion
information about the whole video sequence. We call this
descriptor as Global Motion Vector GMV and define it as

GMV (v) = µ(CWv(t), t = 1..T )||var(CWv(t), t = 1..T )
(11)

where T is the number of frames in the video v, µ describes
the statistical mean of a set of vectors, and var describes
the variance. The size of the vector GMV is two times the
size of one CW vector. Note that GMV can be built for
color or depth video separately or combination of them by
concatenating the related GMV . Note also that GMV of a
video is our final motion feature vector which is used by (4).

B. Stance-Based Features

The physical therapists view the posture of a person to
investigate the patient’s disorder. Moreover, stance/pose in-
formation about an exercise type is a discriminative property
because each exercise type has a well defined posture. For
example, consider two scenarios where the first scenario
includes a person who is holding a thin stick with two hands
and raising-lowering the stick. The second scenario includes
another person who is holding a thick stick with one hand
and raising-lowering the stick. Motion information for both
scenarios reveals that there is a raising-lowering motion pattern
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Fig. 5. The extraction of stance-based features. Stance Information SI vector
is defined for a given frame f . Note that the binary image can be formed by
color, depth, or both frames.

available. The object information reveals that there is a stick
in both scenarios. However, the stance information reveals the
difference between poses of the first and second person and
distinguish the exercises in these scenarios. Also, when the
problems such as occlusion, noise, high differences in temporal
variances, etc. arise, motion and object information may suffer.
Furthermore, studies such as [34] inform that the recognition
process benefits from pose-based features even with noise.

We propose a method to extract the stance information of the
patient. As mentioned earlier, it is possible to use any existing
and suitable method to extract motion, stance, and object
based information in our system. This option also increases
the system’s level of customizability.

In the proposed method, we form a simple but effective
approach to represent the Stance Information SI . First, for
a given video, we create a static background image using
the first few frames of the video where the actor is not on
the scene yet. Next, we perform a foreground extraction with
this selected frame and the background image. This process
yields a binary image by thresholding. If both depth and color
videos are used, binary image is merged by the morphological
intersection operation. Then, we find the largest blob in the
binary image and capture it in a window by assuming that the
largest blob corresponds with the actor. We parse this window
into 3 different grids with sizes 6x8, 8x8, and 8x6. Finally,
the ratio between foreground and background pixels in each
cell of the each grid is calculated to form Stance Information
SIf,v vector for the given frame f and the given video v. A
brief demonstration of the extraction of SI is shown in Fig.
5.

In order to describe stance information about whole v, we
can either calculate SI vector for each frame of v or we can
select frames with uniform sampling and then calculate SI
vectors for these selected frames. We prefer the latter approach
which requires less CPU time. We select the frames in v at
predefined uniform time-intervals (20 frames out of a video).
Then we form the related SI vectors. To obtain a compact
representation of stance information for v, we calculate SI(v)
by

SI(v) = µ(SIv,f ), (12)

where f indicates the selected frames in v and µ describes the
mean.

The size of the vector SI(v) for the whole video depends
on the selected grid sizes (for our case; 48+ 64+ 48 = 160).
Note also that, SI of a video is our final stance feature vector
which is used by (5).

As mentioned previously, our stance features use simple
background subtraction method which may not be practical
for some applications with dynamic backgrounds. In addition,
although we did not explicitly used it, the depth information
from the RGBD camera can be reliably used for foreground
estimation.

C. Object-Based Features

Most of the physiotherapy exercises include object interac-
tion to accelerate recovery period of the patients [35]. More-
over, the patients feel safer and motivated with the exercise
objects in physiotherapy sessions. In addition, the type of the
exercise object is an important factor in the design of the
exercises. Therefore, information about the exercise object in
the video reveals important cues about the type of the exercise
and supports the two other information sources in our system.

We simply identify the exercise objects in the home en-
vironments as sticks, chairs, and towels within Home-Based
Physical Therapy Exercises (HPTE) dataset. These objects do
not have a standard size, type, color, etc. For example, we use
three different objects for sticks: wooden ruler, wooden stick
of a mop, and metal stick of a mop. Moreover, patients can
also use different exercise objects such as canes, yardsticks,
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elastic ropes, etc. Note that we assume that only the related
exercise object is present in an exercise session.

