
Structural Decompositions and Algorithms for the Maximum
Weight Independent Set Problem
Workshop on Graph Theory and Its Applications

Boğaziçi University, Istanbul, Turkey

October 24–25, 2025

Clément Dallard
University of Fribourg

Maximum Weight Independent Set: Computational hardness

Maximum Weight Independent Set problem (MWIS): given a graph G = (V, E) and a weight function w : V → Q+ , find an
independent set I in G of maximum possible weight w(I), where w(I) =

∑
x∈I w(x).

MWIS is NP-hard on general graphs, and it remains NP-hard on many restricted graph classes, including cubic,
triangle-free planar graphs.

It is also NP-hard to approximate:

• within a factor of ∆ε , for some ε > 0, on graphs with maximum degree ∆ (Alon et al., 1995), and

• on cubic graphs within a factor of 94/95 (Chlebík and Chlebíková, 2006).

One challenge is to identify graph classes on which MWIS can be solved efficiently.

1

Maximum Weight Independent Set: Computational hardness

Maximum Weight Independent Set problem (MWIS): given a graph G = (V, E) and a weight function w : V → Q+ , find an
independent set I in G of maximum possible weight w(I), where w(I) =

∑
x∈I w(x).

MWIS is NP-hard on general graphs, and it remains NP-hard on many restricted graph classes, including cubic,
triangle-free planar graphs.

It is also NP-hard to approximate:

• within a factor of ∆ε , for some ε > 0, on graphs with maximum degree ∆ (Alon et al., 1995), and

• on cubic graphs within a factor of 94/95 (Chlebík and Chlebíková, 2006).

One challenge is to identify graph classes on which MWIS can be solved efficiently.

1

Maximum Weight Independent Set: Computational hardness

Maximum Weight Independent Set problem (MWIS): given a graph G = (V, E) and a weight function w : V → Q+ , find an
independent set I in G of maximum possible weight w(I), where w(I) =

∑
x∈I w(x).

MWIS is NP-hard on general graphs, and it remains NP-hard on many restricted graph classes, including cubic,
triangle-free planar graphs.

It is also NP-hard to approximate:

• within a factor of ∆ε , for some ε > 0, on graphs with maximum degree ∆ (Alon et al., 1995), and

• on cubic graphs within a factor of 94/95 (Chlebík and Chlebíková, 2006).

One challenge is to identify graph classes on which MWIS can be solved efficiently.

1

Chordal graphs: Definition and warm-up proofs

Definition
A graph is chordal if every cycle of length at least four has a chord, i.e., an edge between two non-consecutive vertices
of the cycle.

From the definition above, one can derive several equivalent characterizations of chordal graphs:

1. A graph is chordal if and only if all its minimal separators are cliques.

2. Every chordal graph (with at least one vertex) admits a simplicial vertex, i.e., a vertex whose neighborhood is a
clique.

3. A graph is chordal if and only if it is the intersection graph of subtrees of a tree.

4. Every chordal graph admits a clique tree, i.e., a tree whose nodes correspond to the maximal cliques of the graph
and satisfy the Helly property.

2

Chordal graphs: Definition and warm-up proofs

Definition
A graph is chordal if every cycle of length at least four has a chord, i.e., an edge between two non-consecutive vertices
of the cycle.

From the definition above, one can derive several equivalent characterizations of chordal graphs:

1. A graph is chordal if and only if all its minimal separators are cliques.

2. Every chordal graph (with at least one vertex) admits a simplicial vertex, i.e., a vertex whose neighborhood is a
clique.

3. A graph is chordal if and only if it is the intersection graph of subtrees of a tree.

4. Every chordal graph admits a clique tree, i.e., a tree whose nodes correspond to the maximal cliques of the graph
and satisfy the Helly property.

2

Chordal graphs: Definition and warm-up proofs

Definition
A graph is chordal if every cycle of length at least four has a chord, i.e., an edge between two non-consecutive vertices
of the cycle.

From the definition above, one can derive several equivalent characterizations of chordal graphs:

1. A graph is chordal if and only if all its minimal separators are cliques.

2. Every chordal graph (with at least one vertex) admits a simplicial vertex, i.e., a vertex whose neighborhood is a
clique.

3. A graph is chordal if and only if it is the intersection graph of subtrees of a tree.

4. Every chordal graph admits a clique tree, i.e., a tree whose nodes correspond to the maximal cliques of the graph
and satisfy the Helly property.

2

Chordal graphs: Definition and warm-up proofs

Definition
A graph is chordal if every cycle of length at least four has a chord, i.e., an edge between two non-consecutive vertices
of the cycle.

From the definition above, one can derive several equivalent characterizations of chordal graphs:

1. A graph is chordal if and only if all its minimal separators are cliques.

2. Every chordal graph (with at least one vertex) admits a simplicial vertex, i.e., a vertex whose neighborhood is a
clique.

3. A graph is chordal if and only if it is the intersection graph of subtrees of a tree.

4. Every chordal graph admits a clique tree, i.e., a tree whose nodes correspond to the maximal cliques of the graph
and satisfy the Helly property.

2

Chordal graphs: Definition and warm-up proofs

Definition
A graph is chordal if every cycle of length at least four has a chord, i.e., an edge between two non-consecutive vertices
of the cycle.

From the definition above, one can derive several equivalent characterizations of chordal graphs:

1. A graph is chordal if and only if all its minimal separators are cliques.

2. Every chordal graph (with at least one vertex) admits a simplicial vertex, i.e., a vertex whose neighborhood is a
clique.

3. A graph is chordal if and only if it is the intersection graph of subtrees of a tree.

4. Every chordal graph admits a clique tree, i.e., a tree whose nodes correspond to the maximal cliques of the graph
and satisfy the Helly property.

2

Perfect elimination orderings: Definition

A perfect elimination ordering (p.e.o. for short) of a graph G is an ordering (v1, . . . , vn) of its vertices such that, for every
i ∈ {1, . . . , n}, the set of neighbors of vi among {v1, . . . , vi−1} is a clique.

a

b c

d e

f
g

h

j

k m

l

i

A graph is chordal if and only if it admits a p.e.o. (Rose, 1970).

3

Perfect elimination orderings: Definition

A perfect elimination ordering (p.e.o. for short) of a graph G is an ordering (v1, . . . , vn) of its vertices such that, for every
i ∈ {1, . . . , n}, the set of neighbors of vi among {v1, . . . , vi−1} is a clique.

a

b c

d e

f
g

h

j

k m

l

i

A graph is chordal if and only if it admits a p.e.o. (Rose, 1970).

3

Perfect elimination orderings: Definition

A perfect elimination ordering (p.e.o. for short) of a graph G is an ordering (v1, . . . , vn) of its vertices such that, for every
i ∈ {1, . . . , n}, the set of neighbors of vi among {v1, . . . , vi−1} is a clique.

a

b c

d e

f
g

h

j

k m

l

i

A graph is chordal if and only if it admits a p.e.o. (Rose, 1970).

3

Perfect elimination orderings: Solving MIS

Theorem
MIS can be solved in O(n+m) time on n-vertex m-edge chordal graphs using a perfect elimination ordering.

Algorithm:

• find a p.e.o. (v1, . . . , vn) of G;

• I := ∅;
• for i from n to 1, do:

• if vi is not adjacent to any vertex in I, then add vi to I;

• return I.

The correctness relies on the fact that at most one vertex in N[vi] ∩ {v1, . . . , vi} can be included in an independent set.

4

Perfect elimination orderings: Solving MIS

Theorem
MIS can be solved in O(n+m) time on n-vertex m-edge chordal graphs using a perfect elimination ordering.

Algorithm:

• find a p.e.o. (v1, . . . , vn) of G;

• I := ∅;
• for i from n to 1, do:

• if vi is not adjacent to any vertex in I, then add vi to I;

• return I.

The correctness relies on the fact that at most one vertex in N[vi] ∩ {v1, . . . , vi} can be included in an independent set.

4

Perfect elimination orderings: Solving MIS

Theorem
MIS can be solved in O(n+m) time on n-vertex m-edge chordal graphs using a perfect elimination ordering.

Algorithm:

• find a p.e.o. (v1, . . . , vn) of G;

• I := ∅;
• for i from n to 1, do:

• if vi is not adjacent to any vertex in I, then add vi to I;

• return I.

