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ABSTRACT 

Prostate cancer is one of the most frequent cancers among 

men. Abdominal Ultrasound scans are very practical alterna-

tives to more precise but inconvenient Transrectal Ultra-

sound scans for the diagnosis and treatment of prostate can-

cer. However, detection of the prostate region alone is very 

difficult for the Abdominal Ultrasound images. This paper 

presents a new prostate detection method that models the 

abdominal images as the classes of neighboring anatomical 

regions of the prostate. The proposed method has two levels: 

Pixel level detection assigns class scores to each pixel in the 

image. Model level detection uses these scores to determine 

the final positions of the anatomical regions in the image. 

This new approach is very effective for the specific prob-

lems of the Abdominal Ultrasound scans. Extensive experi-

ments performed on real patient data with and without pa-

thologies produce very promising results. 

 

Index Terms— Prostate Detection, Abdominal Ultra-

sound, HOG, SVM, Graphical Model 

1. INTRODUCTION 

Prostate cancer is one of the most frequent of cancers in 

USA. 233,000 new cases and 29,480 deaths of prostate can-

cer are estimated for 2014 [1]. Ultrasound, Magnetic Reso-

nance Imaging (MRI), and Computed Tomography (CT) are 

the most commonly used imaging modalities for the diagno-

sis and treatment of the prostate cancer [4]. Among these 

modalities, Transrectal Ultrasound (TRUS) has been widely 

used due to its inexpensiveness, portability, and real time 

results.  

Although TRUS images have high Signal to Noise Ra-

tio (SNR) and they show the prostate as the largest structure 

in the images, TRUS method is difficult to use regularly 

during the successive radiotherapy sequences [5] due to 

patient discomfort [12]. Abdominal Ultrasound (AUS) im-

aging is an alternative technique that is frequently employed 

 
Figure 1: A sample image of the two different views of an 

AUS scan. Colored boxes show the anatomical regions. Red 

box includes the prostate region. 

where TRUS is not applicable. Despite their practicality, 

AUS images include unrelated structures and the prostate 

region of AUS images is smaller than that of the TRUS im-

ages. In addition, SNR of AUS images is lower and prostate 

shows more positional variation. Figure 1 shows transverse 

and sagittal views of an AUS scan of prostate. 

Although there are many studies for the analysis of the 

prostate in TRUS images [4], [7], [10] there are only a few 

reported AUS analysis work in the literature. [8] uses an 

image filtering and a prior shape based approach to find the 

prostate borders in AUS images. However, this method re-

quires an expert initialization near the target prostate region 

and it was validated only on about 10 images. We argue that 

for a fully automatic prostate segmentation system, it is cru-

cial to automatically localize the prostate before segmenta-

tion. 

http://vision.gyte.edu.tr/


 
Figure 2: The framework of the proposed system.

In this paper, we propose a novel prostate detection 

method for the AUS images. We claim that detection of the 

prostate region should be done with the help of neighboring 

anatomical regions so that the unrelated structures in the 

AUS images (such as the bladder and the abdominal tissues) 

can act as helping parts of the detection system. Therefore, 

we propose to simultaneously detect the prostate region and 

the neighboring regions together in the AUS images. A two-

level hierarchical approach is employed for this purpose. At 

the lower pixel level, the appearance information of the re-

gions is extracted by a pixel classifier. At the higher model 

level, context information is obtained through the relation-

ships between neighboring regions, which handle the prob-

lem of structural and geometrical variations between the 

patients. The final localization of the prostate is performed 

by optimizing the configuration of the regions with an en-

hanced initialization free gradient descent approach. 

To the best of our knowledge, the proposed method is 

the first prostate detection system for the AUS images. Our 

system is initialization free and the novel application of the 

two level detection system addresses the unrelated structure 

and low SNR problems very efficiently. Furthermore, our 

work presents the most extensive experiment set on the 

AUS images. 

2. PROSTATE DETECTION FRAMEWORK 

The hierarchical framework aims to first identify the candi-

date regions for prostate and neighboring parts at the lower 

pixel level and then detect the final prostate location with 

contextual information at the higher level (Figure 2). 

We use a graphical model to represent the anatomical 

regions of the AUS images. The model represents the ana-

tomical regions with rectangular parts    {           } 
where        .    and     are the positions of the parts on 

an image  and     and     are the sizes of the parts. One of 

these parts corresponds to the prostate region and the other 

parts correspond to meaningful neighboring anatomical re-

gions, such as bladder and tissue layers between the bladder 

and the prostate. (Figure 2- Training). 

In the pixel level detection, image features of each ana-

tomical region are extracted by a HOG [2] based SVM clas-

sifier [13]. HOG descriptors are histograms of gradient ori-

entations which are quantized into a number of bins. In each 

bin, the number of edges within an angular range is collect-

ed. Thus the local gradient information is obtained. Due to 

the computational cost of HOG descriptor extraction, we use 

the integral image technique [11] which speeds up the de-

scriptor extraction process. 



 
Figure 3: Graphical representation of the model. 

For each anatomical region, an SVM classifier is 

trained with the extracted HOG descriptors. In the testing 

phase, instead of making a binary classification with SVM, 

we use the class scores produced by the function         . 
   extracts the HOG vector from the region of    on image 

  and feeds this data to the trained SVM of the correspond-

ing anatomical region. Finally,    returns the distance val-

ues to the hyper-plane of the HOG based linear SVM. We 

produce   different score maps for a given image   as shown 

in Figure 2 by running the function    for all possible    

positions. For the overlapping part positions, we take the 

maximum score. 

In the model level detection, the contextual information 

is incorporated into the system by modeling the geometric 

relationships between model parts.  