We represent the exercise objects in the physiotherapy
sessions with the object-based features in our system. These
features can be extracted by using appearance and/or location
information in still images by using object recognition meth-
ods in the literature. We adopt three different state-of-the-art
object detection and recognition methods to represent object
usage information in a given exercise session. Note that these
methods may fail for some situations such as occlusions due to
people and scene. However, we employ the results from these
methods in combination with other information (motion and
stance), which makes our system robust against these types of
problems.

The first method that we adopted from Fei-Fei [36], extracts
SIFT features and then uses these features in a bag of words
model to detect objects in a given image by utilizing a training
set. We create a sample database of images of exercise object
used in the HPTE dataset by storing 30 images for each object.
Then, the object detection method is run to check availability
of the object o in the given frame f . Finally, we calculate
the object-based features by an object availability function
OA(o, f) where this function is equal to 1 if the o found
in f , else is equal to 0.

We adopt the object detection approach of Viola and Jones
[37] as the second method. Briefly, their approach uses a
variant of cascaded Adaboost classification technique to find
the region of images which contain instances of a certain
kind of object. Each image is represented with 2D Haar-like
features (rectangular features) by an integral image approach.

We modify the Viola and Jones’s [37] approach (which
detects the regions of faces in images) to find the region
of images which contains exercise objects. For this purpose,
we create a training dataset which contains 500 positive
images (exercise objects with different scales, rotations, and
occlusions), 1000 negative images (part of actors with different
poses). Then, we run their method and check the availability
of the object o in the given frame f . Similar to the output
of the first method, we design an object availability function
OA(o, f) which returns 1 if this approach finds a region
of o and returns 0 in the other case. Note that we work
with foreground RGB images (which contain only the patient
and exercise object) which can be extracted with background
subtraction using color, depth, or both frames.

The last object detection method is adopted from Gall and
Lempitsky [38]. Their method detects instances of an object
class, such as horses, pedestrians, or cars in the given images.
They developed a class-specific Hough forest (a variant of
Random forest) which detects the parts of objects and casts
probabilistic votes for the possible locations of the selected
object’s centroids. Each node of the forest compares the sim-
ilarity between the current region (window) and the training
patches. Finally, the maxima of the Hough image that contains
the votes of all parts, is found as object’s centroid. We adopt
their technique to find the window which captures the region of
searched object and modify the last step of their method with a
fixed threshold to lower the false positives. We form a training
dataset which contains 1500 positive image patches and 3000

negative image patches. At the end of this method, we obtain a
bounding box that contains the centroid of the searched object
and the related parts or no bounding box (due to thresholding).
We follow the same way to generate the object based output
vector as in the previous two object detection methods.

VII. ESTIMATION OF THE REPETITION COUNT

A home-based physiotherapy session consists of several
repetitions of the same exercise [25]. The repetition count in a
session is assigned by physiotherapists. The repetitive nature
of the exercise sessions improves recovery period and provides
feedback for further evaluation. As mentioned earlier, the main
task of our system is to recognize the exercise type in the given
exercise session and the secondary task is to find and record
the repetition counts in the given exercise session.

In this study, we form our database with exercise ses-
sions which are fully performed and completed exercises.
This means that the HPTE dataset does not contain any
subpar (attempted but not completed) exercises. Note that as
a secondary task of our system, estimation of the repetition
count of exercises in a session (which is not supervised by a
physiotherapist, home environment) is required for analysis of
patient.

We propose a novel approach to estimate the repetition
count. This approach uses the exercise label which is provided
by the exercise recognition module and the stance and motion
features which are provided by the feature extraction module
(Fig. 1). First, a new sub-global representation vector SGR(τ)
for exercise (session) video v is defined as

SGR(τ) = GMV (vτ )||SI(vτ ), (13)

where vτ is the sub-sequence of v from frame 0 to τ . The
exercise label, for SGR(τ) is the same as L(v) of (1). The
main idea of the repetition count module of our system is to
continuously run the binary SVM classifier on different values
of τ . The binary SVM classifier tests the given subsequence
wheather the sequence contains the exercise L(v) or not.
We then calculate the Confidence Value (CV ) of the SVM
classifier by the formulation as

CV (τ) =
∑
i

aik(sui, SGR(τ)) + b, (14)

where sui describes the support vectors, ai describes weights,
b describes bias, and k describes the kernel function. Finally,
we find the number of peaks of CV graph with increasing τ
as the repetition count. We calculate the number of peaks of
the CV graph as the count of zero crossings in the derivative
of CV(τ ) with respect to τ .