The correctness relies on the fact that at most one vertex in N[vi] ∩ {v1, . . . , vi} can be included in an independent set.

4

Perfect elimination orderings: Generalizing to independence degeneracy

The independence degeneracy (α-degeneracy for short) of a graph G is the minimum integer k for which there exists an
ordering (v1, . . . , vn) of its vertices such that, for every i ∈ {1, . . . , n}, the set of neighbors of vi among {v1, . . . , vi−1}
induces a subgraph with independence number at most k.

This generalizes the notion of degeneracy, which considers the number of neighbors instead of the independence
number of the neighborhood.

There exists a 1/k-approximation polynomial-time algorithm for MWIS on graphs with α-degeneracy at most k (Akcoglu et
al., 2022).

However, we cannot expect to solve MWIS exactly in polynomial time on graphs with bounded α-degeneracy since MWIS
is NP-hard to approximate within ∆ε , for some ε > 0.

5

Perfect elimination orderings: Generalizing to independence degeneracy

The independence degeneracy (α-degeneracy for short) of a graph G is the minimum integer k for which there exists an
ordering (v1, . . . , vn) of its vertices such that, for every i ∈ {1, . . . , n}, the set of neighbors of vi among {v1, . . . , vi−1}
induces a subgraph with independence number at most k.

This generalizes the notion of degeneracy, which considers the number of neighbors instead of the independence
number of the neighborhood.

There exists a 1/k-approximation polynomial-time algorithm for MWIS on graphs with α-degeneracy at most k (Akcoglu et
al., 2022).

However, we cannot expect to solve MWIS exactly in polynomial time on graphs with bounded α-degeneracy since MWIS
is NP-hard to approximate within ∆ε , for some ε > 0.

5

Perfect elimination orderings: Generalizing to independence degeneracy

The independence degeneracy (α-degeneracy for short) of a graph G is the minimum integer k for which there exists an
ordering (v1, . . . , vn) of its vertices such that, for every i ∈ {1, . . . , n}, the set of neighbors of vi among {v1, . . . , vi−1}
induces a subgraph with independence number at most k.

This generalizes the notion of degeneracy, which considers the number of neighbors instead of the independence
number of the neighborhood.

There exists a 1/k-approximation polynomial-time algorithm for MWIS on graphs with α-degeneracy at most k (Akcoglu et
al., 2022).

However, we cannot expect to solve MWIS exactly in polynomial time on graphs with bounded α-degeneracy since MWIS
is NP-hard to approximate within ∆ε , for some ε > 0.

5

Perfect elimination orderings: Generalizing to independence degeneracy

The independence degeneracy (α-degeneracy for short) of a graph G is the minimum integer k for which there exists an
ordering (v1, . . . , vn) of its vertices such that, for every i ∈ {1, . . . , n}, the set of neighbors of vi among {v1, . . . , vi−1}
induces a subgraph with independence number at most k.

This generalizes the notion of degeneracy, which considers the number of neighbors instead of the independence
number of the neighborhood.

There exists a 1/k-approximation polynomial-time algorithm for MWIS on graphs with α-degeneracy at most k (Akcoglu et
al., 2022).

However, we cannot expect to solve MWIS exactly in polynomial time on graphs with bounded α-degeneracy since MWIS
is NP-hard to approximate within ∆ε , for some ε > 0.

5

Clique trees: Definition

Definition
A clique tree of a graph G is a pair (T, {Xt}t∈V(T)) such that T is a tree, each Xt ⊆ V(G) is a maximal clique of G, and the
following property holds:

• (Helly property) for every vertex v ∈ V(G), the set {t ∈ V(T) : v ∈ Xt} induces a connected subtree of T .

Let’s show that every chordal graph admits a clique tree.

6

Clique trees: Definition

Definition
A clique tree of a graph G is a pair (T, {Xt}t∈V(T)) such that T is a tree, each Xt ⊆ V(G) is a maximal clique of G, and the
following property holds:

• (Helly property) for every vertex v ∈ V(G), the set {t ∈ V(T) : v ∈ Xt} induces a connected subtree of T .

Let’s show that every chordal graph admits a clique tree.

6

Clique trees: Construction

a

b c

d e

f
g

h

j

k m

l

i

a, b, c

c, f, h

d, e e, f, g

f, g, h, i

h, i, j, k

j, k, l

k, l,m

One can construct a clique tree as follows.

Invariant: Each Xt , for t ∈ V(T), corresponds to a maximal clique of G[{v1, . . . , vi}].

• We assume that G is connected; otherwise, build a clique tree for each connected component.
• Consider a p.e.o. (v1, . . . , vn) of a connected chordal graph G.
• Initialize T = (V, E) with V = E = ∅.
• For each i from 1 to n, do:

• If N(vi) ∩ {v1, . . . , vi−1} = Xt′ for some t
′ ∈ V(T), add vi to Xt′ .

• Otherwise, create a new node t in T and set Xt = N[vi]. Add the edge tt′ to E, where t′ is any node of T such that Xt \ {vi} ⊆ Xt′ .

• Return (T, {Xt}t∈V(T)).

7

Clique trees: Construction

a

b c

d e

f
g

h

j

k m

l

i

a, b, c

c, f, h

d, e e, f, g

f, g, h, i

h, i, j, k

j, k, l

k, l,m

One can construct a clique tree as follows.

Invariant: Each Xt , for t ∈ V(T), corresponds to a maximal clique of G[{v1, . . . , vi}].

• We assume that G is connected; otherwise, build a clique tree for each connected component.
• Consider a p.e.o. (v1, . . . , vn) of a connected chordal graph G.
• Initialize T = (V, E) with V = E = ∅.
• For each i from 1 to n, do:

• If N(vi) ∩ {v1, . . . , vi−1} = Xt′ for some t
′ ∈ V(T), add vi to Xt′ .

• Otherwise, create a new node t in T and set Xt = N[vi]. Add the edge tt′ to E, where t′ is any node of T such that Xt \ {vi} ⊆ Xt′ .

• Return (T, {Xt}t∈V(T)).

7

Clique trees: Solving MWIS

Consider a chordal graph G and a clique tree (T, {Xt}t∈V(T)) of G. Root the clique tree at an arbitrary node r.

Observation
For any tt′ ∈ E(T), the set Xt ∩ Xt′ is a separator of G.

Let DPt(S) be the maximum weight of an independent set in Gt (the subgraph of G induced by the vertices in the sets
Xt′ , for t′ either t or a descendant of t in T) that intersects Xt exactly in S.

Algo((G,w), (T, {Xt}t∈V(T))):
return max

S⊆Xr
|S|≤1

DPr(S)

DPt(S):
wSt = w(S)
forall t′ ∈ N+(t) do

wSt+ = max
S′⊆Xt′ \N[S]

|S′|≤1

DPt′ (S
′)

return wSt

Theorem
MWIS can be solved in O(n2) time on n-vertex chordal graphs using a clique tree.

8

Clique trees: Solving MWIS

Consider a chordal graph G and a clique tree (T, {Xt}t∈V(T)) of G. Root the clique tree at an arbitrary node r.

Observation
For any tt′ ∈ E(T), the set Xt ∩ Xt′ is a separator of G.

Let DPt(S) be the maximum weight of an independent set in Gt (the subgraph of G induced by the vertices in the sets
Xt′ , for t′ either t or a descendant of t in T) that intersects Xt exactly in S.

Algo((G,w), (T, {Xt}t∈V(T))):
return max

S⊆Xr
|S|≤1

DPr(S)

DPt(S):
wSt = w(S)
forall t′ ∈ N+(t) do

wSt+ = max
S′⊆Xt′ \N[S]

|S′|≤1

DPt′ (S
′)

return wSt

Theorem
MWIS can be solved in O(n2) time on n-vertex chordal graphs using a clique tree.

8

Clique trees: Solving MWIS

Consider a chordal graph G and a clique tree (T, {Xt}t∈V(T)) of G. Root the clique tree at an arbitrary node r.

Observation
For any tt′ ∈ E(T), the set Xt ∩ Xt′ is a separator of G.

Let DPt(S) be the maximum weight of an independent set in Gt (the subgraph of G induced by the vertices in the sets
Xt′ , for t′ either t or a descendant of t in T) that intersects Xt exactly in S.

