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Abstract. Prostate size inference from abdominal ultrasound images is
crucial for many medical applications but it remains a challenging task
due to very weak prostate borders and high image noise. This paper
presents a novel method that enforces image patch prior information on
multi-task deep learning followed by a global prostate shape estimation.
The patch prior information is learned by multi-task Deep Convolutional
Neural Networks (DCNNs) trained on multi-scale image patches to cap-
ture both local and global image information. We produce tens of thou-
sands of image patches for the DCNN training that needs a large amount
of training data which usually is not available for medical images. The
three learned tasks for the DCNN are the distance between the patch cen-
ter and the nearest contour point, the angle of the line segment between
the patch center and the prostate center, and the contour curvature
value for the patch center. During the prostate shape inference time, the
labels returned from the multi-task DCNN are used in a global shape
fitting process to obtain the final prostate contours which are then used
for size inference. We performed experiments on transverse abdominal
ultrasound images which are very challenging for automatic analysis.

1 Introduction

Measuring prostate size is crucial for many medical applications. As a cheap,
portable, harmless, and real-time technology, ultrasound (US) is one of the most
efficient technologies among many other medical imaging technologies like Mag-
netic Resonance (MR) and Computed Tomography (CT). Trans-rectal ultra-
sound (TRUS) and abdominal ultrasound (AUS) are frequently used US tech-
nologies for imaging prostate in various diagnostic and therapeutic applications.
TRUS technology supplies a better imaging quality than the AUS technology
with a higher signal to noise ratio (SNR) and a bigger view of prostate with
no other anatomic structures. Despite its imaging quality advantages, TRUS
technology is difficult to use regularly during successive radiotherapy sequences
[2] due to patient discomfort [5]. AUS is a frequently applied alternative tech-
nique where TRUS is not applicable. Figure 1 shows samples of AUS and TRUS
images.
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Fig. 1. Samples of transverse (left) and sagittal (middle) AUS images, and a TRUS
image (right). The arrows and contours show the respective prostate borders.

Generally, clinical experts measure prostate size from US images manually in
real time. However, both intra and inter observer variability is high on US images
due to factors caused by imaging quality, personal experience, and human error
[4]. Automated prostate size inference systems are required to overcome these
limitations. However, this task is very challenging for computers. Automatic
contour extraction and segmentation of prostate has become a popular research
area to infer the size of the prostate by analysing US images. Although there are
many studies for the analysis of the prostate in TRUS images [8,14,15], there
are only a few reported AUS analysis work in the literature. [7] uses an image
filtering and prior shape based approach to find the prostate border in AUS
images. However, this method requires an expert initialization near the target
prostate region. We argue that a fully automatic method is required to have
robust systems reducing the influence of personal experience and human error.

To build a fully automatic prostate size inference system, we need a method
which has two key features: First, the method should work with raw images by
learning both object-level and lower-level image features. Second, the method
should detect both prostate location by learning global information and prostate
boundary by learning local information.

The recent researches show that Deep Convolutional Neural Networks
(DCNNs) have a great potential of learning both the intermediate features and
final task simultaneously from raw images. Different levels of abstract informa-
tion from any type of images can be captured using DCNNs [11]. Lower levels of
the network would capture features like edges, while the upper levels would cap-
ture object or class level features. These features of DCNNs correspond to the
first required key feature of a fully automatic system as mentioned above. The
foremost difficulty in using DCNNs in AUS image analysis is that they require
immense amount of training data to extract useful features for a complex task
like contour extraction or segmentation of prostate. The huge number of para-
meters to be learned can easily result in over-fitting if sufficient data is not fed
to the network during training. This problem raises especially in domains where
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Fig. 2. The general architecture of the system.

collecting data or hand labeling it is either very expensive or difficult. Medical
imaging is one of these domains [3]. Most ultrasound image sets contain only
at most a few hundred labeled medical images which is too small compared to
more general sets with very large number of hand labeled images such as Ima-
geNet dataset which contains more that 12 million images and 22 K classes [6].
There are methods to address the data scarcity in deep learning. One of them
is pre-training with unsupervised data to learn generic features and then fine
tuning the network for the task at hand in a supervised manner. However, there
is no guarantee that pre-training will not cause suboptimal models and perform
poorly than a fully supervised training [1]. Thus, deep learning approaches in
medical image analysis were used mainly as feature extraction tools [12] or as
unsupervised learning tools [13].