Fig. 6 shows a sample CV(τ ) curve for a selected exercise
session. As the duration of a sub-sequence increases, the
system recognizes the exercise more accurately (with a higher
confidence value). The local peak points of the confidence
curve correspond to exercise repetition startings and ends.
Therefore, counting the local peaks on confidence curves
would produce the number of exercise repetitions. Note that
the confidence curves might become constant for videos with
thousands of frames, which can be addressed using a win-
dowed SGR formulation.
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Fig. 6. A sample Confidence Value CV(τ ) curve for an exercise session.

VIII. EXPERIMENTAL RESULTS

We design five different sets of experiment to test the
proposed system’s performance. We use the same parameters
for all the experiments. These parameters are: the maximum
depth level of Random Forests is 5, the maximum tree count
for the forests is 24, and the number of selected features in
each node is the square root of the total feature count. The
RGB (color) images are converted to 8 bit grayscale images.
We complete all the experiments with the leave-one-actor-out
manner, so we test the each sample at least once.

In the first set of experiments, we evaluate our system on
the Weizmann Human Action dataset [39] using only proposed
motion and proposed stance features to compare our action
recognition performance with the literature. The Weizmann
dataset contains 10 primitive actions performed by 9 people
(total 90 sequences) and it is very popular as a baseline
benchmark test among the action recognition community. Our
system recognizes 84 of the 90 actions with 93.3% recognition
rate on this dataset. With these results, our system can compete
with the state-of-art methods surveyed in [8], where the
recognition rates of these methods change between 84% and
97%.

In the second set of experiments, we test the system’s
recognition accuracy of the exercise types in the HPTE dataset.
We focus on the individual contributions of three exercise com-
ponents (motion patterns, stance knowledge, and the exercise
object information) by using the depth (RGBD) data. Details
about features and the related feature extraction methods
are given in Section VI. We run the system with various
combinations of components and the recognition results are
listed in Table II in sorted order with respect to accuracy. This
experiment provides valuable data to evaluate different sources
of information. We adopt the method of [40] to extract motion
based features. In this method, the statistical information
about the presence of motion, the location of motion, and the
recency of motion is used to define motion based features.
We also adopt the method of Cheema et al. [41] to extract
stance based features. Their method is based on scale invariant
contour features which are obtained from silhouette images.
We modify their result (representation of stance information)
for a given v by using the statistical mean and the variance
of each pose descriptor as in (11). The proposed system ob-
tains 89.6% accuracy rate with only motion patterns, 69.58%
accuracy rate with only stance knowledge (proposed method),

and 72.92% accuracy rate with only adopted stance features
[41]. These results demonstrate that the motion patterns are
more distinctive than stance knowledge. Moreover, the stance
features obtained by [41] is more effective than our baseline
stance features. We also observe that motion patterns with
stance knowledge provides better recognition rates than motion
patterns with object usage information. This shows that stance
knowledge provides more valuable information than object
based features. Finally, we obtain the best recognition rates
with the combination of three main source of information in
our generative Bayesian network. Note that the best accuracy
of 98.33% is reached two times with different stance methods.
We argue that stance information has only limited contribution
towards the final results and hence our proposed stance based
features can perform as good as other more successful methods
such as [41]. The same argument can be made for the object
features. Note also that we use both color and depth videos in
this set of experiments.

TABLE II
RECOGNITION ACCURACY OF EXERCISES ON THE HPTE DATASET WITH

RESPECT TO COMPONENT TYPES.

Component Type Rec. Accuracy
Motion + Stance [41]+ Object [38] 98.33%

Motion + Stance + Object [38] 98.33%
Motion + Stance [41] + Object [36] 97.9%
Motion + Stance [41] + Object [37] 97.9%

Motion + Stance + Object [37] 97.9%
Motion + Stance + Object [36] 97.5%

Motion + Stance [41] 95.4%
Motion + Stance 95.0%

Motion + Object [38] 93.33%
Motion + Object [37] 93.33%
Motion + Object [36] 92.9%