Algo((G,w), (T, {Xt}t∈V(T))):
return max

S⊆Xr
|S|≤1

DPr(S)

DPt(S):
wSt = w(S)
forall t′ ∈ N+(t) do

wSt+ = max
S′⊆Xt′ \N[S]

|S′|≤1

DPt′ (S
′)

return wSt

Theorem
MWIS can be solved in O(n2) time on n-vertex chordal graphs using a clique tree.

8

Clique trees: Solving MWIS

Consider a chordal graph G and a clique tree (T, {Xt}t∈V(T)) of G. Root the clique tree at an arbitrary node r.

Observation
For any tt′ ∈ E(T), the set Xt ∩ Xt′ is a separator of G.

Let DPt(S) be the maximum weight of an independent set in Gt (the subgraph of G induced by the vertices in the sets
Xt′ , for t′ either t or a descendant of t in T) that intersects Xt exactly in S.

Algo((G,w), (T, {Xt}t∈V(T))):
return max

S⊆Xr
|S|≤1

DPr(S)

DPt(S):
wSt = w(S)
forall t′ ∈ N+(t) do

wSt+ = max
S′⊆Xt′ \N[S]

|S′|≤1

DPt′ (S
′)

return wSt

Theorem
MWIS can be solved in O(n2) time on n-vertex chordal graphs using a clique tree.

8

Tree decompositions: Definition

Definition
A tree decomposition of a graph G is a pair (T, {Xt}t∈V(T)) such that T is a tree, each Xt ⊆ V(G) (called a bag), and the
following properties hold:

•
⋃
t∈V(T) Xt = V(G),

• for every edge uv ∈ E(G), there exists t ∈ V(T) such that {u, v} ⊆ Xt , and

• for every vertex v ∈ V(G), the set {t ∈ V(T) : v ∈ Xt} induces a connected subtree of T .

9

Tree decompositions: An interesting property

Lemma
Let G be a graph and T = (T, {Xt}t∈V(T)) be a tree decomposition of G. Then, for every clique C of G, there exist
t ∈ V(T) such that C ⊆ Xt .

Lemma
For any graph G and any tree decomposition (T, {Xt}t∈V(T)) of G, there exists u ∈ V(G) and t ∈ V(T) such that N[u] ⊆ Xt .

Sketch of proof: Let G∗ be the graph with vertex set V(G) and such that two vertices are adjacent in G∗ if and only if they
are contained in a same bag of T .

Note that, for every u ∈ V(G), NG[u] ⊆ NG∗ [u]. Furthermore, T is also a tree decomposition of G∗ .

Recall that, for every vertex u ∈ V(G), the set of nodes of T whose bags contain u induces a connected subtree of T .
Hence, two vertices u and v are adjacent in G∗ if and only if their corresponding subtrees in T intersect.

This means that G∗ is the intersection graph of subtrees in a tree, i.e., G∗ is a chordal graph.

Since G∗ is chordal, we can find a simplicial vertex u ∈ V(G∗).

Then, NG∗ [u] is a clique in G∗ , and thus there exists t ∈ V(T) such that NG∗ [u] ⊆ Xt .

10

Tree decompositions: An interesting property

Lemma
Let G be a graph and T = (T, {Xt}t∈V(T)) be a tree decomposition of G. Then, for every clique C of G, there exist
t ∈ V(T) such that C ⊆ Xt .

Lemma
For any graph G and any tree decomposition (T, {Xt}t∈V(T)) of G, there exists u ∈ V(G) and t ∈ V(T) such that N[u] ⊆ Xt .

Sketch of proof: Let G∗ be the graph with vertex set V(G) and such that two vertices are adjacent in G∗ if and only if they
are contained in a same bag of T .

Note that, for every u ∈ V(G), NG[u] ⊆ NG∗ [u]. Furthermore, T is also a tree decomposition of G∗ .

Recall that, for every vertex u ∈ V(G), the set of nodes of T whose bags contain u induces a connected subtree of T .
Hence, two vertices u and v are adjacent in G∗ if and only if their corresponding subtrees in T intersect.

This means that G∗ is the intersection graph of subtrees in a tree, i.e., G∗ is a chordal graph.

Since G∗ is chordal, we can find a simplicial vertex u ∈ V(G∗).

Then, NG∗ [u] is a clique in G∗ , and thus there exists t ∈ V(T) such that NG∗ [u] ⊆ Xt .

10

Tree decompositions: An interesting property

Lemma
Let G be a graph and T = (T, {Xt}t∈V(T)) be a tree decomposition of G. Then, for every clique C of G, there exist
t ∈ V(T) such that C ⊆ Xt .

Lemma
For any graph G and any tree decomposition (T, {Xt}t∈V(T)) of G, there exists u ∈ V(G) and t ∈ V(T) such that N[u] ⊆ Xt .

Sketch of proof: Let G∗ be the graph with vertex set V(G) and such that two vertices are adjacent in G∗ if and only if they
are contained in a same bag of T .

Note that, for every u ∈ V(G), NG[u] ⊆ NG∗ [u]. Furthermore, T is also a tree decomposition of G∗ .

Recall that, for every vertex u ∈ V(G), the set of nodes of T whose bags contain u induces a connected subtree of T .
Hence, two vertices u and v are adjacent in G∗ if and only if their corresponding subtrees in T intersect.

This means that G∗ is the intersection graph of subtrees in a tree, i.e., G∗ is a chordal graph.

Since G∗ is chordal, we can find a simplicial vertex u ∈ V(G∗).

Then, NG∗ [u] is a clique in G∗ , and thus there exists t ∈ V(T) such that NG∗ [u] ⊆ Xt .

10

Tree decompositions: An interesting property

Lemma
Let G be a graph and T = (T, {Xt}t∈V(T)) be a tree decomposition of G. Then, for every clique C of G, there exist
t ∈ V(T) such that C ⊆ Xt .

Lemma
For any graph G and any tree decomposition (T, {Xt}t∈V(T)) of G, there exists u ∈ V(G) and t ∈ V(T) such that N[u] ⊆ Xt .

Sketch of proof: Let G∗ be the graph with vertex set V(G) and such that two vertices are adjacent in G∗ if and only if they
are contained in a same bag of T .

Note that, for every u ∈ V(G), NG[u] ⊆ NG∗ [u]. Furthermore, T is also a tree decomposition of G∗ .

Recall that, for every vertex u ∈ V(G), the set of nodes of T whose bags contain u induces a connected subtree of T .
Hence, two vertices u and v are adjacent in G∗ if and only if their corresponding subtrees in T intersect.

This means that G∗ is the intersection graph of subtrees in a tree, i.e., G∗ is a chordal graph.

Since G∗ is chordal, we can find a simplicial vertex u ∈ V(G∗).

Then, NG∗ [u] is a clique in G∗ , and thus there exists t ∈ V(T) such that NG∗ [u] ⊆ Xt .

10

Tree decompositions: An interesting property

Lemma
Let G be a graph and T = (T, {Xt}t∈V(T)) be a tree decomposition of G. Then, for every clique C of G, there exist
t ∈ V(T) such that C ⊆ Xt .

Lemma
For any graph G and any tree decomposition (T, {Xt}t∈V(T)) of G, there exists u ∈ V(G) and t ∈ V(T) such that N[u] ⊆ Xt .

Sketch of proof: Let G∗ be the graph with vertex set V(G) and such that two vertices are adjacent in G∗ if and only if they
are contained in a same bag of T .

Note that, for every u ∈ V(G), NG[u] ⊆ NG∗ [u]. Furthermore, T is also a tree decomposition of G∗ .

Recall that, for every vertex u ∈ V(G), the set of nodes of T whose bags contain u induces a connected subtree of T .
Hence, two vertices u and v are adjacent in G∗ if and only if their corresponding subtrees in T intersect.

This means that G∗ is the intersection graph of subtrees in a tree, i.e., G∗ is a chordal graph.

Since G∗ is chordal, we can find a simplicial vertex u ∈ V(G∗).

Then, NG∗ [u] is a clique in G∗ , and thus there exists t ∈ V(T) such that NG∗ [u] ⊆ Xt .