To take advantages of DCNNs while overcoming the dataset size limitation
problem, we propose to train DCNNs with the image patch prior information to
extract 2D closed contour of the prostate which is then used for size inference. We
have collected a dataset of AUS images from 210 samples. Since the dataset is too
small for a general DCNN training, we employ multi-task DCNNs trained with
small image patches for obtaining lower-level abstract information as contour-
closeness maps and then use contour fitting methods on these maps to recover
the 2D closed contour, which can be considered as the object-level information.

The main contribution of this paper is to create the image patches by concate-
nating sub-patches of different scales and classify them in a multi-task system
to combine the local and global image information which corresponds to the sec-
ond required key feature of the fully automatic system mentioned above. Tens
of thousands of such patches with automatically produced label data can be
obtained from our small dataset, which is sufficient to train a DCNN with many
layers. Three different tasks are chosen to determine the labels of the multi-task
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learning. These are the closeness of the patch center to the nearest contour point,
the angle of the line segment between the patch center and prostate center, and
the curvature of the contour line where the patch center is located. During the
shape inference time, patches extracted from a test image in a sliding-window
manner. Each patch is fed to the network to obtain the estimated class labels
which produce a map of contour-closeness. By fitting a novel ellipse model to
the map, we obtain the final contours.

The rest of this paper is organized as follows: In Sect. 2, we define our patch
extraction process. In Sects. 3 and 4, we explain the training and prediction
phases of our method, respectively. In Sect. 5, we present our experiments and
show our quantitative results. Section 6 provides concluding remarks about this
work.

2 Patch Extraction Process

Using patches composed of sub-patches at different scales prevents the loss of
global information caused by reducing the representation from whole image level
to patch level, while providing a patch prior information enriched by both global
and local image information. To take advantage of this structure, we use patches
composed of four sub-patches of four different scales with convergent centers.
We extract sub-patches of 16 × 16, 64× 64, 256× 256, and 512× 512 pixels and
our resulting patch is 256× 256 pixels.

Four equisized patches of different scales are extracted centering a given
point and the patch for the point is created by concatenating these sub-
patches. Figure 3 shows the patch extraction process at a given point Ij(x, y)

Fig. 3. Patch extraction process at a given point of image Ij . The process extracts
four sub-patches of different scales. Then the final patch is created by resizing and
concatenating these sub-patches.
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of image Ij . First, four sub-patches of different scales with convergent centers
are extracted from the image, s1(Ij(x, y)), s2(Ij(x, y)), s3(Ij(x, y)), s4(Ij(x, y)).
Then these sub-patches are resized and concatenated to obtain the final patch
P (Ic1,c2,c3k (x, y)), where c1, c2, and c3 are the class labels of the three tasks in
case of the training phase.

3 Training Phase

Three different tasks are chosen for the multi-task learning process. The labels
of the first task, c1 represents the distance of the patch center to the closest
contour point. We create several concentric image layers by scaling up or down
the contour layer to quantize the distance values into the number of classes. As
shown in Fig. 4a, class labels for the first task of three sample points, pc1i , pc1k ,
and pc1m are determined according to the layers they are on. Assuming that the
class label for the innermost layer is 1, the respective values for pc1i , pc1k , and pc1m
will be 6, 4, and 1. Given P as the line segment between the center of the prostate
and patch center pi, the labels of the second task, c2 represents the angle between
the line segment P and the x-axis. Figure 4b shows the calculation of the angle
values of three sample points for the second task. After the calculation, each
angle value is quantized into the number of classes determined for the second
task, which is 6 for our experiments. The labels of the third task, c3 represents
the curvature value for the patch center which is calculated considering the
neighbouring points on the same layer. Curvature for three points p(i−1), pi, and
p(i+1) is the radius of the circle which the three points are on. Figure 4c shows
the calculation of the curvature value for three points. Curvature value is also
quantized into the number of classes after calculation.