Motion 89.6%
Stance [41]+ Object [38] 78.75%
Stance [41]+ Object [37] 77.92%

Stance + Object [38] 76.67%
Stance + Object [37] 75.0%

Stance [41] + Object [36] 74.17%
Stance [41] 72.92%

Stance + Object [36] 72.08%
Stance 69.58%

In the third set of experiments, we evaluate the impact of
the depth information. As mentioned in Section III, HPTE
dataset contains 240 different RGB and depth videos to
demonstrate exercise sessions. We select the best component
types from the second set of experiments as proposed motion
patterns, stance knowledge obtained by [41], and object usage
information obtained by [38]. When the motion, stance, and
object information are represented by using only RGB videos,
our the system recognizes 220 of the 240 videos successfully
with a 91.7% accuracy (without using any depth data). Details
about system performance without any depth information is
given in Table III as a confusion matrix. We then repeat
the same experiment by including the depth information. In
this setting our system successfully recognizes 98.33% of the
exercise type in 240 sessions. Details of this experiment are
given in TableIV as a confusion matrix. While the other two
sources of information remaining the same, we also run the
baseline method of [40] to extract motion information and
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replace our proposed motion patterns with these features. The
system obtains recognition rates of 82.50% and 83.33% (in
terms of accuracy) on RGB and RGBD data, respectively.
Table V summarizes the recognition accuracy results for the
third experiment of the third set of experiments. The first
experiment of this set shows that our system can be employed
in practice without using depth cameras with performance
better than 90%. The second experiment of this set shows
that, although the proposed system can work just with the
RGB videos but using color and depth videos produces much
better recognition rates. The general misclassification error is
between the straight and circular pendulum exercise types.
These errors are reduced by using depth information, which
is expected because in the RGB data, the straight pendulum
exercise do not show significant motion information due to
motion towards the camera. The third experiment of this set
demonstrates the superiority of proposed motion patterns to
the baseline method of [40].

TABLE III
CONFUSION MATRIX FOR EXERCISE RECOGNITION RESULTS ON HPTE

DATASET WITHOUT USING DEPTH VIDEOS.

Stick Dia-stick Lie back Towel Str-pen Cir-pen Chair Heel
Stick 29 1 0 0 0 0 0 0

Dia-stick 2 28 0 0 0 0 0 0
Lie back 1 0 28 0 0 0 0 1

Towel 1 0 0 29 0 0 0 0
Str-pen 0 0 0 0 25 5 0 0
Cir-pen 0 0 0 0 3 27 0 0
Chair 0 0 0 0 2 1 27 0
Heel 0 0 1 0 1 0 1 27

TABLE IV
CONFUSION MATRIX FOR EXERCISE RECOGNITION RESULTS ON THE

HPTE DATASET USING BOTH RGB AND DEPTH VIDEOS.

Stick Dia-stick Lie back Towel Str-pen Cir-pen Chair Heel
Stick 30 0 0 0 0 0 0 0

Dia-stick 0 30 0 0 0 0 0 0
Lie back 0 0 30 0 0 0 0 0

Towel 1 0 0 29 0 0 0 0
Str-pen 0 0 0 0 29 1 0 0
Cir-pen 0 0 0 0 1 29 0 0
Chair 0 0 0 0 0 0 30 0
Heel 0 0 0 0 0 0 1 29

TABLE V
RECOGNITION ACCURACY OF EXERCISES ON THE HPTE DATASET WITH

RESPECT TO DIFFERENT MOTION INFORMATION.

Data Type Rec. Acc.
Motion + Stance [41] + Object [38] on RGB Data 91.7%

Motion + Stance [41] + Object [38] on RGBD Data 98.33%
Motion [40] + Stance [41] + Object [38] on RGB Data 82.5%

Motion [40] + Stance [41] + Object [38] on RGBD Data 83.33%

The fourth set of experiments investigates the impact of
parameter selection in the extraction of motion features. These
parameters define the size of filters in spatial and temporal
domains. Table VI lists the recognition accuracy of exercise
types in the HPTE dataset using only motion features with
both of the RGB and depth videos. As we discussed previously
in Section VI-A, while the spatial parameter focuses on the

area of motion, the temporal parameter covers the recency of
motion. We obtain the best results with the selection as 8x8
pixel and 4x4 pixel sizes in the spatial domain, 4 frames and
8 frames in the temporal domain. We use this selection as the
motion parameters on all the HPTE experiments.