10

Tree decompositions: An interesting property

Lemma
Let G be a graph and T = (T, {Xt}t∈V(T)) be a tree decomposition of G. Then, for every clique C of G, there exist
t ∈ V(T) such that C ⊆ Xt .

Lemma
For any graph G and any tree decomposition (T, {Xt}t∈V(T)) of G, there exists u ∈ V(G) and t ∈ V(T) such that N[u] ⊆ Xt .

Sketch of proof: Let G∗ be the graph with vertex set V(G) and such that two vertices are adjacent in G∗ if and only if they
are contained in a same bag of T .

Note that, for every u ∈ V(G), NG[u] ⊆ NG∗ [u]. Furthermore, T is also a tree decomposition of G∗ .

Recall that, for every vertex u ∈ V(G), the set of nodes of T whose bags contain u induces a connected subtree of T .
Hence, two vertices u and v are adjacent in G∗ if and only if their corresponding subtrees in T intersect.

This means that G∗ is the intersection graph of subtrees in a tree, i.e., G∗ is a chordal graph.

Since G∗ is chordal, we can find a simplicial vertex u ∈ V(G∗).

Then, NG∗ [u] is a clique in G∗ , and thus there exists t ∈ V(T) such that NG∗ [u] ⊆ Xt .

10

Tree decompositions: An interesting property

Lemma
Let G be a graph and T = (T, {Xt}t∈V(T)) be a tree decomposition of G. Then, for every clique C of G, there exist
t ∈ V(T) such that C ⊆ Xt .

Lemma
For any graph G and any tree decomposition (T, {Xt}t∈V(T)) of G, there exists u ∈ V(G) and t ∈ V(T) such that N[u] ⊆ Xt .

Sketch of proof: Let G∗ be the graph with vertex set V(G) and such that two vertices are adjacent in G∗ if and only if they
are contained in a same bag of T .

Note that, for every u ∈ V(G), NG[u] ⊆ NG∗ [u]. Furthermore, T is also a tree decomposition of G∗ .

Recall that, for every vertex u ∈ V(G), the set of nodes of T whose bags contain u induces a connected subtree of T .
Hence, two vertices u and v are adjacent in G∗ if and only if their corresponding subtrees in T intersect.

This means that G∗ is the intersection graph of subtrees in a tree, i.e., G∗ is a chordal graph.

Since G∗ is chordal, we can find a simplicial vertex u ∈ V(G∗).

Then, NG∗ [u] is a clique in G∗ , and thus there exists t ∈ V(T) such that NG∗ [u] ⊆ Xt .

10

Tree decompositions: An interesting property

Lemma
Let G be a graph and T = (T, {Xt}t∈V(T)) be a tree decomposition of G. Then, for every clique C of G, there exist
t ∈ V(T) such that C ⊆ Xt .

Lemma
For any graph G and any tree decomposition (T, {Xt}t∈V(T)) of G, there exists u ∈ V(G) and t ∈ V(T) such that N[u] ⊆ Xt .

Sketch of proof: Let G∗ be the graph with vertex set V(G) and such that two vertices are adjacent in G∗ if and only if they
are contained in a same bag of T .

Note that, for every u ∈ V(G), NG[u] ⊆ NG∗ [u]. Furthermore, T is also a tree decomposition of G∗ .

Recall that, for every vertex u ∈ V(G), the set of nodes of T whose bags contain u induces a connected subtree of T .
Hence, two vertices u and v are adjacent in G∗ if and only if their corresponding subtrees in T intersect.

This means that G∗ is the intersection graph of subtrees in a tree, i.e., G∗ is a chordal graph.

Since G∗ is chordal, we can find a simplicial vertex u ∈ V(G∗).

Then, NG∗ [u] is a clique in G∗ , and thus there exists t ∈ V(T) such that NG∗ [u] ⊆ Xt .

10

Tree decompositions: Solving MWIS

Let G be a graph and (T, {Xt}t∈V(T)) a tree decomposition of G rooted at an arbitrary node r.

Let DPt(S) be the maximum weight of an independent set in Gt (the subgraph of G induced by the vertices in the sets
Xt′ , for t′ either t or a descendant of t in T) that intersects Xt exactly in S.

Algo((G,w), (T, {Xt}t∈V(T))):
return max

S⊆Xr
S is an ind. set

DPr(S)

DPt(S):
wSt = w(S)
forall t′ ∈ N+(t) do

wSt+ = max
S′⊆Xt′ \N[S]
S′ is an ind. set

DPt′ (S
′)

return wSt

Theorem
Given a graph G and a tree decomposition (T, {Xt}t∈V(T)) of G, MWIS can be in time O(2w · |V(T)|2), where
w = maxt∈V(T) |Xt|.

11

Tree decompositions: Solving MWIS

Let G be a graph and (T, {Xt}t∈V(T)) a tree decomposition of G rooted at an arbitrary node r.

Let DPt(S) be the maximum weight of an independent set in Gt (the subgraph of G induced by the vertices in the sets
Xt′ , for t′ either t or a descendant of t in T) that intersects Xt exactly in S.

Algo((G,w), (T, {Xt}t∈V(T))):
return max

S⊆Xr
S is an ind. set

DPr(S)

DPt(S):
wSt = w(S)
forall t′ ∈ N+(t) do

wSt+ = max
S′⊆Xt′ \N[S]
S′ is an ind. set

DPt′ (S
′)

return wSt

Theorem
Given a graph G and a tree decomposition (T, {Xt}t∈V(T)) of G, MWIS can be in time O(2w · |V(T)|2), where
w = maxt∈V(T) |Xt|.

11

Tree decompositions: Solving MWIS

Let G be a graph and (T, {Xt}t∈V(T)) a tree decomposition of G rooted at an arbitrary node r.

Let DPt(S) be the maximum weight of an independent set in Gt (the subgraph of G induced by the vertices in the sets
Xt′ , for t′ either t or a descendant of t in T) that intersects Xt exactly in S.

Algo((G,w), (T, {Xt}t∈V(T))):
return max

S⊆Xr
S is an ind. set

DPr(S)

DPt(S):
wSt = w(S)
forall t′ ∈ N+(t) do

wSt+ = max
S′⊆Xt′ \N[S]
S′ is an ind. set

DPt′ (S
′)

return wSt

Theorem
Given a graph G and a tree decomposition (T, {Xt}t∈V(T)) of G, MWIS can be in time O(2w · |V(T)|2), where
w = maxt∈V(T) |Xt|.

11

Tree decompositions: Solving MWIS

Let G be a graph and (T, {Xt}t∈V(T)) a tree decomposition of G rooted at an arbitrary node r.

Let DPt(S) be the maximum weight of an independent set in Gt (the subgraph of G induced by the vertices in the sets
Xt′ , for t′ either t or a descendant of t in T) that intersects Xt exactly in S.

Algo((G,w), (T, {Xt}t∈V(T))):
return max

S⊆Xr
S is an ind. set

DPr(S)

DPt(S):
wSt = w(S)
forall t′ ∈ N+(t) do

wSt+ = max
S′⊆Xt′ \N[S]
S′ is an ind. set

DPt′ (S
′)

return wSt

Theorem
Given a graph G and a tree decomposition (T, {Xt}t∈V(T)) of G, MWIS can be in time O(2w · |V(T)|2), where
w = maxt∈V(T) |Xt|.

11

Treewidth

The width of a tree decomposition (T, {Xt}t∈V(T)) is max
t∈V(T)

|Xt| − 1, and the treewidth of G, denoted by tw(G), is the

minimum width over all tree decompositions of G.

While computing the treewidth of a graph G is NP-hard, there exists an exact FPT algorithm that either compute a tree
decomposition of width k or report that tw(G) > k, in time 2O(k2) · n4 (Korhonnen, Lokshtanov, 2023).

There also exist (faster) approximation algorithms that either compute a tree decomposition of width ≤ f (k) or report
that tw(G) > k.

Corollary
MWIS can be solved in polynomial time on graphs with bounded treewidth.

The main shortcoming is that many graph classes have unbounded treewidth, including chordal graphs.

12

Treewidth

The width of a tree decomposition (T, {Xt}t∈V(T)) is max
t∈V(T)

|Xt| − 1, and the treewidth of G, denoted by tw(G), is the

minimum width over all tree decompositions of G.