Figure 3 shows the graphical representation of the pro-

posed model. Circles represent   . Filled rectangles with a 

single connection correspond to          while rectangles 

with double connections show the context information be-

tween the neighboring parts. 

We employ this model to form an optimization frame-

work for the prostate detection problem. Let   
{          } be a configuration of parts. Given an image 

 , we seek the maximum a posteriori estimate of the config-

uration   

 ̂        
 

           (1) 

where   is the AUS image and Ɵ defines the parameters 

learned from the training set.  ̂ is the optimal configuration. 

The function          consists of appearance level and 

context level terms and it is modeled by a Gibbs distribution 

         
 

 
   [             ]          (2) 

The appearance term      includes the total appearance 

information produced at the pixel-level detection stage for 

all parts. 

     ∑           . 

The context level term       includes normally distrib-

uted distance, orientation, and size terms between the parts. 

                            , 

where  ,  ,   are the weights. The distance relation between 

two parts represents the similarity between the current dis-

tance of two parts and the training set.  
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where   
         ,   

  is the average distance between   
  

and     
  in the training set and   

  is the corresponding 

standard deviation. The orientation and the size terms are 

also estimated similarly. 

Levenberg-Marquardt Algorithm (LMA) [6] is used to 

optimize Equation 1 by searching an optimal set of locations 

 ̂ for the parts. LMA is a gradient descent based optimiza-

tion method which outperforms classical gradient descent 

approach with complex models. Since this algorithm is de-

pendent on the initialization it does not guarantee globally 

optimal results. In order to address this problem, we use 

systematic multiple initializations to minimize chances of 

getting stuck at the local minima. We observe that a convex 

function can be optimally solved by LMA and Equation 2 is 

a convex function if the appearance term is ignored. In order 

to lower the influence of the appearance term in Equation 2, 

we cluster the score maps from the pixel level detection 

phase into k clusters and use the cluster centers as the posi-

tions during the multiple initializations. The K-means algo-

rithm runs on the features of the class scores and the pixel 

positions. There are    different starts for LMA which 

seems very high. However, LMA is a very efficient optimi-

zation method which makes the overall process fast. 

3. EXPERIMENTAL RESULTS 

The proposed system is tested on AUS images of the trans-

verse view. The dataset consists of 140 AUS images of dif-

ferent subjects. Image sizes vary between 295x470 and 

380x610 pixels. The images in the dataset are gathered from 

subjects that have either normal prostate or abnormal pros-

tate having various diseases. Bounding boxes of each ana-

tomical part are manually marked in all images by an expert 

for the training and verification processes. We applied Ten 

Fold Cross Validation (TFCV) in order to evaluate our sys-

tem.  

3.1. Pixel-Level Detection Results 

We manually defined  =5 different anatomical regions 

which are useful for the HOG based SVM. Since our system 

is validated with TFCV and the total number of images in 

our dataset is 140, the pixel level detection is performed for 

each of the images in dataset with 126 training images. Each 

part is trained and tested individually, so there are 5 differ-

ent SVM in each TFCV. Therefore, each pixel is given 

scores with 5 SVMs and totally 5 different score maps are 

created for each image. 



 
Figure 4: Sample detection results for the prostate centers. (a-c) are results with low error, (d) is a detection with high error. 

Red plus signs are the ground truth centers and yellow plus signs are detected centers.

If we had used the prostate score map as the only score 

map and choose the best position on this image, we obtain a 

classical machine learning based detector such as [2]. In this 

case, average of the distances between the detected centers 

and the marked prostate centers is 2.1 cm and only 55.7% of 

the detected results are within the manually marked bound-

ing boxes. This high average distance result is expected be-

cause prostate score values represent a model with only one 

node and it ignores the other parts of the model. Next sec-

tion presents the results of the proposed hierarchical model 

with all of the parts with contextual information.  

3.2. Model-Level Detection Results 

Model level detection is built over the results of the pixel 

level detection. The score map of each part is clustered into 

k=10 clusters for all 140 images. The centers of these clus-

ters are transferred to the model level as the initial points of 

the multiple LM optimization method. The minimum of the 

optimization results of different initializations are selected 

as the resulting positions for a target image.  

The average distance between the detected prostate cen-

ter and the hand marked ground truth for 140 images is 1.08 

cm and 83.5% of detected centers are inside of the bounding 

box of the ground truth. 

The difference in the performances of the pixel level 

score map with HOG based SVM and the two level detec-

tion shows the effectiveness of the proposed approach. Fig-

ure 5 shows the box plot of the distances to the marked cen-

ters of pixel level SVM and the proposed system. The pro-

posed system outperforms the classical pixel level SVM. 

Figure 4 shows sample prostate detection results of 4 

different AUS images in the dataset. Note that marking the 

prostate center is a difficult job and there is a great variation 

in the prostate positions marked by the experts. 

4. CONCLUSIONS 

We presented a novel method that brings the pixel-level 

information and the context information together under the 

two level framework for prostate AUS images. The pro-

posed method for the prostate center detection fits con-

straints of the problem very well because the prostate center 

can be localized more effectively with the help of the neigh-

boring structures. Furthermore, the structural differences 

between the patients are nicely handled by the optimization 

framework. The two level structure of the detection system 

helps us separate pixel level and model level knowledge. 

For the pixel level knowledge an HOG based SVM works 

efficiently. For the future work, we are planning to define 

the anatomical regions automatically and use the results 

from this system to segment the prostate borders. 

 
Figure 5: Comparison between the detection results of clas-

sical SVM  the and proposed method. The central mark at 

the box is the median, the edges of the box are the 25
th

 and 

75
th

 percentiles, the plus signs are the outliers. 
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