Fig. 4. Determination of class labels for the three learning tasks. Solid contour shows
the contour layer and dotted lines show the other layers. pi, pk, and pm are three sample
points from outer layers, contour boundary and inner layers. In (a), class labels of the
points for the first learning task, c1 is determined considering the layer it is on. In (b),
the class labels for the second learning task of the sample points, c2 is determined by
quantizing α, β, and γ into the number of angle classes. In (c), the class labels for the
third learning task of the sample points, c3 is determined by quantizing r1, r2, and r3
into the number of curvature classes. (Color figure online)
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Fig. 5. Use of four ellipse sections for the train data contour creation. Right: expert
contours obtained by using the four points and four ellipse sections. Left: four points
of expert.

Since our dataset has only four landmark annotations as shown on the left
column of Fig. 5, we obtain complete training contours from the four landmarks
by fitting four different ellipse sections as shown on the right column of Fig. 5.
The horizontal line between two landmarks which shows the prostate width is
considered as the intersection of the horizontal axes of four ellipses. The vertical
axes of the four ellipses are the normal to the horizontal axes from the two
landmarks.

We train a multi-task DCNN with the train patches which are created accord-
ing to the patch creation method explained in Sect. 2. Training phase procedures
are shown in training phase of Fig. 2.

4 Prediction Phase

Given a new image we remove the 1/4 of the height of the image from the top and
bottom rows. Then we extract patches using the method explained in Sect. 2, by
a sliding window approach. After patch extraction process, we use the previously
trained multi-task DCNN to obtain class predictions for each patch. This way
we obtain a contour-closeness map for each test image. These procedures are
shown in prediction phase of Fig. 2.

We can find the best ellipse that fits to a group of points. To employ this for
the contour extraction process, we create a candidate group of points according
to the map values of the test points. First, we use the points which are classified
as inside the prostate to find a good start location to estimate the contour. For
this purpose, we use the three layers’ test points to create a new map. Then we
find the largest blob which is supposed to show the real location of the prostate.
An ellipse is fitted to the blob and enlarged until enough number of points
which are detected as on the contour are inside the ellipse. We determine the
number of points by checking if at least one point is inside the ellipse for its
each quarter. The axes of the resulting ellipse are the width and height of our
predicted prostate. Figure 6 shows the contour extraction process.
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Fig. 6. Extraction of contour from a class prediction map. From left to right: first, a
new image. Second, class predictions map. Third, the class predictions of being inside
the prostate. Fourth, blobs detected. Fifth, the first ellipse (blue) which is fit to the
largest blob, and the second ellipse (red) which is enlarged according to the points
(green) classified as on the contour. (Color figure online)

5 Experiments

We use transverse abdominal ultrasound images to demonstrate the performance
of our method on 2D size inference. 210 images are used for experiments. Figure 7
shows some sample images from our dataset. We applied 5-fold cross validation,
resulting with 180 train and 30 test images in each fold. That is 150 of the images
are used for testing. Train patches with labels are created with patch creation
and label determination methods explained in Sects. 2 and 3.

Fig. 7. Some sample images from our dataset with expert marks.

We use Caffe [9] implementation of AlexNet [10] and use Stochastic Gradient
Descent for DCNN optimization. We perform our experiments in three different
cases; using only distance labels in single-task learning, using distance and angle
labels in multi-task learning and using distance, angle and curvature labels in
multi-task learning. We modify AlexNet to be multi-task DCNN for the multi-
task learning experiments.
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Table 1. Mean of size differences between expert contours and detected contours in
cm2 within contour detected results.