While computing the treewidth of a graph G is NP-hard, there exists an exact FPT algorithm that either compute a tree
decomposition of width k or report that tw(G) > k, in time 2O(k2) · n4 (Korhonnen, Lokshtanov, 2023).

There also exist (faster) approximation algorithms that either compute a tree decomposition of width ≤ f (k) or report
that tw(G) > k.

Corollary
MWIS can be solved in polynomial time on graphs with bounded treewidth.

The main shortcoming is that many graph classes have unbounded treewidth, including chordal graphs.

12

Treewidth

The width of a tree decomposition (T, {Xt}t∈V(T)) is max
t∈V(T)

|Xt| − 1, and the treewidth of G, denoted by tw(G), is the

minimum width over all tree decompositions of G.

While computing the treewidth of a graph G is NP-hard, there exists an exact FPT algorithm that either compute a tree
decomposition of width k or report that tw(G) > k, in time 2O(k2) · n4 (Korhonnen, Lokshtanov, 2023).

There also exist (faster) approximation algorithms that either compute a tree decomposition of width ≤ f (k) or report
that tw(G) > k.

Corollary
MWIS can be solved in polynomial time on graphs with bounded treewidth.

The main shortcoming is that many graph classes have unbounded treewidth, including chordal graphs.

12

Treewidth

The width of a tree decomposition (T, {Xt}t∈V(T)) is max
t∈V(T)

|Xt| − 1, and the treewidth of G, denoted by tw(G), is the

minimum width over all tree decompositions of G.

While computing the treewidth of a graph G is NP-hard, there exists an exact FPT algorithm that either compute a tree
decomposition of width k or report that tw(G) > k, in time 2O(k2) · n4 (Korhonnen, Lokshtanov, 2023).

There also exist (faster) approximation algorithms that either compute a tree decomposition of width ≤ f (k) or report
that tw(G) > k.

Corollary
MWIS can be solved in polynomial time on graphs with bounded treewidth.

The main shortcoming is that many graph classes have unbounded treewidth, including chordal graphs.

12

Treewidth

The width of a tree decomposition (T, {Xt}t∈V(T)) is max
t∈V(T)

|Xt| − 1, and the treewidth of G, denoted by tw(G), is the

minimum width over all tree decompositions of G.

While computing the treewidth of a graph G is NP-hard, there exists an exact FPT algorithm that either compute a tree
decomposition of width k or report that tw(G) > k, in time 2O(k2) · n4 (Korhonnen, Lokshtanov, 2023).

There also exist (faster) approximation algorithms that either compute a tree decomposition of width ≤ f (k) or report
that tw(G) > k.

Corollary
MWIS can be solved in polynomial time on graphs with bounded treewidth.

The main shortcoming is that many graph classes have unbounded treewidth, including chordal graphs.

12

Tree-independence number

The independence number of a tree decomposition (T, {Xt}t∈V(T)) of a graph G, denoted by α(T), is maxt∈V(T) α(G[Xt]).

The tree-independence number of a graph G, denoted by tree-α(G), is the minimum independence number over all
tree decompositions of G (Yolov, 2018, and independently D., Milanič, Štorgel, 2025).

Computing tree-α(G) is NP-hard (D., Milanič, Štorgel, 2025); even deciding whether tree-α(G) ≤ 4 is NP-complete (D., Fomin,
Golovach, Korhonnen, Milanič, 2024).

There exists a polynomial-time algorithm that, given a graph G and an integer k, either construct a tree decomposition
of independence number ≤ 8k or report that tree-α(G) > k (D., Fomin, Golovach, Korhonnen, Milanič, 2025).

Theorem
MWIS can be solved in polynomial time on graphs with bounded tree-independence number.

13

Tree-independence number

The independence number of a tree decomposition (T, {Xt}t∈V(T)) of a graph G, denoted by α(T), is maxt∈V(T) α(G[Xt]).

The tree-independence number of a graph G, denoted by tree-α(G), is the minimum independence number over all
tree decompositions of G (Yolov, 2018, and independently D., Milanič, Štorgel, 2025).

Computing tree-α(G) is NP-hard (D., Milanič, Štorgel, 2025); even deciding whether tree-α(G) ≤ 4 is NP-complete (D., Fomin,
Golovach, Korhonnen, Milanič, 2024).

There exists a polynomial-time algorithm that, given a graph G and an integer k, either construct a tree decomposition
of independence number ≤ 8k or report that tree-α(G) > k (D., Fomin, Golovach, Korhonnen, Milanič, 2025).

Theorem
MWIS can be solved in polynomial time on graphs with bounded tree-independence number.

13

Tree-independence number

The independence number of a tree decomposition (T, {Xt}t∈V(T)) of a graph G, denoted by α(T), is maxt∈V(T) α(G[Xt]).

The tree-independence number of a graph G, denoted by tree-α(G), is the minimum independence number over all
tree decompositions of G (Yolov, 2018, and independently D., Milanič, Štorgel, 2025).

Computing tree-α(G) is NP-hard (D., Milanič, Štorgel, 2025); even deciding whether tree-α(G) ≤ 4 is NP-complete (D., Fomin,
Golovach, Korhonnen, Milanič, 2024).

There exists a polynomial-time algorithm that, given a graph G and an integer k, either construct a tree decomposition
of independence number ≤ 8k or report that tree-α(G) > k (D., Fomin, Golovach, Korhonnen, Milanič, 2025).

Theorem
MWIS can be solved in polynomial time on graphs with bounded tree-independence number.

13

Tree-independence number

The independence number of a tree decomposition (T, {Xt}t∈V(T)) of a graph G, denoted by α(T), is maxt∈V(T) α(G[Xt]).

The tree-independence number of a graph G, denoted by tree-α(G), is the minimum independence number over all
tree decompositions of G (Yolov, 2018, and independently D., Milanič, Štorgel, 2025).

Computing tree-α(G) is NP-hard (D., Milanič, Štorgel, 2025); even deciding whether tree-α(G) ≤ 4 is NP-complete (D., Fomin,
Golovach, Korhonnen, Milanič, 2024).

There exists a polynomial-time algorithm that, given a graph G and an integer k, either construct a tree decomposition
of independence number ≤ 8k or report that tree-α(G) > k (D., Fomin, Golovach, Korhonnen, Milanič, 2025).

Theorem
MWIS can be solved in polynomial time on graphs with bounded tree-independence number.

13

Tree-independence number

The independence number of a tree decomposition (T, {Xt}t∈V(T)) of a graph G, denoted by α(T), is maxt∈V(T) α(G[Xt]).

The tree-independence number of a graph G, denoted by tree-α(G), is the minimum independence number over all
tree decompositions of G (Yolov, 2018, and independently D., Milanič, Štorgel, 2025).

Computing tree-α(G) is NP-hard (D., Milanič, Štorgel, 2025); even deciding whether tree-α(G) ≤ 4 is NP-complete (D., Fomin,
Golovach, Korhonnen, Milanič, 2024).

There exists a polynomial-time algorithm that, given a graph G and an integer k, either construct a tree decomposition
of independence number ≤ 8k or report that tree-α(G) > k (D., Fomin, Golovach, Korhonnen, Milanič, 2025).

Theorem
MWIS can be solved in polynomial time on graphs with bounded tree-independence number.

13

Tree independence number: Indeed a generalization of chordal graphs

From the definition of tree-independence number, it follows that chordal graphs are exactly the graphs with
tree-α(G) = 1.

In particular, graphs with bounded tree-α generalize chordal graphs from the point of view of clique trees and tree
decompositions.

For every graph G, it holds that ω(G) ≤ tw(G)− 1 (because every clique must be contained in some bag of any tree
decomposition of G).

If G is chordal, then ω(G) = tw(G)− 1.

Lemma
For every graph G with tree-α(G) ≤ k, it holds tw(G) < R(k+ 1, ω(G) + 1), where R(·, ·) is the Ramsey number, which is
upper-bounded by a polynomial in p of degree k.

However, there exist graph classes whose graphs G have tw(G) ≤ f (ω(G) + 1), for some polynomial function f , but for
which tree-α(G) is unbounded.

14

Tree independence number: Indeed a generalization of chordal graphs

From the definition of tree-independence number, it follows that chordal graphs are exactly the graphs with
tree-α(G) = 1.