TABLE VI
RECOGNITION ACCURACY USING ONLY MOTION INFORMATION WITH

DIFFERENT SIZED FILTERS.

Spatial domain Temporal domain Acc.
2x2 and 4x4 pixels 2 and 4 frames 67.1%
2x2 and 4x4 pixels 4 and 8 frames 72.5%
2x2 and 4x4 pixels 8 and 16 frames 77.1%
4x4 and 8x8 pixels 2 and 4 frames 77.9%
4x4 and 8x8 pixels 4 and 8 frames 89.6%
4x4 and 8x8 pixels 8 and 16 frames 85.8%

8x8 and 16x16 pixels 2 and 4 frames 86.7%
8x8 and 16x16 pixels 4 and 8 frames 88.3%
8x8 and 16x16 pixels 8 and 16 frames 83.8%

TABLE VII
MEAN REPETITION COUNT AND THE AVERAGE ESTIMATION ERROR FOR

THE REPETITION COUNT ESTIMATION EXPERIMENT.

Exercise Mean Repetition Average Estimation
Type Count Error
Stick 5.3 0.14

Dia-stick 4.4 0.24
Lie back 5.2 0.12

Towel 4.6 1.28
Str-pen 5.4 0.43
Cir-pen 4.6 1.46
Chair 4.8 0.72
Heel 6.5 0.60

Average 5.1 0.62

The final set of experiments analyze the performance of
the estimation of the repetition count. In the estimation of
repetition count, we use the proposed motion patterns as
motion information and adopted method of [41] to form stance
knowledge. Since the estimation of the repetitions depends on
the recognition accuracy of the exercise label, we examine the
estimation performance in two different scenarios. In the first
scenario, we manually label the exercise type in each exercise
session and then the system estimated the repetition count
of the 220 exercise sessions correctly with 91.67% accuracy
rate. In the second scenario, we use the output of recognition
module as exercise labels and then the system estimated the
repetition count of the 210 exercise sessions correctly with
87.5% accuracy rate. In each scenario, most of the estimation
errors are observed at the sessions of towel and circular
pendulum exercise. Detailed results about the estimation of the
repetition count in each exercise type for the second scenario
are given in Table VII. The overall average estimation error is
0.62, which is very promising because estimating the repetition
counts with less than 1 repetition count error is within the
tolerable limits.

IX. CONCLUSIONS

We presented a novel physiotherapy exercise recognition
and repetition count estimation system that extents our previ-
ous work [1] by new experiments and further analysis. The
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main contribution of our system is to model the exercise
recognition problem using the base knowledge from the phys-
iotherapy literature, which asserts that a physiotherapy exercise
consists of three main components: the motion patterns, the
patient stance, and the exercise object. In order to bring
these three components together, we employed a generative
Bayesian network in our system, which allowed us to de-
velop separate subsystems for each exercise component and
handle dependencies between these components transparently.
The proposed system also provides a novel module for the
estimation of exercise repetition counts which is an important
information for the home monitoring systems. We formed
a new physiotherapy exercise dataset (HTPE dataset) and
made it publicly available to be used by other researchers for
comparison.

The experiments performed on HPTE dataset revealed
that each component has positive contributions towards very
good recognition rates. Our motion pattern analysis module
includes many novel contributions and experiments on the
Weizmann dataset showed that it is in line with the state-of-
art action recognition methods. In the estimation of exercise
repetition counts, the proposed system performed favorably
in the experiments on physiotherapy data. Our system can be
easily extended to use other types of graphical models such
as conditional random fields or other physiotherapy exercise
components from the physiotherapy literature, such as pressure
sensor data or accelerometer data. Moreover, to the best of
our knowledge the proposed system is the first system that
recognize the physiotherapy exercises which includes patient
and object interaction by using a consumer level RGBD
camera.

Since our system is designed towards building a physio-
therapy monitoring system which recognizes and counts the
physical exercises in sessions, it does not produce any instruc-
tions to direct the patient to correct any mistakes. However,
our system can be extended to perform such tasks by adding a
system module for the human computer interactions tasks and
forming a database which contains negative samples (subpar,
sketchy, wrong, etc. exercises). Finally, our system is currently
for offline use, which is not a problem for monitoring home-
based exercise sessions of patients. The feature extraction
step of the main system takes the most execution time. We
emphasize that parallel algorithms can be used to optimize
the execution times of the feature extraction processes.
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