Fold no Test case 1 distance
(undetected contours)

Test case 2 distance +
angle + (undetected
contours)

Test case 3 distance +
angle + curvature
(undetected contours)

1 3.10 (2) 2.98 2.94 (1)

2 2.94 2.76 3.00

3 3.02 (1) 2.78 3.19

4 2.95 (1) 3.18 (1) 3.09 (2)

5 1.81 (2) 1.80 1.93

Mean 2.76 2.70 2.83

We create 7 layers including the contour layer for the first learning task to
obtain 7 classes which represent the signed distance value of a patch center to
the closest contour point. For the second learning task, we choose angle ranges
of 60◦ for each class resulting with 6 classes of angles. 11 classes are obtained for
the third learning task which represents the curvature value of the layer where
a patch center is on.

After obtaining the contour-closeness maps which are composed of distance
class predictions, a final ellipse is created to predict the size of the prostate as a
2D area. The size of the prostate in 2D is calculated with (1).

size =
width ∗ height ∗ π

4
(1)

Our test results are shown in Table 1 as errors in cm2. Each column shows a
test case while each row shows a cross validation fold. There are 10 miss-detection
cases which are excluded from the error results. The best DCNN architecture is
the multi-task network that assigns labels based on patch distance and angle.
This network has only one miss-detection out of 150 cases which is shown Fig. 8.

The literature reports inter-observer differences of dimensions measurement
in mm between experienced observers as 1.5 ± 1.3 for width and 1.8± 2.5 for
height, between experienced and less experienced observers as 1.6 ± 1.4 for width
and 2.8± 2.4 for height on TRUS images [4]. Although we did not use the same
data set and our images are of type AUS, differences of dimensions measurement
in mm between less experienced observers and our results are 6.1 ± 5.3 for width
and 4.9± 3.9 for height. The comparison results are shown in Table 2. Note that
the prostate region is several times larger on TRUS images than AUS images
(see Fig. 1). As a result, it is experienced that a single pixel error on an AUS
image would translate to several times larger errors in mm. Considering the
other problems with the AUS images that were listed in Sect. 1, we argue that
our error results on AUS images are comparable to errors on TRUS images.
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Fig. 8. Samples from our results. First and fourth columns show new test images.
Second and fifth columns show class prediction maps. Third and sixth columns show
detected contours. Colour scale for the class predictions maps are given in Fig. 6. The
only misdetection in our best test case (distance + angle multi-task learning case) is
shown in the third row and sixth column.

Table 2. Comparison of our dimensions measurement results with [4] in mm. First
column and second column shows the variations between experienced observers and
experienced and less experienced observers. Third column shows variations between
less experienced observers and our results.

Measurement
of

exp. vs. exp. [4]
(mean± SD)

lexp. vs. exp. [4]
(mean± SD)

lexp. vs. ours.
(mean± SD)

Width (mm) 1.5 ± 1.3 1.6 ± 1.4 6.1 ± 5.3

Height (mm) 1.8 ± 2.5 2.8 ± 2.4 4.9 ± 3.9

6 Conclusions

Prostate size measurement from AUS images has many advantages. However,
problems unique to AUS modality makes this task challenging for an auto-
mated analysis. We have presented a novel prostate size inference method that
learns image patch level prior information that include both local and global
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information about the patch. By transforming the problem input from com-
plete images to small patches, we effectively address the data scarcity issue that
usually is a problem for medical applications when used with DCNNs. We have
developed a multi-scale approach while forming the patches to include both local
and global information about the patches.

The proposed method is applied on transverse abdominal ultrasound images
with DCNN architectures that assign more than one class label at the same time,
which improves the overall performance. The complete results are available1. The
results show that our size inference results are comparable to manual expert
contours. For the future work, we plan to estimate the sagittal sizes to produce
a complete 3D size measurement tool from AUS images. We also plan to make
direct comparisons against inter-observer variability on our data set.
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8. Ghose, S., Oliver, A., Mart́ı, R., Lladó, X., Vilanova, J.C., Freixenet, J., Mitra,
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