In particular, graphs with bounded tree-α generalize chordal graphs from the point of view of clique trees and tree
decompositions.

For every graph G, it holds that ω(G) ≤ tw(G)− 1 (because every clique must be contained in some bag of any tree
decomposition of G).

If G is chordal, then ω(G) = tw(G)− 1.

Lemma
For every graph G with tree-α(G) ≤ k, it holds tw(G) < R(k+ 1, ω(G) + 1), where R(·, ·) is the Ramsey number, which is
upper-bounded by a polynomial in p of degree k.

However, there exist graph classes whose graphs G have tw(G) ≤ f (ω(G) + 1), for some polynomial function f , but for
which tree-α(G) is unbounded.

14

Tree independence number: Indeed a generalization of chordal graphs

From the definition of tree-independence number, it follows that chordal graphs are exactly the graphs with
tree-α(G) = 1.

In particular, graphs with bounded tree-α generalize chordal graphs from the point of view of clique trees and tree
decompositions.

For every graph G, it holds that ω(G) ≤ tw(G)− 1 (because every clique must be contained in some bag of any tree
decomposition of G).

If G is chordal, then ω(G) = tw(G)− 1.

Lemma
For every graph G with tree-α(G) ≤ k, it holds tw(G) < R(k+ 1, ω(G) + 1), where R(·, ·) is the Ramsey number, which is
upper-bounded by a polynomial in p of degree k.

However, there exist graph classes whose graphs G have tw(G) ≤ f (ω(G) + 1), for some polynomial function f , but for
which tree-α(G) is unbounded.

14

Tree independence number: Indeed a generalization of chordal graphs

From the definition of tree-independence number, it follows that chordal graphs are exactly the graphs with
tree-α(G) = 1.

In particular, graphs with bounded tree-α generalize chordal graphs from the point of view of clique trees and tree
decompositions.

For every graph G, it holds that ω(G) ≤ tw(G)− 1 (because every clique must be contained in some bag of any tree
decomposition of G).

If G is chordal, then ω(G) = tw(G)− 1.

Lemma
For every graph G with tree-α(G) ≤ k, it holds tw(G) < R(k+ 1, ω(G) + 1), where R(·, ·) is the Ramsey number, which is
upper-bounded by a polynomial in p of degree k.

However, there exist graph classes whose graphs G have tw(G) ≤ f (ω(G) + 1), for some polynomial function f , but for
which tree-α(G) is unbounded.

14

Tree independence number: Indeed a generalization of chordal graphs

From the definition of tree-independence number, it follows that chordal graphs are exactly the graphs with
tree-α(G) = 1.

In particular, graphs with bounded tree-α generalize chordal graphs from the point of view of clique trees and tree
decompositions.

For every graph G, it holds that ω(G) ≤ tw(G)− 1 (because every clique must be contained in some bag of any tree
decomposition of G).

If G is chordal, then ω(G) = tw(G)− 1.

Lemma
For every graph G with tree-α(G) ≤ k, it holds tw(G) < R(k+ 1, ω(G) + 1), where R(·, ·) is the Ramsey number, which is
upper-bounded by a polynomial in p of degree k.

However, there exist graph classes whose graphs G have tw(G) ≤ f (ω(G) + 1), for some polynomial function f , but for
which tree-α(G) is unbounded.

14

Tree independence number: Indeed a generalization of chordal graphs

From the definition of tree-independence number, it follows that chordal graphs are exactly the graphs with
tree-α(G) = 1.

In particular, graphs with bounded tree-α generalize chordal graphs from the point of view of clique trees and tree
decompositions.

For every graph G, it holds that ω(G) ≤ tw(G)− 1 (because every clique must be contained in some bag of any tree
decomposition of G).

If G is chordal, then ω(G) = tw(G)− 1.

Lemma
For every graph G with tree-α(G) ≤ k, it holds tw(G) < R(k+ 1, ω(G) + 1), where R(·, ·) is the Ramsey number, which is
upper-bounded by a polynomial in p of degree k.

However, there exist graph classes whose graphs G have tw(G) ≤ f (ω(G) + 1), for some polynomial function f , but for
which tree-α(G) is unbounded.

14

Cameron and Hell construction

Let H be a finite set of connected graphs.

Given a graph G, denote by H(G) the following graph:

• the vertices are the subgraphs of G isomorphic to a member of H,

• an edge between two vertices means that the corresponding subgraphs of G have a vertex in common or an edge
between them.

Note that since H is finite, computing H(G) can be done in polynomial time.

Special cases:

• if H = {K1}, then H(G) = G

• if H = {K2}, then H(G) is the square of the line graph of G

15

Cameron and Hell construction

Let H be a finite set of connected graphs.

Given a graph G, denote by H(G) the following graph:

• the vertices are the subgraphs of G isomorphic to a member of H,

• an edge between two vertices means that the corresponding subgraphs of G have a vertex in common or an edge
between them.

Note that since H is finite, computing H(G) can be done in polynomial time.

Special cases:

• if H = {K1}, then H(G) = G

• if H = {K2}, then H(G) is the square of the line graph of G

15

Cameron and Hell construction

Let H be a finite set of connected graphs.

Given a graph G, denote by H(G) the following graph:

• the vertices are the subgraphs of G isomorphic to a member of H,

• an edge between two vertices means that the corresponding subgraphs of G have a vertex in common or an edge
between them.

Note that since H is finite, computing H(G) can be done in polynomial time.

Special cases:

• if H = {K1}, then H(G) = G

• if H = {K2}, then H(G) is the square of the line graph of G

15

Cameron and Hell construction

Let H be a finite set of connected graphs.

Given a graph G, denote by H(G) the following graph:

• the vertices are the subgraphs of G isomorphic to a member of H,

• an edge between two vertices means that the corresponding subgraphs of G have a vertex in common or an edge
between them.

Note that since H is finite, computing H(G) can be done in polynomial time.

Special cases:

• if H = {K1}, then H(G) = G

• if H = {K2}, then H(G) is the square of the line graph of G

15

Cameron and Hell construction

Let H be a finite set of connected graphs.

Given a graph G, denote by H(G) the following graph:

• the vertices are the subgraphs of G isomorphic to a member of H,

• an edge between two vertices means that the corresponding subgraphs of G have a vertex in common or an edge
between them.

Note that since H is finite, computing H(G) can be done in polynomial time.

Special cases:

• if H = {K1}, then H(G) = G

• if H = {K2}, then H(G) is the square of the line graph of G

15

tree-α and independent packing problems

The Maximum Weight Independent H-Packing problem on a graph G corresponds to the MWIS problem in the graph
H(G).

This is a common generalization of:

• the Independent H-Packing problem (unweighted variant),

• the Maximum Weight Independent Set problem (when H = {K1}),

• the Maximum Weight Induced Matching problem (when H = {K2}),

• the Dissociation Set problem (when H = {K1, K2}),

• the k-Separator problem (finding a minimum-weight set of vertices whose removal leaves components of size at
most k).

16

tree-α and independent packing problems

The Maximum Weight Independent H-Packing problem on a graph G corresponds to the MWIS problem in the graph
H(G).

This is a common generalization of:

• the Independent H-Packing problem (unweighted variant),

• the Maximum Weight Independent Set problem (when H = {K1}),

• the Maximum Weight Induced Matching problem (when H = {K2}),

• the Dissociation Set problem (when H = {K1, K2}),

• the k-Separator problem (finding a minimum-weight set of vertices whose removal leaves components of size at
most k).

16

One can show that, for every graph G, it holds tree-α(H(G)) ≤ tree-α(G).

Sketch of proof: Let T = (T, (Xt)t∈V(T)) be a tree decomposition of G with independence number at most k. Define the
tree decomposition T ′ = (T, (X′t)t∈V(T)) of H(G) such that:

• for each t ∈ V(T), X′t is the set of vertices of H(G) whose corresponding subgraphs of G have at least one vertex
in Xt .

Since graphs in H are connected, T ′ is a valid tree decomposition of H(G).

Furthermore, an independent set in H(G)[X′t], for some t ∈ V(T), implies the existence of an independent set in G[Xt] of
the same size. Thus, α(G[X′t]) ≤ α(G[Xt]) ≤ k.

Theorem
The Maximum Weight Independent H-Packing problem is solvable in polynomial time on graphs with bounded
tree-independence number.

17

One can show that, for every graph G, it holds tree-α(H(G)) ≤ tree-α(G).

Sketch of proof: Let T = (T, (Xt)t∈V(T)) be a tree decomposition of G with independence number at most k. Define the
tree decomposition T ′ = (T, (X′t)t∈V(T)) of H(G) such that:

• for each t ∈ V(T), X′t is the set of vertices of H(G) whose corresponding subgraphs of G have at least one vertex
in Xt .

Since graphs in H are connected, T ′ is a valid tree decomposition of H(G).

Furthermore, an independent set in H(G)[X′t], for some t ∈ V(T), implies the existence of an independent set in G[Xt] of
the same size. Thus, α(G[X′t]) ≤ α(G[Xt]) ≤ k.

Theorem
The Maximum Weight Independent H-Packing problem is solvable in polynomial time on graphs with bounded
tree-independence number.

17

One can show that, for every graph G, it holds tree-α(H(G)) ≤ tree-α(G).

Sketch of proof: Let T = (T, (Xt)t∈V(T)) be a tree decomposition of G with independence number at most k. Define the
tree decomposition T ′ = (T, (X′t)t∈V(T)) of H(G) such that:

• for each t ∈ V(T), X′t is the set of vertices of H(G) whose corresponding subgraphs of G have at least one vertex
in Xt .

Since graphs in H are connected, T ′ is a valid tree decomposition of H(G).

Furthermore, an independent set in H(G)[X′t], for some t ∈ V(T), implies the existence of an independent set in G[Xt] of
the same size. Thus, α(G[X′t]) ≤ α(G[Xt]) ≤ k.

Theorem
The Maximum Weight Independent H-Packing problem is solvable in polynomial time on graphs with bounded
tree-independence number.

17

One can show that, for every graph G, it holds tree-α(H(G)) ≤ tree-α(G).

Sketch of proof: Let T = (T, (Xt)t∈V(T)) be a tree decomposition of G with independence number at most k. Define the
tree decomposition T ′ = (T, (X′t)t∈V(T)) of H(G) such that:

• for each t ∈ V(T), X′t is the set of vertices of H(G) whose corresponding subgraphs of G have at least one vertex
in Xt .

Since graphs in H are connected, T ′ is a valid tree decomposition of H(G).

Furthermore, an independent set in H(G)[X′t], for some t ∈ V(T), implies the existence of an independent set in G[Xt] of
the same size. Thus, α(G[X′t]) ≤ α(G[Xt]) ≤ k.

Theorem
The Maximum Weight Independent H-Packing problem is solvable in polynomial time on graphs with bounded
tree-independence number.

17

One can show that, for every graph G, it holds tree-α(H(G)) ≤ tree-α(G).

Sketch of proof: Let T = (T, (Xt)t∈V(T)) be a tree decomposition of G with independence number at most k. Define the
tree decomposition T ′ = (T, (X′t)t∈V(T)) of H(G) such that:

• for each t ∈ V(T), X′t is the set of vertices of H(G) whose corresponding subgraphs of G have at least one vertex
in Xt .

Since graphs in H are connected, T ′ is a valid tree decomposition of H(G).

Furthermore, an independent set in H(G)[X′t], for some t ∈ V(T), implies the existence of an independent set in G[Xt] of
the same size. Thus, α(G[X′t]) ≤ α(G[Xt]) ≤ k.

Theorem
The Maximum Weight Independent H-Packing problem is solvable in polynomial time on graphs with bounded
tree-independence number.

17

An algorithmic metatheorem for bounded tree-α

Counting monadic second-order logic (CMSO2) is an extension of monadic second-order logic (MSO2) that allows
counting the cardinality of sets modulo some fixed integer.

Theorem
Let ϕ be a fixed CMSO2 formula and let k and c be fixed integers. Then, given a graph G with tree-α(G) ≤ k, one can
find in polynomial time a maximum-weight induced subgraph of G with clique number at most c that satisfies ϕ (if
such a subgraph exists).

18

An algorithmic metatheorem for bounded tree-α

Counting monadic second-order logic (CMSO2) is an extension of monadic second-order logic (MSO2) that allows
counting the cardinality of sets modulo some fixed integer.

Theorem
Let ϕ be a fixed CMSO2 formula and let k and c be fixed integers. Then, given a graph G with tree-α(G) ≤ k, one can
find in polynomial time a maximum-weight induced subgraph of G with clique number at most c that satisfies ϕ (if
such a subgraph exists).

18

Operations that are monotone for tree-α

The following graph operations do not increase the tree-independence number:

• vertex deletion,

• edge contraction,

• gluing two graphs along a clique.

However, edge deletion does not necessarily preserve the tree-independence number.

Definition
A graph H is an induced minor of a graph G if H can be obtained from G by a sequence of vertex deletions and edge
contractions.

Proposition
If H is an induced minor of G, then tree-α(H) ≤ tree-α(G).

19

Operations that are monotone for tree-α

The following graph operations do not increase the tree-independence number:

• vertex deletion,

• edge contraction,

• gluing two graphs along a clique.

However, edge deletion does not necessarily preserve the tree-independence number.

Definition
A graph H is an induced minor of a graph G if H can be obtained from G by a sequence of vertex deletions and edge
contractions.

Proposition
If H is an induced minor of G, then tree-α(H) ≤ tree-α(G).

19

Operations that are monotone for tree-α

The following graph operations do not increase the tree-independence number:

• vertex deletion,

• edge contraction,

• gluing two graphs along a clique.

However, edge deletion does not necessarily preserve the tree-independence number.

Definition
A graph H is an induced minor of a graph G if H can be obtained from G by a sequence of vertex deletions and edge
contractions.

Proposition
If H is an induced minor of G, then tree-α(H) ≤ tree-α(G).

19

Operations that are monotone for tree-α

The following graph operations do not increase the tree-independence number:

• vertex deletion,

• edge contraction,

• gluing two graphs along a clique.

However, edge deletion does not necessarily preserve the tree-independence number.

Definition
A graph H is an induced minor of a graph G if H can be obtained from G by a sequence of vertex deletions and edge
contractions.

Proposition
If H is an induced minor of G, then tree-α(H) ≤ tree-α(G).

19

Operations that are monotone for tree-α

The following graph operations do not increase the tree-independence number:

• vertex deletion,

• edge contraction,

• gluing two graphs along a clique.

However, edge deletion does not necessarily preserve the tree-independence number.

Definition
A graph H is an induced minor of a graph G if H can be obtained from G by a sequence of vertex deletions and edge
contractions.

Proposition
If H is an induced minor of G, then tree-α(H) ≤ tree-α(G).

19

Operations that are monotone for tree-α

The following graph operations do not increase the tree-independence number:

• vertex deletion,

• edge contraction,

• gluing two graphs along a clique.

However, edge deletion does not necessarily preserve the tree-independence number.

Definition
A graph H is an induced minor of a graph G if H can be obtained from G by a sequence of vertex deletions and edge
contractions.

Proposition
If H is an induced minor of G, then tree-α(H) ≤ tree-α(G).

19

Some graph classes with unbounded tree-α

The following families of graph classes all have unbounded tree-α:

• bipartite graphs (tree-α(Kn,n) = n),

• graphs with large treewidth and small chromatic number, which include planar graphs, and in particular walls and
their line graphs.

From the previous proposition, it follows that any graph class that contains large complete bipartite graphs, large walls,
or the line graphs of large walls as induced minors has unbounded tree-α.

20

Some graph classes with unbounded tree-α

The following families of graph classes all have unbounded tree-α:

• bipartite graphs (tree-α(Kn,n) = n),

• graphs with large treewidth and small chromatic number, which include planar graphs, and in particular walls and
their line graphs.

From the previous proposition, it follows that any graph class that contains large complete bipartite graphs, large walls,
or the line graphs of large walls as induced minors has unbounded tree-α.

20

Some graph classes with unbounded tree-α

The following families of graph classes all have unbounded tree-α:

• bipartite graphs (tree-α(Kn,n) = n),

• graphs with large treewidth and small chromatic number, which include planar graphs, and in particular walls and
their line graphs.

From the previous proposition, it follows that any graph class that contains large complete bipartite graphs, large walls,
or the line graphs of large walls as induced minors has unbounded tree-α.

20

Some graph classes with bounded tree-α

The following families of graph classes all have bounded tree-α:

• graph classes of bounded independence number (tree-α(G) ≤ α(G));

• graph classes of bounded treewidth (tree-α(G) ≤ tw(G) + 1);

• classes of graphs in which all minimal separators are of bounded size (following a result by Skodinis).

21

Some graph classes with bounded tree-α

The following families of graph classes all have bounded tree-α:

• graph classes of bounded independence number (tree-α(G) ≤ α(G));

• graph classes of bounded treewidth (tree-α(G) ≤ tw(G) + 1);

• classes of graphs in which all minimal separators are of bounded size (following a result by Skodinis).

21

Some graph classes with bounded tree-α

The following families of graph classes all have bounded tree-α:

• graph classes of bounded independence number (tree-α(G) ≤ α(G));

• graph classes of bounded treewidth (tree-α(G) ≤ tw(G) + 1);

• classes of graphs in which all minimal separators are of bounded size (following a result by Skodinis).

21

Graph containment relations

H

H ⊆itm G2 H ⊆im G3

G1 G2 G3

induced
topological minorsubgraph

induced

minor

induced

22

Graph containment relations

H

H ⊆is G1 H ⊆itm G2 H ⊆im G3

G1 G2 G3

induced
topological minorsubgraph

induced

minor

induced

22

Graph containment relations

H

H ⊆is G1 H ⊆itm G2 H ⊆im G3

G1 G2 G3

induced
topological minorsubgraph

induced

minor

induced

22

Graph containment relations

H

H ⊆is G1 H ⊆itm G2 H ⊆im G3

G1 G2 G3

induced
topological minorsubgraph

induced

minor

induced

22

Graph containment relations

H

H ⊆s G1 H ⊆tm G2 H ⊆m G3

G1 G2 G3

topological minorsubgraph minor

22

Forbidding a graph H

Graphs H for which the class of graphs excluding H has bounded tree-independence number (D., Milanič, Štorgel, 2024):

Non-induced Induced

Subgraph H ∈ S P3 or edgeless
Topological H is subcubic C4 , K−4 ,
minor and planar or edgeless

Minor H is planar
W4 , K−5 ,

K2,q for some q ∈ N

S is the class of graphs whose connected components are either paths or subdivisions of the claw (K1,3).

In all the bounded cases above, we can efficiently compute a tree decomposition with bounded independence number.

23

Some recent works in the world of tree-α

• Treewidth versus clique number. IV. Tree-independence number of graphs excluding an induced star,
C. Dallard, M. Krnc, O. Kwon, M. Milanič, A. Munaro, K. Štorgel, S. Wiederrecht, 2024.

• Polynomial-time approximation schemes for induced subgraph problems on fractionally
tree-independence-number-fragile graphs,
E. Galby, A. Munaro, S. Yang, 2024.

• Tree independence number II. Three-path-configurations,
M. Chudnovsky, S. Hajebi, D. Lokshtanov, S. Spirkl, 2024.

• Tree independence number III. Thetas, prisms and stars,
M. Chudnovsky, S. Hajebi, N. Trotignon, 2024.

• Tree independence number IV. Even-hole-free graphs,
M. Chudnovsky, P. Gartland, S. Hajebi, D. Lokshtanov, S. Spirkl, 2024.

• Tree independence number V. Walls and claws,
M. Chudnovsky, J. Codsi, D. Lokshtanov, M. Milanič, V. Sivashankar, 2025.

• Treewidth versus clique number. V. Further connections with tree-independence number,
Claire Hilaire, Martin Milanič, Đorđe Vasić

• On the relation between treewidth, tree-independence number, and tree-chromatic number of graphs,
K. Krause, M. Redzic, T. Ueckerdt, 2025.

• Excluding a Ladder as an Induced Minor in Graphs Without Induced Stars,
M. Choi, S. Wiederrecht, 2025.

• Layered tree-independence number and clique-based separators,
C. Dallard, M. Milanič, A. Munaro, S. Yang, 2025.

• Tree-independence number VI. Thetas and pyramids,
M. Chudnovsky, J. Codsi, 2025.

• (Treewidth, Clique)-Boundedness and Poly-logarithmic Tree-Independence,
M. Chudnovsky, A. E. S., D. Lokshtanov, 2025.

24

Beyond independence: Induced matching treewidth

For a graph G and a tree decomposition T = (T, {Xt}t∈V(T)) of G, let

µ(T) = max
t∈V(T)

{M : M is an induced matching s.t. every edge of M has at least one endpoint in Xt}.

The induced matching treewidth of G, denoted tree-µ(G), is the minimum of µ(T) over all tree decompositions T of G.

Note that a graph class with bounded tree-α also has bounded tree-µ, but the converse is not true (e.g., complete
bipartite graphs have tree-µ = 1).

While determining tree-µ(G) is NP-hard, there exists a polynomial-time algorithm that, given a graph G and an integer k,
either constructs a tree decomposition of G with induced matching number at most O(k3) or reports that tree-µ(G) > k
(Yolov, 2018).

Theorem (Lima et al., 2024)
Graphs with bounded tree-µ admit polynomial-time algorithms for MWIS, Max Weight Induced Forest, Max Weight
Independent H-Packing (for finite H of connected graphs), and more.

25

Beyond independence: Induced matching treewidth

For a graph G and a tree decomposition T = (T, {Xt}t∈V(T)) of G, let

µ(T) = max
t∈V(T)

{M : M is an induced matching s.t. every edge of M has at least one endpoint in Xt}.

The induced matching treewidth of G, denoted tree-µ(G), is the minimum of µ(T) over all tree decompositions T of G.

Note that a graph class with bounded tree-α also has bounded tree-µ, but the converse is not true (e.g., complete
bipartite graphs have tree-µ = 1).

While determining tree-µ(G) is NP-hard, there exists a polynomial-time algorithm that, given a graph G and an integer k,
either constructs a tree decomposition of G with induced matching number at most O(k3) or reports that tree-µ(G) > k
(Yolov, 2018).

Theorem (Lima et al., 2024)
Graphs with bounded tree-µ admit polynomial-time algorithms for MWIS, Max Weight Induced Forest, Max Weight
Independent H-Packing (for finite H of connected graphs), and more.

25

Beyond independence: Induced matching treewidth

For a graph G and a tree decomposition T = (T, {Xt}t∈V(T)) of G, let

µ(T) = max
t∈V(T)

{M : M is an induced matching s.t. every edge of M has at least one endpoint in Xt}.

The induced matching treewidth of G, denoted tree-µ(G), is the minimum of µ(T) over all tree decompositions T of G.

Note that a graph class with bounded tree-α also has bounded tree-µ, but the converse is not true (e.g., complete
bipartite graphs have tree-µ = 1).

While determining tree-µ(G) is NP-hard, there exists a polynomial-time algorithm that, given a graph G and an integer k,
either constructs a tree decomposition of G with induced matching number at most O(k3) or reports that tree-µ(G) > k
(Yolov, 2018).

Theorem (Lima et al., 2024)
Graphs with bounded tree-µ admit polynomial-time algorithms for MWIS, Max Weight Induced Forest, Max Weight
Independent H-Packing (for finite H of connected graphs), and more.

25

Beyond independence: Induced matching treewidth

For a graph G and a tree decomposition T = (T, {Xt}t∈V(T)) of G, let

µ(T) = max
t∈V(T)

{M : M is an induced matching s.t. every edge of M has at least one endpoint in Xt}.

The induced matching treewidth of G, denoted tree-µ(G), is the minimum of µ(T) over all tree decompositions T of G.

Note that a graph class with bounded tree-α also has bounded tree-µ, but the converse is not true (e.g., complete
bipartite graphs have tree-µ = 1).

While determining tree-µ(G) is NP-hard, there exists a polynomial-time algorithm that, given a graph G and an integer k,
either constructs a tree decomposition of G with induced matching number at most O(k3) or reports that tree-µ(G) > k
(Yolov, 2018).

Theorem (Lima et al., 2024)
Graphs with bounded tree-µ admit polynomial-time algorithms for MWIS, Max Weight Induced Forest, Max Weight
Independent H-Packing (for finite H of connected graphs), and more.

25

